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Themaximum entropy principle (MEP) is a method for obtaining the
most likely distribution functions of observables from statistical
systems by maximizing entropy under constraints. The MEP has
found hundreds of applications in ergodic and Markovian systems in
statistical mechanics, information theory, and statistics. For several
decades there has been an ongoing controversy over whether the
notion of the maximum entropy principle can be extended in a
meaningful way to nonextensive, nonergodic, and complex statis-
tical systems and processes. In this paper we start by reviewing how
Boltzmann–Gibbs–Shannon entropy is related to multiplicities of in-
dependent random processes. We then show how the relaxation of
independence naturally leads to themost general entropies that are
compatible with the first three Shannon–Khinchin axioms, the
(c,d)-entropies. We demonstrate that the MEP is a perfectly consis-
tent concept for nonergodic and complex statistical systems if their
relative entropy can be factored into a generalized multiplicity
and a constraint term. The problem of finding such a factorization
reduces to finding an appropriate representation of relative entropy
in a linear basis. In a particular examplewe show that path-dependent
random processes with memory naturally require specific generalized
entropies. The example is to our knowledge the first exact derivation
of a generalized entropy from the microscopic properties of a path-
dependent random process.

thermodynamics | out-of-equilibrium process | driven systems |
random walk

Many statistical systems can be characterized by a macrostate
for which many microconfigurations exist that are com-

patible with it. The number of configurations associated with the
macrostate is called the phase-space volume or multiplicity,
M. Boltzmann entropy is the logarithm of the multiplicity,

SB = kB logM; [1]

and has the same properties as the thermodynamic (Clausius)
entropy for systems such as the ideal gas (1). We set kB = 1.
Boltzmann entropy scales with the degrees of freedom f of the
system. For example, for N noninteracting point particles in
three dimensions, f ðNÞ= 3N. Systems where SB scales with sys-
tem size are called extensive. The entropy per degree of freedom
sB = ð1=f ÞSB is a system-specific constant. Many complex systems
are nonextensive, meaning that if two initially insulated systems
A and B, with multiplicitiesMA andMB, respectively, are brought
into contact, the multiplicity of the combined system is MA+B <
MAMB. For such systems, which are typically strongly interacting,
non-Markovian, or nonergodic, SB and the effective degrees of
freedom f ðNÞ do no longer scale as N. Given the appropriate
scaling for f ðNÞ, the entropy sB is a finite and nonzero constant
in the thermodynamic limit, N→∞.
A crucial observation in statistical mechanics is that the distri-

bution of all macrostate variables gets sharply peaked and narrow
as system size N increases. The reason behind this is that the
multiplicities for particular macrostates grow much faster with N

than those for other states. In the limit N→∞ the probability of
measuring a macrostate becomes a Dirac delta, which implies that
one can replace the expectation value of a macrovariable by its
most likely value. This is equivalent to maximizing the entropy in
Eq. 1 with respect to the macrostate. By maximizing entropy one
identifies the “typical” microconfigurations compatible with the
macrostate. This typical region of phase space dominates all other
possibilities and therefore characterizes the system. Probability
distributions associated with these typical microconfigurations can
be obtained in a constructive way by the maximum entropy prin-
ciple (MEP), which is closely related to the question of finding the
most likely distribution functions (histograms) for a given system.
We demonstrate the MEP in the example of coin tossing.

Consider a sequence of N independent outcomes of coin tosses,
x= ðx1; x2; . . . ; xNÞ, where xi is either head or tail. The sequence
x contains k1 heads and k2 tails. The probability of finding a se-
quence with exactly k1 heads and k2 tails is

Pðk1; k2jθ1; θ2Þ=
�
N
k1

�
θk11 θk22 = MbinðkÞGðkjθÞ; [2]

where MbinðkÞ≡
�

N

k1

�
is the binomial factor. We use the short-

hand notation k= ðk1; k2Þ for the histogram of k1 heads and k2
tails and θ= ðθ1; θ2Þ for the marginal probabilities for throwing
head or tail. For the relative frequencies pi ≡ ki=N we write
p= ðp1; p2Þ. We also refer to θ as the “biases” of the system.
The probability of observing a particular sequence x with histo-
gram k is given by GðkjθÞ≡ θk11 θk22 . It is invariant under permuta-
tions of the sequence x because the coin tosses are independent.
All possible sequences x with the same histogram k have identical
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probabilities. MbinðkÞ is the respective multiplicity, representing
the number of possibilities to throw exactly k1 heads and k2 tails.
As a consequence Eq. 2 becomes the probability of finding the
distribution function p of relative frequencies for a given N. The
MEP is used to find the most likely p. We denote the most likely
histogram by kpðθ;NÞ and the most likely relative frequencies by
ppðθ;NÞ= kpðθ;NÞ=N.
We now identify the two components that are necessary for

the MEP to hold. The first is that Pðk1; k2jθ1; θ2Þ in Eq. 2 factorizes
into a multiplicityMðkÞ that depends on k only and a factorGðkjθÞ
that depends on k and the biases θ. The second necessary com-
ponent is that the multiplicity is related to an entropy expression.
By using Stirling’s formula, the multiplicity of Eq. 2 can be trivially
rewritten for large N,

MbinðkÞ=
�
N
k1

�
∼ eN½−p1 logðp2Þ−p2 logðp2Þ� = eNS½p�; [3]

where an entropy functional of Shannon type (2) appears,

S½p�=−
XW=2

i=1

pi log pi: [4]

The same arguments hold for multinomial processes with sequences
x of N independent trials, where each trial xn takes one of W pos-
sible outcomes (3). In that case the probability for finding a given
histogram k is

PðkjθÞ=MmnðkÞθk11 θk22 ⋯θkWW =MmnðkÞGðkjθÞ;

   with  MmnðkÞ= N!

k1!k2! . . . kW !
∼ eNS½p�:

[5]

MmnðkÞ is the multinomial factor and S½p�=−
PW

i=1 pi logðpiÞ. As-
ymptotically S½p�= limN→∞ð1=NÞlogMmnðkÞ holds. Extremizing
Eq. 5 for fixed N with respect to k yields the most likely histo-
gram, kp. Taking logarithms on both sides of Eq. 5 gives

1
N
logPðkjθÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

−relative entropy

=
1
N
logMmnðkÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

S½p�

+
1
N
logGðkjθÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

−cross entropy

: [6]

Obviously, extremizing Eq. 6 leads to the same histogram kp. The
term −ð1=NÞlogPðkjθÞ in Eq. 6 is sometimes called relative entro-
py or Kullback–Leibler divergence (4). We identify the first term on
the right-hand side of Eq. 6 with Shannon entropy S½p�, and the se-
cond term is the so-called cross-entropy −ð1=NÞlogGðk= pNjθÞ=
−
P

i pi log θi. Eq. 6 states that the cross-entropy is equal to entropy
plus the relative entropy. The constraints of the MEP are related
to the cross-entropy. For example, let the marginal probabilities
θi be given by the so-called Boltzmann factor, θi = expð−α− βeiÞ,
for the “energy levels” ei, where β is the inverse temperature and
α the normalization constant. Inserting the Boltzmann factor into
the cross-entropy, Eq. 6 becomes

1
N
logPðkjθÞ= S½p�− α

X
i

pi − β
X
i

piei; [7]

which is the MEP in its usual form, where Shannon entropy gets
maximized under linear constraints. α and β are the Lagrangian
multipliers for the normalization and the “energy” constraintP

i piei =U, respectively. Note that in Eq. 6 we used f ðNÞ=N
to scale logMmnðkÞ. Any other nonlinear f ðNÞ would yield non-
sensical results in the limit of S½p�, either 0 or ∞. Comparing
S½p�= limN→∞ð1=NÞlogMmnðkÞ with Eq. 1 shows that indeed, up
to a constant multiplicative factor, sB = S½p�. This means that the
Boltzmann entropy per degree of freedom of a (uncorrelated)
multinomial process is given by a Shannon-type entropy functional.

Many systems that are nonergodic, are strongly correlated, or have
long memory will not be of multinomial type, implying that P̂ðxjθÞ
is not invariant under permutations of a sequence x. For this
situation it is not a priori evident that a factorization of PðkjθÞ
into a θ-independent multiplicity and a θ-dependent term, as in
Eq. 5, is possible. Under which conditions such a factorization is
both feasible and meaningful is discussed in the next section.

Results
When Does a MEP Exist? The Shannon–Khinchin (SK) axioms (2, 5)
state requirements that must be fulfilled by any entropy. [Shannon–
Khinchin axioms: SK1, entropy is a continuous function of the
probabilities pi only and should not explicitly depend on any other
parameters; SK2, entropy is maximal for the equidistribution
pi = 1=W ; SK3, adding a stateW + 1 to a system with pW+1 = 0 does
not change the entropy of the system; and SK4, entropy of a system
composed of two subsystems, A and B, is SðA+BÞ= SðAÞ+
SðBjAÞ.] For ergodic systems all four axioms hold. For nonergodic
ones the composition axiom (SK4) is explicitly violated, and only the
first three (SK1–SK3) hold. If all four axioms hold, the entropy is
uniquely determined to be Shannon’s; if only the first three axioms
hold, the entropy is given by the ðc; dÞ-entropy (6, 7). The SK
axioms were formulated in the context of information theory
but are also sensible for many physical and complex systems.
The first Shannon–Khinchin axiom (SK1) states that entropy

depends on the probabilities pi only. Multiplicity depends on the
histogram k= pN only and must not depend on other parameters.
Up to an N-dependent scaling factor the entropy is the logarithm
of multiplicity. The scaling factor f ðNÞ removes this remaining
N dependence from entropy, so that SK1 is asymptotically fulfilled.
In fact, SK1 ensures that the factorization PðkjθÞ=MðkÞGðkjθÞ
into a θ-independent characteristic multiplicity MðkÞ and a
θ-dependent characteristic probability GðkjθÞ is not arbitrary.
For systems that are not of multinomial nature, we proceed as

before: To obtain the most likely distribution function we try to
find k= kpðθ;NÞ that maximizes PðkjθÞ for a given N. We denote
the generalized relative entropy by

DðpjθÞ=−
1

f ðNÞ logPðkjθÞ: [8]

Note that whenever an equation relates terms containing k with
terms containing p, we always assume p= k=N. The maximal dis-
tribution pp ≡ kp=N therefore minimizes DðpjθÞ and is obtained
by solving

0=
∂
∂pi

 
DðpjθÞ− α

 XW
j=1

pi − 1

!!
[9]

for all i= 1; 2; . . . ;W . α is the Lagrange multiplier for normali-
zation of p.
The histogram k= ðk1; k2; . . . ; kW Þ can be seen as a vector in

a W-dimensional space. Let ei be a W-dimensional vector whose
ith component is 1, and all of the others are 0. With this notation
the derivative in Eq. 9 can be expressed asymptotically as

∂
∂pi

DðpjθÞ∼ N
f ðNÞ log

Pðk− eijθÞ
PðkjθÞ ≡

N
f ðNÞ viðkjθÞ; [10]

where we write viðkjθÞ for the log term. We interpret viðkjθÞ as
the ith component of a vector vðkjθÞ∈RW . Let bjiðkÞ be the ith
component of the jth basis vector for any given k; then viðkjθÞ has
uniquely determined coordinates cjðkjθÞ,

viðkjθÞ=
XW
j=1

cjðkjθÞbjiðkÞ: [11]
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viðkjθÞ has coordinates cjðkjθÞ in any basis bjiðkÞ. However, as can
be easily verified, not all bases are compatible with SK1–SK3
(see condition i in the Theorem below). The problem of factoriz-
ing PðkjθÞ therefore reduces to the problem of finding an appro-
priate basis. For reasons that become clear below, we choose the
following Ansatz for the basis

bjiðkÞ= κji
γTðN; kiÞ log

Mu;Tðk− eiÞuðNÞ
Mu;TðkÞ ; [12]

where the functions Mu;TðkÞ are so-called deformed multinomial
factors, and κji are some appropriately chosen constants. γTðN; rÞ=
N½Tðr=NÞ−Tððr− 1Þ=NÞ� is a factor depending on a continuous,
monotonic, and increasing function T, with Tð0Þ= 0, and Tð1Þ= 1.
uðnÞ ðn= 0; 1; 2; . . .Þ are positive, monotonic increasing func-
tions on the natural numbers. The freedom of choosing κji, u,
and T in this basis provides a well-defined framework that
allows us to derive the conditions for the existence of a MEP.
Deformed multinomials are based on deformed factorials that
are well known in the mathematical literature (8–13) and are
defined as

N!u ≡ ∏
N

n=1
uðnÞ: [13]

For a specific choice of u, deformed multinomials are then de-
fined in a general form as

Mu;TðkÞ= N!u
∏ibNTðki=NÞc!u; [14]

where bxc is the largest integer less than x. With the basis of Eq.
12 we can write

Pðk− eijθÞ
PðkjθÞ = ∏

W

j=1

�
Mu;Tðk− eiÞuðNÞ

Mu;TðkÞ
�ðcjðkjθÞ=γT ðN;kiÞÞκji

= ∏
W

j=1
u
�
NT
�
ki
N

��cjðkjθÞκji
:

[15]

Note that this can be done for any process that produces
sequences x= ðx1; x2; . . . ; xNÞ, where xn takes one of W values.
We can now formulate the following:

Theorem. Consider the class of processes x= fxngNn=1, with xn ∈
f1;⋯;Wg, parameterized by the biases θ and the number of ele-
ments N. The process produces histograms k with probability
PðkjθÞ. Let N be large and kpðθ;NÞ be the histogram that maximizes
PðkjθÞ. Assume that a basis of the form given in Eq. 12 can be
found, for which (i) κ1i = 1, for all i= 1; . . . ;W , and (ii) for fixed
values of N and θ, the coordinate c1ðkjθÞ of vðkjθÞ in this basis, as
defined in Eq. 11, becomes a nonzero constant at kpðθ;NÞ. [Con-
dition ii means that the first derivatives of c1ðkjθÞ vanish at k= kp
under the condition

P
ki =N, N being constant.] Under these

conditions PðkjθÞ factorizes, PðkjθÞ=Mu;TðkÞGu;TðkjθÞ, with

Gu;Tðk− eijθÞ
Gu;TðkjθÞ = ∏

W

j=2
u
�
NT
�
ki
N

��cjðkjθÞκji
: [16]

Moreover, there exists a MEP with generalized entropy S½p�=
ð1=f ðNÞÞlogMu;TðkÞ, for some scaling function f ðNÞ. The factors
uð:ÞcjðkjθÞκji in Eq. 16 represent the constraint terms in the MEP. The
solution of the MEP is given by pp = kp=N.
The physical meaning of the Theorem is that the existence of

a MEP can be seen as a geometric property of a given process.

This reduces the problem to one of finding an appropriate basis
that does not violate axioms SK1–SK3 and that is also conve-
nient. The former is guaranteed by the Theorem, and the latter is
achieved by using the particular choice of the basis in Eq. 12.
Condition ii of the Theorem guarantees the existence of primi-

tive integrals Mu;TðkÞ and Gu;TðkjθÞ. If condition i is violated, the
first basis vector b1i of Eq. 12 introduces a functional in p that will
in general violate the second Shannon–Khinchin axiom SK2.
Conditions i and ii together determine S½p� up to a multiplicative
constant c1, which can be absorbed in a normalization constant.
Gu;T may be difficult to construct in practice. However, for solving
the MEP it is not necessary to know Gu;T explicitly; it is sufficient
to know the derivatives of the logarithm for the maximization.
These derivatives are obtained simply by taking the logarithm of
Eq. 16. For systems that are compatible with the conditions of
the Theorem, in analogy to Eq. 6, a corresponding MEP for the
general case of nonmultinomial processes reads

1
f ðNÞ logPðkjθÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
−generalized  rel:ent:

=
1

f ðNÞ logMu;TðkÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
generalized  ent:S½p�

+
1

f ðNÞ logGu;TðkjθÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
−generalized  cross  ent:

: [17]

f ðNÞ has to be chosen such that for large N the generalized relative
entropy DðpjθÞ=−ð1=f ðNÞÞlogPðkjθÞ neither becomes 0 nor di-
verges for large N. S½p�= ð1=f ðNÞÞlogMu;TðkÞ is the generalized
entropy, and CðpjθÞ=−ð1=f ðNÞÞlogGu;TðkjθÞ is the generalized
cross-entropy. In complete analogy to the multinomial case, the gen-
eralized cross-entropy equals generalized entropy plus generalized
relative entropy. Note that in general the generalized cross-entropy
CðpjθÞ will not be linear in pi. In ref. 14 it was shown that the first
three Shannon–Khinchin axioms allow only two options for the con-
straint terms. They can be either linear or of the so-called “escort”
type (15), where constraints are given by specific nonlinear functions
in pi (14). No other options are allowed. For the escort case we have
shown in refs. 14 and 16 that a duality exists such that the generalized
entropy S, in combination with the escort constraint, can be trans-
formed into the dual generalized entropy S* with a linear constraint.
In other words, the nonlinearity in the constraint can literally be
subtracted from the cross-entropy and added to the entropy. Com-
pare with the notion of the “corrector” discussed in ref. 17.

The Generalized Entropy. We can now compute the generalized
entropy from Eq. 17,

S½p�= lim
N→∞

f ðNÞ−1 logMu;TðkÞ

= f ðNÞ−1
"XN

r=1

log uðrÞ−
XW
i=1

XNTðki=NÞ

r=1

log uðrÞ
#

=
XN
r=1

1
N

N log uðrÞ
f ðNÞ −

XW
i=1

XNTðpiÞ
r=1

1
N

N log uðrÞ
f ðNÞ

=
Z1
0

dy
N log uðNyÞ

f ðNÞ −
XW
i=1

ZTðpiÞ
0

dy
N log uðNyÞ

f ðNÞ

=−
XW
i=1

Zpi
0

dzT′ðzÞN log uðNTðzÞÞ
f ðNÞ

 +
Z1
0

dzT′ðzÞN log uðNTðzÞÞ
f ðNÞ ;

[18]

where T′ðzÞ is the derivative with respect to z. Further, we re-
place the sum over r by an integral that is correct for large N. The
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resulting generalized entropy is clearly of trace form. In refs. 14,
18, and 19 it was shown that the most general form of trace form
entropy that is compatible with the first three Shannon–Khinchin
axioms is

S½p�=−a
XW
i=1

Zpi
0

dzΛðzÞ−
Z1
0

dzΛðzÞ
2
4

3
5; [19]

where Λ is a so-called generalized logarithm, which is an increas-
ing function with Λð1Þ= 0, Λ′ð1Þ= 1; compare refs. 14 and 16.
Comparison of the last line of Eq. 18 with Eq. 19 yields the
generalized logarithm

aΛðzÞ=T′ðzÞ N
f ðNÞ log uðNTðzÞÞ− b; [20]

with a> 0 and b constants. By taking derivatives of Eq. 20, first
with respect to z and then with respect to N, one solves the
equation by separation of variables with a separation constant ν.
Setting b= log λ, we get

ΛðzÞ=T′ðzÞTðzÞν −T′ð1Þ
T″ð1Þ+ νT′ð1Þ2

uðNÞ= λðN
νÞ

f ðNÞ=N1+ν

a=
�
T″ð1Þ
T′ð1Þ + νT′ð1Þ

�
log λ:

[21]

By choosing T and ν appropriately one can find examples for all
entropies that are allowed by the first three SK axioms, which are
the ðc; dÞ-entropies (6, 7). ðc; dÞ-entropies include most trace
form entropies that were suggested in the past decades as special
cases. The expressions f ðNÞ and uðxÞ from Eq. 21 can be used in
Eqs. 9 and 15 to finally obtain the most likely distribution from
the minimum relative entropy,

p p
i =T−1

"
log λ
α

XW
j=1

cjðNp p jθÞκji
#−ð1=νÞ0

@
1
A; [22]

which must be solved self-consistently. T−1 is the inverse function
of T. In the case that only the first two basis vectors are relevant
(the generalized entropy and one single constraint term), we get
distributions of the form

p p
i =T−1

�
1+ ν

�
α̂+ β̂ei

��−1
ν

 !
 ; [23]

with α̂= 1
ν

�
log λ
α c1 − 1

�
, β̂= log λ

αν c2ðNppjθÞ. In a polynomial basis,

specified by κji ≡ ði− 1Þj−1, the equally spaced “energy levels”
are given by ei = ði− 1Þ. Note that c1 = 1, and c2ðppNjθÞ depends on
bias terms.
For a specific example let us specify TðzÞ= z and λ> 1. Eqs. 21

and 19 yield

S½p�=
�
a
Q

�
1−
PW

i=1 p
Q
i

Q− 1
;  ½Q≡ 1+ ν�; [24]

which is the so-called Tsallis entropy (20). γTðN; rÞ= 1 for this
choice of T. Any other choice of T leads to ðc; dÞ-entropies.

Assuming that the basis has two relevant components and using
the same κji as above, the derivative of the constraint term in the
example is obtained from Eq. 16,

d
dpi

logGu;TðpNjθÞ= log λc2ðpNjθÞði− 1Þpνi : [25]

This constraint term is obviously nonlinear in pi and is therefore
of escort type. Here the expression ei = ði− 1Þ plays the role of
equidistant energy levels. The example shows explicitly that

A

B

C

Fig. 1. Numerical results for the path-dependent random process determined
by the deformed factorial N!u with ur = ðλðrνÞ − 1Þ=ðλ−1Þ. (A) Normalized
generalized binomial factors Mu;T ðk1,N− k1Þ (solid lines). Distributions get
narrower as N increases, which is necessary for the MEP to hold. Dashed
lines show the usual binomial factor (ν= 1 and λ→1). (B) Variance σ2 =PN

k1=0Mu,T ðk1=N− 1=2Þ2 of the normalized generalized binomial factors (solid
lines), as a function of sequence length N, for various values ν and λ= 1:1. The
dashed line is the variance of the usual binomial multiplicity. (C) Probability
distributions for the W = 50 states i from numerical realizations of processes
following Eq. 27, with λ= 1:1 and ν= 0:25 ðQ= 1:25Þ for various lengths N
(solid lines). Distributions follow the theoretical result from Eq. 23. Dashed
lines are pi = ð1− ð1−QÞðα+ βeiÞÞ1=ð1−QÞ with ei = i− 1. α and β are obtained
from fits to the distributions and clearly dependent on N (Inset). They can be
used to determine c2.
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finding the most likely distribution function p* by maximization
of PðkjθÞ (minimization of relative entropy) is equivalent to max-
imizing the generalized entropy of Eq. 24 under a nonlinear

constraint term, ∼ β̂
�P

ieip
Q
i −U

�
. In ref. 14 it was shown

that a duality exists that allows us to obtain exactly the same
result for p*, when maximizing the dual entropy of Eq. 24, given

by Sp = ða=QÞ
��

1−
PW

i=1 p
2−Q
i

�.
ð1−QÞ

�
, under the linear con-

straint, β
	P

ieipi −U


.

Example: MEP for Path-Dependent Random Processes. We now show
that path-dependent stochastic processes exist that are out of
equilibrium and whose time-dependent distribution functions
can be predicted by the MEP, using the appropriate, system-
specific generalized entropy. We consider processes that produce
sequences x that increase in length at every step. At a given time
the sequence is x= ðx1; x2; . . . ; xNÞ. At the next time step a new
element xN+1 will be added. All elements take one of W different
values, xi ∈ f1; 2; . . . ;Wg. The system is path dependent, mean-
ing that for a sequence x of length N the probability pðijk; θÞ for
producing xN+1 = i depends on the histogram k and the biases θ
only. For such processes the probability to find a given histo-
gram, PðkjθÞ can be defined recursively by

PðkjθÞ=
XW
i=1

pðijk− ei; θÞPðk− eijθÞ: [26]

For a particular example let the process have the transition
probability

pðijk; θÞ= θi
ZðkÞ ∏

W

j=i+1
g
	
kj


    with    gðyÞ= λðy

νÞ; [27]

where ZðkÞ is a normalization constant, and λ> 0. Let us further
fix θi = 1=W . Note that fixing the biases θ in multinomial systems
means that as N gets large one obtains ppi ðθ;NÞ= θi, for all i.
Obviously pp approaches a steady state and N becomes an irrel-
evant degree of freedom in the sense that changing N will not
change pp. Fixing all θi asymptotically determines pp completely
and leaves no room for any further constraint. For path-depen-
dent processes the situation can be very different. For example,
the relative frequencies ppðθ;NÞ of the process defined in Eq. 27
never reach a steady state as N gets larger. [One can show that
for such systems the inverse temperature c2 approximately grows
(sub)logarithmically with N.] Here, fixing θ for all i still allows
ppðθ;NÞ to evolve with growing N, such that 1 df remains that can
be fixed by an additional constraint. [Additional constraints may
become necessary for intermediate ranges of N, where some
coordinates cj that need to vanish asymptotically (in the appro-
priately chosen basis) are not yet sufficiently small.] The process
defined in Eq. 27 is a path-dependent, W-dimensional random
walk that gets more and more persistent as the sequence gets
longer. This means that in the beginning of the process all states
are equiprobable ðθi = 1=W Þ. With every realization of state i in
the process, all states j< i become more probable in a self-similar
way, and a monotonic distribution function of frequencies emerges
as N grows. The process appears to “cool” as it unfolds. Adequate
basis vectors bjiðkÞ can be obtained with deformed multinomials
Mu;TðkÞ based on uðyÞ= λðy

νÞ, TðyÞ= y, and a polynomial basis for
κji = ði− 1Þj−1. For this u, in Fig. 1A (solid lines), we show normal-
ized deformed binomials for ν= 0:7 and λ= 1:1. Dashed lines rep-
resent the usual binomial. Clearly, generalized multiplicities become
more peaked and narrow as N increases, which is a prerequisite for
the MEP to hold. In Fig. 1B the variance of deformed binomials

is seen to diminish as a function of sequence length N for various
values of ν. The dashed line shows the variance for the usual
binomial. Distribution functions pi obtained for numerical sim-
ulations of sequences with W states are shown in Fig. 1C for
sequence lengths N = 1;000, 5,000, and 10,000 (solid lines).
Averages are taken over normalized histograms from 150 indepen-
dent sequences that were generated with λ= 1:1, and ν= 0:25
ðQ= 1:25Þ. The distributions follow exactly the theoretical result
from Eq. 23, confirming that a basis with two relevant components
(one for the entropy one for a single constraint fixingN) is sufficient
for the given process with θi = 1=W . Dashed lines are the functions
suggested by the theory, pi = ½1− ð1−QÞðα+ βeiÞ�1=ð1−QÞ with
ei = i− 1, where β is obtained from a fit to the empirical distribu-
tion. β determines c2. α is a normalization constant. Although the
power exponent −ð1=νÞ does not change with N, the “inverse tem-
perature” β increases with N (Fig. 1C, Inset), which shows that the
process becomes more persistent as it evolves—it “ages.” Because
TðyÞ= y, the observed distribution p can also be obtained by max-
imizing the generalized entropy S (Eq. 24) under a nonlinear con-
straint or, equivalently, by maximizing its dual, Sp with a linear
constraint, as discussed above. For other parameter values a basis
with more than two components might become necessary. Note
that the nonlinear (escort) constraints can be understood as a sim-
ple consequence of the fact that the relative frequencies p have to
be normalized for all N. In particular, the escort constraints arise
from

P
iðd=dNÞppi ðθ;NÞ= 0 and Eq. 23, which states that pp does

not change its functional shape as θ or N is varied.

Discussion
We have shown that for generalized multinomial processes, where
the order of the appearance of events influences the statistics of
the outcome (path dependence), it is possible to constructively
derive an expression for their multiplicity. We are able to show
that a MEP exists for a much wider class of processes and not only
for independent multinomial processes. We can explicitly de-
termine the corresponding entropic form from the transition
probabilities of a system. We show that the logarithm of the
obtained generalized multiplicity is one-to-one related to the
concept of Boltzmann entropy. The expressions for the obtained
generalized entropies are no longer of Shannon type, −

P
i pi log pi,

but assume generalized forms that are known from the entropies
of superstatistics (21, 22) and that are compatible with the first
three Shannon–Khinchin axioms and violate the fourth (6, 7, 14).
Further, we find that generalized entropies are of trace form and
are based on known generalized logarithms (14, 16, 18, 23). Our
findings enable us to start from a given class of correlated sto-
chastic processes and derive their unique entropy that is needed
when using the maximum entropy principle. We are able to de-
termine the time-dependent distribution functions of specific
processes, either through minimization of the relative entropy or
through maximization of the generalized entropy under nonlinear
constraints. A previously discovered duality allows us to obtain the
same result by maximization of the dual generalized entropy under
linear constraints. Systems for which the new technology applies
include out-of-equilibrium, path-dependent processes and possibly
even aging systems. In an explicit example of a path-dependent
random walk we show how the corresponding generalized entropy
is derived. We implement a numerical realization of the process to
show that the corresponding maximum entropy principle perfectly
predicts the correct distribution functions as the system ages in the
sense that it becomes more persistent as it evolves. Systems of this
kind often never reach equilibrium as N→∞.
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