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Accurate transmission and expression of genetic information are
crucial for the survival of all living organisms. Recently, the
coupling of mutation accumulation experiments and next-gener-
ation sequencing has greatly expanded our knowledge of the
genomic mutation rate in both prokaryotes and eukaryotes.
However, because of their transient nature, transcription errors
have proven extremely difficult to quantify, and current estimates
of transcription fidelity are derived from artificial constructs
applied to just a few organisms. Here we report a unique cDNA
library preparation technique that allows error detection in natu-
ral transcripts at the transcriptome-wide level. Application of this
method to the model organism Caenorhabditis elegans revealed
a base misincorporation rate in mRNAs of ∼4 × 10−6 per site, with
a very biased molecular spectrum. Because the proposed method is
readily applicable to other organisms, this innovation provides
unique opportunities for studying the incidence of transcription
errors across the tree of life.
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Errors in biological processes are at the very heart of the
evolution of life. Indeed, mutations caused by DNA repli-

cation errors are ultimately essential for species adaptation in
the face of changing environments. Despite the important role of
adaptive mutation for evolution, most mutations are deleterious,
especially when they affect protein-coding sequences (1). As
a consequence, selection is expected to enhance the fidelity of
replication (2–4). However, because errors can occur at any step
of the protein synthesis process, even nonmutated sequences can
produce nonfunctional proteins. Indeed, misincorporations by
RNA polymerase (transcription errors) and erroneous tRNA
recruitment (translation errors) may often lead to the synthesis
of misfolded, nonfunctional proteins with potentially harmful
consequences (5, 6). Therefore, selection is expected to enhance
the fidelity of each of these processes. However, the error rates
that can be tolerated by different organisms remain unclear, and
several hypotheses have been proposed for the limits to the
fidelity of replication and transcription (7–10).
Two fundamental differences with DNA mutations may reduce

the strength of selection against transcription and translation
errors. First, unlike DNAmutations, the latter are not permanently
transmitted to daughter cells. Second, individual loci generally
produce multiple transcripts with relatively short half-lives (11), so
that each error is present in only a fraction of the proteins pro-
duced. Therefore, it has been suggested that the strength of se-
lection against transcription and translation errors might be less
intense than that operating at the level of genome replication (9).
With the recent improvement in sequencing techniques, detec-

tion of mutations is now commonly achieved by next-generation
sequencing of mutation accumulation lines (12–15), providing
ample opportunities for developing and testing theories on the
evolution of mutation rates. However, because of their transient
nature, transcription and translation errors have remained dif-
ficult to detect. The few attempts to measure transcription error
rates have relied on indirect techniques involving reporter con-
structs and/or in vitro template copying (16–20). Reporter con-
structs measure transcription errors at only a small number of
sites and are often convoluted with translation errors (18, 19), and
in vitro methods use experimental conditions that may be quite

different from the intracellular environment. Thus, it is not sur-
prising that previous estimates of transcription error rates vary
by orders of magnitudes even within the same organism (16–20),
although a rough overall average value of 10−5 per nucleotide
has been suggested (21). Likewise, measurements of translation
error rates are still sparse and can be hard to disentangle from
transcription errors (18, 19, 22–24).
Although large-scale analysis of translation errors might re-

quire a breakthrough in mass spectrometry techniques, one can
imagine that the large amount of RNA-sequencing (RNA-seq)
data now routinely obtained by next-generation sequencing
could help in detecting transcription errors. Indeed, after map-
ping RNA-seq reads to a reference genome, transcription errors
will appear as mismatches between mRNA reads and the refer-
ence genome. Therefore, the billions of RNA-seq reads deposited
in public databases probably contain thousands of transcription
errors within their sequences. Unfortunately, such a naive
approach cannot be used with traditional RNA-seq data, because
mismatches caused by transcription errors are not accurately
distinguishable from the potentially much more numerous se-
quencing errors, not to mention errors introduced by reverse
transcription during cDNA synthesis [RT (reverse transcription)
errors]. In principle, bar-coding of nucleic acid molecules before
sequencing can facilitate the discrimination of sequencing errors
from real mutations (25). Here we describe a unique method
for identifying transcription errors by sequencing multiple
cDNAs originating from the same mRNA molecule, using a bar-
coding strategy to trace back the origin of individual cDNAs.

Significance

Gene expression requires accurate copying of the DNA tem-
plate into messenger RNA by RNA polymerases. Errors occur-
ring during this transcription process can lead to the production
of nonfunctional proteins, which is likely to be deleterious.
Therefore, natural selection is expected to enhance the fidelity
of transcription. However, very little is known about the tran-
scription error rates of different organisms. Here we present a
unique method for the detection of transcription errors by rep-
licated high-throughput sequencing of cDNA libraries. Applying
this method to the model organism Caenorhabditis elegans, we
report a large-scale analysis of transcription errors. Future appli-
cations of this method should allow a rapid increase in our
knowledge of evolutionary forces acting on transcription fidelity.
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Results
A Unique Library Preparation Technique. To accurately identify
transcription errors in RNA-seq data, we developed a unique
cDNA library preparation technique. We start by tagging frag-
mented mRNAs at their 5′ ends with bar codes made of random
8-mers (Fig. 1A). The tagged RNA fragments are then attached
to beads and reverse transcribed three times (Fig. 1B). After
each round of reverse transcription, the newly generated cDNAs
are washed away (Fig. 1C) and characterized by Illumina paired-
end sequencing. To simplify the following discussion, we denote
a series of reads originating from a unique molecule of frag-
mented mRNA as a family. Two reads are considered as be-
longing to the same family if they share the same bar code and
have identical 5′ and 3′ breakpoints introduced during the pro-
cess of mRNA fragmentation.
The rationale for identifying transcription errors in such

samples is as follows. Errors that are already present in the
fragmented mRNAs (i.e., transcription errors) will be copied by
the reverse transcriptase and incorporated into each newly
generated cDNA, therefore appearing as a mismatch in every
read of a family (Fig. 1D, leftmost family). In contrast, individual
reads in the family may contain unique RT and sequencing
errors, which will generally occur as singletons (Fig. 1D, blue and
green stars). Provided that the sequencing and RT error rates are
low enough, the probability of observing the same sequencing or
RT error in all three reads would be negligible, and only errors
present in the original mRNA molecule could produce the pat-
tern shown in the leftmost family of Fig. 1D. Ideally, every single
cDNA generated should be sequenced, so that each family
contains three pairs of reads (size 3 family). However, this would
require extremely deep sequencing, and in practice, only a frac-
tion of the cDNA library is sequenced (see below), so that most
families contain reads from only one or two cDNAs (size 1 and
size 2 families). Although size 1 families cannot be used to dis-
entangle transcription errors from other types of errors, we show
that size 2 families are sufficient to accurately call transcription
errors and that the number of size 2 and size 3 families obtained

from a single run of HiSeq sequencing is sufficient to find dozens
of transcription errors in Caenorhabditis elegans.

Estimating Sequencing Error Rates. Every base call in an Illumina
sequencing run is given a quality score, which is an indication of
the probability that the base call is erroneous. In principle, the
product of these probabilities at a given position within a family
can be used as an estimation of the probability of observing a
false positive caused by multiple sequencing errors. Assuming that
all three possible erroneous base calls at a given position are equi-
probable, the probability of observing the same erroneous base
call in two different reads would be 3×

�p
3

�2, where p is the prob-
ability of an erroneous base call. By setting a threshold on the
quality scores (p) of the sites analyzed, we can control the rate at
which sequencing errors introduce false positives into our analysis.
To evaluate whether the Illumina quality scores do indeed

yield correct estimates of the probability of erroneous base calls,
we developed our own method of estimating sequencing error
rates. With paired-end sequencing of short mRNA fragments,
most pairs of reads contain a region of overlap that is sequenced
from both ends. Within this region, sequencing errors are
revealed as different base calls between the left and right reads.
Assuming that the erroneous read is the one containing a different
base call than that in the reference genome, we can directly dis-
criminate erroneous from correct base calls and therefore estimate
the sequencing error rate for the different values of quality scores.
This analysis clearly showed that the Illumina quality scores tend
to overestimate the probability of erroneous base calls (Table S1)
and therefore can safely be used to estimate an upper limit to the
number of false positives introduced by sequencing errors.

Estimating the Reverse Transcriptase Error Rate. Sequencing errors
are not the only possible source of false positives. Reverse
transcription of mRNA fragments into cDNAs introduces errors
into the newly generated cDNAs at a certain rate. In the extreme
case in which the same error is introduced at the same position
into every cDNA in a family, these parallel RT errors would be
mistaken for a transcription error and contribute false positives

Fig. 1. Overview of the method. (A) Fragmented
mRNAs are tagged by attaching random 8-mers (bar
codes) to their 5′ ends. In this example, one of the
four mRNAs contains a transcription error (red star).
(B) The tagged RNA fragments are attached to
a bead and reverse transcribed. An error introduced
by the reverse transcriptase is represented with
a green star in one of the cDNAs. (C) The newly
generated cDNAs are washed away. (D) After re-
peating the steps in B and C two more times and
sequencing the cDNAs produced after each of the
three rounds of reverse transcription, the RNA-seq
reads are aligned to the genome and grouped into
families according to the combined information of
their bar code and breakpoint mapping position.
The transcription error (red star, leftmost family) is
shared among all members of the family and
therefore is easily distinguished from the occasional
RT (green star) and sequencing (blue stars) errors.
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to our analysis. To estimate the number of false positives con-
tributed by parallel RT errors, we sought to estimate the reverse
transcriptase error rate. With the exception of extremely rare
cases where the same RT error occurs in multiple cDNAs within
a family, RT errors should be characterized by mismatches
present in only one cDNA of families of size 2 or 3. To avoid
contamination by sequencing errors, we focused on sites for
which the probability of an erroneous base call (computed as
described above) was less than 1 × 10−7. Note that this number is
less than the probability corresponding to the best possible
quality score, so that only positions covered by both reads in
a pair can be used here. RT error base substitutions were found
at a rate of 1.14 × 10−4 (±6.4 × 10−6, 95% confidence interval).
For each of the 12 possible base substitutions, we computed the
conditional RT error rate and obtained the full molecular
spectrum of RT error base substitutions (Fig. S1). The most
common type of RT error corresponds to G → A base sub-
stitutions, which occurs at a conditional rate of 1.29 × 10−4 (Fig.
S1). Therefore, the probability of observing the same G → A RT
error in two cDNAs from the same family is ð1:29× 10−4Þ2 =
1:65× 10−8. For all other possible base substitutions, the proba-
bility of observing the same error twice in two cDNAs is less
than 10−8.
Thus, because the transcription error rate is expected to be on

the order of 10−6 to 10−4, it is unlikely that RT errors contribute
a significant number of false positives as long as the analysis is
restricted to families of size 2 and more. This is confirmed by our
observation that within 17,300 size 3 families, we never observed
a case where two cDNAs contained a base substitution while the
third one contained the same base call as in the reference ge-
nome, which would be the signature of parallel RT errors.

Transcription Error Rate and Spectrum of Caenorhabditis elegans. To
demonstrate the feasibility of the proposed technique, we ap-
plied it to the transcriptome of C. elegans. We obtained cDNAs
from both wild-type (N2) nematodes and an RNA-editing de-
ficient strain (RB886) to disentangle transcription errors from
RNA-editing events (26). Because some transcription errors
might result in degradation of the corresponding mRNAs by
nonsense-mediated mRNA decay (NMD) (27), we also obtained
cDNAs from a NMD-deficient strain (VC1305). The three cor-
responding cDNA libraries were prepared according to the
method described in Fig. 1 and sequenced on an Illumina HiSeq
2000, producing a total of 766,868,847 101-nt-long paired reads.
Reads were aligned to the reference genome, carefully filtered
for mismapping to paralogous regions (Materials and Methods),
and grouped into families as defined previously. Reads that
mapped to the mitochondrial genome were discarded to avoid
confusing transcription errors from faithful transcripts at any
potential heteroplasmic sites. This yielded a total of 38,411,057
size 1, 168,094 size 2, and 14,905 size 3 families (Table S2). In-
formative families (i.e., size 2 and size 3) represent only about
0.5% of all families, which probably reflects the fact that only
a fraction of the total cDNAs generated were sequenced. Al-
though deeper sequencing would certainly help increase the
fraction of informative families, we show here that the tran-
scription error rate can still be estimated without the need of
extremely deep sequencing.
For every family, we built a consensus sequence by selecting

only the aligned positions that fulfilled three criteria: (i) in a
family of size 2 or 3, (ii) the same base call for all reads, and (iii)
a probability of all base calls to be erroneous of <10−8 (computed
from the quality score). After filtering for potentially polymorphic
sites (see below), consensus sites with a base call different from the
reference genome were considered as transcription errors. We
found a total of 6, 25, and 52 transcription errors in the wild-type,
RNA editing-deficient, and NMD-deficient strains, respectively,
yielding base substitional transcription error rates of 2.2 × 10−6,
3.3 × 10−6, and 5.2 × 10−6 per site, respectively (Tables S3 and
S4). These three rates are not significantly different from each
other (P > 0.1 for all two-by-two comparisons, χ2 test), indicating

that the transcription errors recovered in this analysis are likely
not to be by-products of RNA-editing processes and that the
removal of error-containing transcripts by NMD, if any, is below
our statistical power of detection. Because only the small fraction
of base substitutions that produce a premature stop codon can be
detected by NMD, the expected increased error rate in the
NMD-deficient strain is likely to be on the order of only a few
percent and will require a much deeper analysis to be detected.
Although, we found that 2 out of the 52 base substitutions in the
NMD-deficient strain produced a premature termination codon
(PTC), this was not significantly different from the 1 out of 31
PTC-creating errors observed in the combined data from the two
NMD-capable strains (P > 0.1, Fisher’s exact test).
Although further in-depth analysis may reveal significant dif-

ferences between these three strains, our results indicate that
their transcription error rates are similar enough that the com-
bined data from all three strains should be representative of the
overall C. elegans transcription error rate. This leads to an
overall transcription error rate estimate of 4.1 × 10−6 (±8.8 ×
10−7, 95% confidence interval) per site, which is about one order
of magnitude lower than most previously reported transcription
error rates (21) but close to the lower estimates obtained from in
vitro analysis of wheat germ RNA polymerase II (17). The
numbers of transcription errors found in coding (n = 65) and
UTR (n = 18) parts of transcripts were not significantly different
from a random distribution (P = 0.2, χ2 test). In addition, within
coding regions, transcription errors were observed at the first,
second, and third positions of codons at frequencies not signifi-
cantly different from the random expectation of one-third at
each position (21, 21, and 23 errors at positions 1, 2, and 3, re-
spectively; P = 0.9, χ2 test).
An important advantage of our method over reporter con-

structs and in vitro assays is the specific identification of the types
of errors that occur, which reveals the full molecular spectrum of
transcription errors. We found no significant difference between
the three molecular spectra corresponding to the three strains
analyzed (Table S4; P > 0.1 for all two-by-two comparisons, log-
likelihood ratio test). Although deeper analysis with more sta-
tistical power may uncover significant differences, we reasoned
that these three spectra were close enough that the combined
spectrum should be representative of the C. elegans transcription
base substitution spectrum (Fig. 2). There is a wide range of
variation in the error rate across the 12 possible base sub-
stitutions, the most common one (C → U) being more than 10×
more abundant than the least frequent A→ C (P < 0.05, Fisher’s
exact test), whereas U → A was never observed among the 83
transcription errors found in this analysis (Fig. 2 and Table S4).
Transitions are more frequent than transversions, suggesting that
RNA polymerases, like DNA polymerases, tend to favor sub-
stitutions of bases from the same structural class (28–30). We
also noticed that the observed spectrum of transcription errors is
relatively close to the DNA mutation spectrum of C. elegans (Fig.
3), indicating that replication and transcription polymerases tend
to make the same errors.

Insertions and Deletions. In addition to generating base sub-
stitution errors, DNA-dependent RNA polymerases can also
erroneously skip (deletion) or add (insertion) extra nucleotides
in the nascent transcripts. As above, before measuring the RNA
polymerase insertion/deletion (indel) error rate, we first need to
control the rate of false-positive indels introduced by multiple
sequencing or RT errors. We again used the overlapping regions
of paired-end reads to detect sequencing indel errors. Using the
same method as applied to base substitution errors, we estimated
the sequencing indel error rate to be 1.7 × 10−5 (±1.4 × 10−6,
95% confidence interval). This indicates that sequencing indels
introduce false positives at a rate of ð1:7× 10−5Þ2 = 2:9× 10−10
for families with two informative reads and less than 10−10 for
families with more than two informative reads.
Indels introduced by the reverse transcriptase (RT indels) at

the same position in two cDNAs also have the potential to create
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false positives. We searched for RT indels, reasoning that indels
present in both reads of a pair but not in the other reads from the
same family are caused by RT errors. The resulting RT indel error
rate is 8.8 × 10−6 (±1.4 × 10−6, 95% confidence interval).
Therefore, assuming that RT indels are randomly distributed,
the probability of observing the same RT indel in two reads of
a family is ð8:8× 10−6Þ2 = 7:8× 10−11. Given these observations,
indels present in all reads of size 2 and size 3 families were
considered as being present in the mRNA and therefore corre-
sponding to transcription indels. We found a total of 26 indels
(18 insertions and 8 deletions; Table S5), yielding a transcription
indel rate of 1.2 × 10−6 (±1.6 × 10−6, 95% confidence interval).
One potential consequence of indels in mRNAs is creation of
a frameshift in the ORF, leading to the appearance of premature
stop codons in the transcript. Because at least some transcripts
containing premature termination codons are expected to be
degraded by NMD, the indel error rate estimate that we provide
is likely biased downward, except in the NMD-deficient strain.
However, although the indel error rate measured in the NMD-
deficient strain is slightly higher than the average from the two
other strains, this difference was not statistically significant (1.5 ×
10−6 vs. 1.0 × 10−6 for NMD-deficient and NMD-capable strains,
respectively; P = 0.5, χ2 test). All of the transcription indels
reported here are one nucleotide in length (see Table S6 for a list
of transcription indels). We also observed that transcription
indels tend to occur in homopolymeric nucleotide runs (Table
S6). It has been previously reported that genomic indels in
C. elegans are dominated by insertions and tend to occur in ho-
mopolymeric nucleotide runs (31, 32), again suggesting that strong
parallels exist in the types of errors generated by DNA and
RNA polymerases.

Potential Sources of False Positives. To validate the results pre-
sented in this study, artifacts (other than convergent sequencing/
RT errors) that might produce the illusion of transcription errors
have to be ruled out. Somatic mutations can produce transcripts
whose sequences in the affected cell lineages would differ from
the reference genome and would be viewed as transcription
errors in our analysis. However, in order for 5% of our inferred
base substitution transcription errors to actually be somatic
mutation-derived false positives, somatic mutations would have
to occur at a frequency of ∼2 × 10−7 per site per cell, which would
correspond to a rate of ∼2 × 10−8 mutations per site per cell di-
vision (assuming an average of 10 cell divisions from the embryo
to the adult worm). This is ∼30× the estimated mutation rate per
cell division in the C. elegans germ line (9). Based on the ob-
servation that somatic mutations rates per cell division are less

than 30× that of the germ line in humans (9), we can reasonably
infer that a difference of more than 30× in C. elegans is unlikely
and therefore that somatic mutations do not contribute more
than 5% of false positives to our estimation of the transcription
error rate.
Although C. elegans is self-fertilizing, polymorphic sites also

have the potential to produce faithful transcripts that would be
mistaken for transcription error-containing mRNAs compared
with the reference genome. However, such aberrations are easily
detected because 100% (50% if heterozygous) of the families
covering such positions would show a mismatch. Therefore, we
retained only sites covered by at least 20 families and for which
more than 95% of the families support the reference genome
base call. We also sequenced the genomic DNA from the same
worms that were used to search for transcription errors and
mapped these genomic reads against the genomic regions sur-
rounding each of the 83 transcription errors found in this study
(Materials and Methods). Out of the 3,547 genomic DNA reads
mapped, only 2 supported a base call matching the inferred
transcription error, which is exactly the number expected simply
from sequencing errors in the genomic DNA reads based on our
previous estimate of sequencing error rates (Materials and Methods).
This strongly suggests that the transcription errors inferred in our
study are not false positives caused by genomic mutations.
We also used genomic DNA reads to search for the presence

of inferred transcription indels within the DNA of the worms
used in this analysis. We found that 5 out of the 531 mapped
genomic DNA reads spanning the position of an inferred tran-
scription indel contained the inferred transcription indel. Based
on our estimation of the sequencing indel error rate (1.7 × 10−5

per site), we expect to observe zero (531 × 1.7 × 10−5 = 0.01)
such indel-containing genomic DNA reads. The excess of indel-
containing genomic DNA reads might be partially explained by
an elevated sequencing indel error rate within homoplymeric
nucleotide runs. Indeed, these five genomic DNA reads map to
only two inferred indels, both of them falling within a large ho-
mopolymeric run (9 and 11 nt). However, it is also possible that
a fraction of the transcription indels inferred in our study are
false positives caused by indels present at low frequency in the
genomic DNA of the worms sequenced in this analysis. There-
fore, although we are confident that our analysis provides an
accurate estimation for the upper limit of the transcription indel

Fig. 2. Molecular spectrum of transcription errors. The values shown in this
graph are conditional error rates (i.e., A → U gives the probability of a U to
be inserted at a position where an error-free mRNA should contain an A) for
all (n = 96) transcription errors detected. Error bars represent the 95%
confidence interval of the error rate.

Fig. 3. Comparison of the genomic and transcription base substitution
spectra. The genomic base substitution data are from ref. 41. The total
numbers of base substitutions are n = 448 for genomic mutations and n = 96
for transcription errors. Because genomic mutations are not polarized (an A-
to-G mutation is equivalent to a T-to-C mutation), transcription errors are
merged into groups of complementary mutations to compare them to ge-
nomic mutations. This graph shows, for all possible types of transcription
and genomic base substitutions, the fraction of base substitutions of a given
type. For example, the blue bar A:T → G:C shows that ∼24% of all tran-
scription errors are A → G or T (U) → C errors.
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rate, the actual rate might be lower than 1.2 × 10−6 indels
per site.
Finally, RNA editing (26, 33, 34), a site-specific posttran-

scriptional process that can deaminate mRNA adenosines to
inosine, which is then recognized as a guanosine, could be con-
fused with transcription errors. However, if RNA editing was
interfering with our analysis, we would observe an abnormally
high level of A → G transcription errors, which is not the case
(Fig. 2). Also, we did not observe any significant difference in the
transcription error rate and pattern in the editing-deficient strain
compared with the wild-type and the NMD-deficient strains
(Table S4). It is very unlikely that other types of RNA editing
exist in C. elegans [with the exception of very rare C→U changes
(35)], and even if such a mechanism existed, our requirement
that 95% of the sequenced mRNAs show the same base call as in
the reference genome would remove all sites that are systemat-
ically edited.

Discussion
A Unique Method for Detecting Transcription Errors. In this study, we
have described a unique cDNA library preparation technique
and the associated bioinformatic analyses that allow for de-
tection of transcription errors in RNA-seq data. To demonstrate
the feasibility of our method, we applied it to the transcriptome
of C. elegans and detected dozens of transcription errors, yielding
a base substitution transcription error rate of ∼4 × 10−6. One
limitation of our method is that it cannot discriminate mis-
incorporations by the RNA polymerase from posttranscriptional
RNA modifications. The observation that the most common type
of transcription error is a C → U base substitution suggests that
a fraction of the errors observed could be due to cytosine de-
amination, rather than base misincorporation by the RNA
polymerase. However, even if this were true, it would still be the
case that the total error rate (misincorporation + posttranscrip-
tional modifications) in mRNAs at the time of translation is being
correctly quantified, with the unlikely exception of spontaneous
cytosine deamination that could occur in vitro (in the absence of
deaminases), after mRNA extraction. In this particular analysis,
there was a relatively small ratio of informative families over the
total number of reads generated. Even among informative fam-
ilies, those of size 2 were far more abundant than size 3 families,
so that all transcription errors reported here were found in size
2 families. However, this is not an inherent limitation of the
method because deeper sequencing will improve the ratio of
informative families and therefore help reveal many more
transcription errors.

Evolution of the Fidelity of Transcription. Our observation that the
C. elegans transcription error rate is about 10 times lower than
previously reported transcription error rates for prokaryotes and
unicellular eukaryotes is somewhat surprising. Indeed, it has
been suggested that the fidelity of replication, transcription, and
translation is limited by the ability of selection to increase the
fidelity of each of these steps and therefore should scale posi-
tively with the effective population size of the organisms con-
sidered [the drift barrier hypothesis (36)]. Because multicellular
organisms typically have lower effective population sizes than
unicellular organisms (3), we expect error rates to be generally
higher in multicellular organisms. The larger mutational target
of transcripts in multicellular eukaryotes compared with microbes
(37) could reinforce the selective pressure on the fidelity of tran-
scription in multicellular eukaryotes and therefore explain the
contradiction mentioned above. However, one simple explana-
tion for the inconsistency of current observation with the theory
is that previous measures of the transcription error rate were up-
wardly biased, owing to a reliance on reporter constructs and/or in
vitro assays. Indeed, reporter construct analyses are generally in-
capable of disentangling changes in protein sequences caused by
transcription errors from the potentially much more common
changes caused by translation errors (18, 19). Likewise, in vitro
essays might not be informative about the in vivo error rate,

because the conditions used in vitro do not always reflect the
intracellular environment, and the different conditions used can
change the observed error rate by more than an order of magni-
tude (17). Therefore, although it is possible that the drift-barrier
hypothesis does not apply to the evolution of transcription
error rates or that C. elegans is an exception to the rule, we
suspect that the real transcription error rates of Escherichia coli
and Saccharomyces cerevisiae are much lower than what was
previously reported. This point can now be readily evaluated
with the method presented above, which fully generalizes to
any organism.
The method described in this paper should facilitate a rapid

increase of our knowledge on the causes and consequences of
transcription errors as well as of the evolutionary forces acting on
the fidelity of transcription. We predict that although the tran-
scription error rate is orders of magnitude higher than the rep-
lication error rate, the scaling of both with the efficiency of
natural selection should be similar, in accordance with the drift-
barrier hypothesis (36).

Materials and Methods
Library Preparation and Sequencing. RNA and DNA isolation. C. elegans strains
(wild-type N2, RB886, and VC1305) were cultured on Nematode growth
media following standard protocols (38) with E. coli OP50 except that plates
were made using agarose. Mixed-stage worms from 12 crowded plates per
strain were washed several times in M9 buffer, and the final worm pellet
was divided into two batches for total RNA and genomic DNA extraction.
Total RNA was isolated using the the Ambion RiboPure Kit (Life Tech). Total
DNA was extracted using Qiagen Genomic-Tip protocol (Qiagen). DNA li-
braries were generated from 1 μg of genomic DNA sheared to ∼300 base
pair fragments on an M-series focused ultrasonicator (Covaris) following
the standard TruSeq library protocol (Illumina). Sequencing was conducted
on a single lane of a HiSeq2000.
Messenger RNA isolation. For construction of the RNA-seq libraries, 5 μg of total
RNA was resuspended in a final volume of 50 μL Rnase-free water, and
mRNA isolation was performed using the Dynal oligo dT bead system from
(Life Tech). Messenger RNA was eluted in 17 μL of RNase-free water.
Messenger RNA fragmentation. Messenger RNA was fragmented using the RNA
Fragmentase system (Catalog ID: E6146S; New England BioLabs), per man-
ufacturer’s specifications. Fragmented mRNA (in 100 μL water) was ethanol-
precipitated with 2 μL of 5 mg/mL Glycogen (Ambion; Life Tech), 10 μL of
5M sodium acetate pH5.3, and 300 μL of absolute ethanol (chilled).
Samples were ethanol precipitated at −80 °C for 1 h, followed by spinning at
15,000 × g for 45 min at 4 °C. Pellets were washed twice with chilled 70%
ethanol (vol/vol) and resuspended in a final volume of 5 μL RNase-free water.
Sequential adaptor ligation. The 3′ RNA adaptor used in these libraries is the
standard Illumina TruSeq Small RNA 3′ Adaptor. Ligation of the 3′ adaptor
was done in accordance with the Illumina TruSeq Small RNA Sample Prep kit
(Illumina). Specifically, 5 μL of fragmented mRNA was mixed with 1 μL of the
Illumina TruSeq 3′ adapter and incubated at 70 °C for 2 min before being
placed on ice. We then added 2 μL of ligation buffer, 1 μL of RNase inhibitor,
and 1 μL of T4 RNA ligase 2 truncated (NEB) followed by incubation at 28 °C
for 1 h. Reaction was stopped with 1 μL stop solution followed by incubation
at 28 °C for 15 min before being placed on ice. The 5′ adaptor is a modified
version of the Illumina TruSeq Small RNA 5′ adaptor (Integrated DNA
Technology). The modification includes a 5′ Biotin and eight N bases on the
3′ end of the oligonucleotide (5′-Bio-rGrUrUrCrArGrArGrUrUrCrUrArCrAr-
GrUrCrCrGrArCrGrArUrCrNrNrNrNrNrNrNrN-3′). Ligation included 1 μL of
the modified RA5 adapter (100 μM stock), 1 μL of ATP as supplied by Illu-
mina, and 1 μL of T4 RNA Ligase 2 (NEB). This reagent mix was added to the
3′ adapted mRNA, and the sample was incubated at 28 °C for 1 h followed
by incubation at 4 °C. Sequentially adapted libraries were then purified
using RNA MinElute columns (Qiagen) per the manufacturer’s protocol and
eluted in 10 μL RNase-free water. Samples were stored overnight at −80 °C.
Reverse transcription cycling. To capture the products of each RT reaction in
separate indexed libraries, we used the biotinylated 5′ ends of the constructs
to allow for separation of the RT products after each reaction and transfer
of template RNA to a subsequent round of RT. For the first round of reverse
transcription the sample was mixed with 1 μL of Illumina TruSeq Small RNA
primer and incubated at 70 °C for 2 min, followed by placing the samples on
ice. After addition of RT reaction mix, samples were incubated at 50 °C for 30
min. During the incubation, 50 μL of Dynal M270 streptavidin beads (Life Tech)
were prepared for RNA use as described in the manufacturer’s protocol by
washing the beads for 2 min with an equal volume of Diethylpyrocarbonate
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(DEPC)-treated 0.1 M NaOH and 0.05 M NaCl followed by 2 min with an equal
volume DEPC-treated 0.1 M NaCl. The washed beads were then resuspended in
25 μL of 2X Binding Buffer per the manufacturer’s protocol. At the end of the
first round of RT, the washed streptavidin beads were added to the first-round
RT reaction, and the samples were incubated at room temperature for 15 min
on the Lab Quake to allow the streptavidin beads to capture the biotinylated
RNA template. The samples were placed on a magnet until the solution cleared,
after which the supernatant was transferred to a new PCR tube. The beads
were washed twice in 1X Binding Buffer and resuspended in 6 μL RNase-free
water. One microliter of Illumina TruSeq Small RNA primer was added, and
the samples were incubated at 70 °C for 2 min, followed by placing the samples
on ice. Fresh RT reaction mix was then added, and the second round of RT
was performed. This process was repeated for a total of three rounds of
reverse transcription.
RNA-seq library indexing. Each round of reverse transcription supernatant was
used as a template in an amplification reaction described below to generate
three Illumina dRNA TruSeq libraries where each round of reverse tran-
scription is labeled with a different index. Amplification reactions were run
for 11 cycles using the thermoprofile described in the Illumina TruSeq Small
RNA manual. The amplification reactions were purified using an equal ratio
of AmpureXP beads (Beckman Coulter) and eluted in 20 μL of EB buffer
(Qiagen). Two microliters of each library was assayed on an RNA pico bio-
analyzer chip (Agilent Technologies, Inc.). Paired-end (100-base pair) se-
quencing was performed on a HiSeq2000.

RNA-Seq Read Mapping. Reads (with their bar code sequences removed) were
mapped to the spliced transcripts predicted by Ensembl (release 66) using the
program bwa (39) with default parameters, except for the parameter –o,
which was set to zero (i.e., no gaps allowed) for the base substitution

analysis. The alignments were then converted into genomic coordinates, and
all of the reads mapping to more than one genomic region were discarded.
To ensure a very strict filtering of mismapping to paralogous regions, these
69,774,961 uniquely mapping pairs of reads (71,747,935 when allowing
indels) were then blated against the reference genome, and every read with
a significant hit (E value < 10−2) outside of the genomic region previously
assigned was discarded. This step led to the removal of 6,612,765 pairs of
reads (6,758,497 when allowing indels).

Genomic DNA Read Mapping. We generated transcription error-containing
genomic sequences by extracting from the C. elegans reference genome
(Ensembl release 66) 90 nucleotides on both sides of all inferred transcrip-
tion errors. Genomic DNA reads were mapped against these transcription
error-containing genomic sequencing using the program blat (40) with de-
fault parameters. Only reads with a match spanning at least 10 nucleotides
on both sides of the position occupied by the inferred transcription error
were retained. To estimate the number of genomic DNA reads containing
the inferred base substitution because of sequencing error, we extracted, for
all of the mapped reads, their base call quality score at the position of the
inferred base substitution and converted the base quality into the proba-
bility that the base call is wrong according to the observed error rate
reported in Table S1. We then summed these probabilities for all mapped
reads and divided the total number by 3, assuming that all three possible
errors at a given position are equiprobable.
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