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Probabilistic forecasting models describe the aleatory variability
of natural systems as well as our epistemic uncertainty about
how the systems work. Testing a model against observations
exposes ontological errors in the representation of a system and
its uncertainties. We clarify several conceptual issues regarding
the testing of probabilistic forecasting models for ontological
errors: the ambiguity of the aleatory/epistemic dichotomy, the
quantification of uncertainties as degrees of belief, the interplay
between Bayesian and frequentist methods, and the scientific
pathway for capturing predictability. We show that testability
of the ontological null hypothesis derives from an experimental
concept, external to the model, that identifies collections of data,
observed and not yet observed, that are judged to be exchange-
able when conditioned on a set of explanatory variables. These
conditional exchangeability judgments specify observations with
well-defined frequencies. Any model predicting these behaviors
can thus be tested for ontological error by frequentist methods;
e.g., using P values. In the forecasting problem, prior predictive
model checking, rather than posterior predictive checking, is desir-
able because it provides more severe tests. We illustrate experi-
mental concepts using examples from probabilistic seismic hazard
analysis. Severe testing of a model under an appropriate set of
experimental concepts is the key to model validation, in which we
seek to knowwhether a model replicates the data-generating pro-
cess well enough to be sufficiently reliable for some useful pur-
pose, such as long-term seismic forecasting. Pessimistic views of
system predictability fail to recognize the power of this method-
ology in separating predictable behaviors from those that are not.

system science | Bayesian statistics | significance testing |
subjective probability | expert opinion

Science is rooted in the concept that a model can be tested
against observations and rejected when necessary (1). How-

ever, the problem of model testing becomes formidable when we
consider natural systems. Owing to their scale, complexity, and
openness to interactions within a larger environment, most nat-
ural systems cannot be replicated in the laboratory, and direct
observations of their inner workings are always inadequate.
These difficulties raise serious questions about the meaning and
feasibility of “model verification” and “model validation” (2),
and have led to the pessimistic view that “the outcome of natural
processes in general cannot be accurately predicted by mathe-
matical models” (3).
Uncertainties in the formal representation of natural systems

imply that the forecasting of emergent phenomena such as nat-
ural hazards must be based on probabilistic rather than de-
terministic modeling. The ontological framework for most
probabilistic forecasting models comprises two types of un-
certainty: an aleatory variability that describes the randomness of
the system, and an epistemic uncertainty that characterizes our
lack of knowledge about the system. According to this distinc-
tion, which stems from the classical dichotomy of objective/
subjective probability (4), epistemic uncertainty can be reduced
by increasing relevant knowledge, whereas the aleatory vari-
ability is intrinsic to the system representation and is therefore
irreducible within that representation (5, 6).

The testing of a forecasting model is itself a statistical enter-
prise that evaluates how well a model agrees with some collec-
tion of observations (e.g., 7, 8). One can compare competing
forecasts within a Bayesian framework and use new data to re-
duce the epistemic uncertainty. However, the scientific method
requires the possibility of rejecting a model without recourse to
specific alternatives (9, 10). The statistical gauntlet of model
evaluation should therefore include pure significance testing
(11). Model rejection exposes “unknown unknowns”; i.e.,
ontological errors in the representation of the system and its
uncertainties. Here we use “ontological” to label errors in
a model’s quantification of aleatory variability and epistemic
uncertainty (see SI Text, Glossary). [Other authors have phrased
the problem in different terms; e.g., Musson’s (12) “unmanaged
uncertainties.” In the social sciences, “ontological” is sometimes
used interchangeably with “aleatory” (13).]
The purpose of this paper is to clarify the conceptual issues

associated with the testing of probabilistic forecasting models
for ontological errors in the presence of aleatory variability and
epistemic uncertainty. Some relate to long-standing debates in
statistical philosophy, in which Bayesians (14) spar with fre-
quentists (15), and others propose methodological accom-
modations that draw from the strengths of both schools (10, 16).
Statistical “unificationists” of the latter stripe advocate the im-
portance of model checking using Bayesian (calibrated) P values
(16, 17, 18, 19) as well as graphical summaries and other tools of
exploratory data analysis (20). Bayesian modeling checking has
been criticized by purists on both sides (21, 22), but one version,
prior predictive checking, provides us with an appropriate frame-
work for the testing of forecasting models for ontological errors.
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Among the concerns to be addressed is the use of expert
opinion to characterize epistemic uncertainty, a common practice
when dealing with extreme events, such as large earthquakes,
volcanic eruptions, and climate change. Frequentists discount
the quantification of uncertainties in terms of degrees of belief as
“fatally subjective—unscientific” (23), and they oppose “letting
scientists’ subjective beliefs overshadow the information provided
by data” (21). Bayesians, on the other hand, argue that proba-
bility is intrinsically subjective: all probabilities are degrees of
belief that cannot be measured. Jaynes’s (24) view is repre-
sentative: “any probability assignment is necessarily ‘subjective’
in the sense it describes only a state of knowledge, and not
anything that could be measured in a physical experiment.”
Immeasurability suggests untestability: How can models of
probabilities that are not measureable be rejected?
Our plan is to expose the conceptual issues associated with the

uncertainty hierarchy in the mathematical framework of a par-
ticular forecasting problem—probabilistic seismic hazard analy-
sis (PSHA)—and resolve them in a way that generalizes the
testing for ontological errors to other types of probabilistic
forecasting models. A glossary of uncommon terms used in
this paper is given in SI Text, Glossary.

Probabilistic Seismic Hazard Analysis
Earthquakes proceed as cascades in which the primary effects of
faulting and ground shaking may induce secondary effects, such
as landslides, liquefactions, and tsunamis. Seismic hazard is a
probabilistic forecast of how intense these natural effects will be
at a specified site on earth’s surface during a future interval of
time. Because earthquake damage is primarily caused by shak-
ing, quantifying the hazard due to ground motions is the main
goal of PSHA. Various intensity measures can be used to de-
scribe the shaking experienced during an earthquake; common
choices are peak ground acceleration and peak ground velocity.
PSHA estimates the exceedance probability of an intensity
measure X; i.e., the probability that the shaking will be larger
than some intensity value x at a particular geographic site over
the time interval of interest, usually beginning now and stretch-
ing over several decades or more (5, 25, 26). It is often assumed
that earthquake occurrence is a Poisson process with rates con-
stant in time, in which case the hazard model is said to be
time independent.
A plot of the exceedance probability F(x) = P(X > x) for

a particular site is called the hazard curve. Using hazard curves,
engineers can estimate the likelihood that buildings and other
structures will be damaged by earthquakes during their expected
lifetimes, and they can apply performance-based design and
seismic retrofitting to reduce structural fragility to levels ap-
propriate for life safety and operational requirements. A seismic
hazard map is a plot of the exceedance probability F at a fixed
intensity x as a function of site position (27, 28) or, somewhat
more commonly, x at fixed F (29–31). Official seismic hazard
maps are now produced by many countries, and are used to
specify seismic performance criteria in the design and retrofitting
of buildings, lifelines, and other infrastructure, as well as to guide
disaster preparedness measures and set earthquake insurance
rates. These applications often fold PSHA into probabilistic risk
analysis based on further specifications of loss models and utility
measures (32, 33). Here we focus on assessing the reliability of
PSHA as a forecasting tool rather than its role in risk analysis
and decision theory.
The reliability of PSHA has been repeatedly questioned. In

the last few years, disastrous earthquakes in Sumatra, Italy,
Haiti, Japan, and New Zealand have reinvigorated this debate
(34–39). Many practical deficiencies have been noted, not the
least of which is the paucity of data for retrospective calibration
and prospective testing of PSHA models, owing to the short span
of observations relative to the forecasting time scale (40, 41).
However, some authors have raised the more fundamental
question of whether PSHA is misguided because it cannot cap-
ture the aleatory variability of large-magnitude earthquakes

produced by complex fault systems (35, 38, 42). Moreover, the
pervasive role of subjective probabilities in specifying the
epistemic uncertainty in PSHA has made this methodology
a target for criticism by scientists who adhere to the frequentist
view of probabilities. A particular objection is that degrees of
belief cannot be empirically tested and, therefore, that PSHA
models are not scientific (43–45).
We explore these issues in the PSHA framework developed

by earthquake engineers in the 1970s and 1980s and refined
in the 1990s by the Senior Seismic Hazard Analysis Committee
(SSHAC) of the US Nuclear Regulatory Commission (5). For a
particular PSHA model Hm, the intrinsic or aleatory variability of
the ground motion X is described by the hazard curve Fm(x) = P
(X > x j Hm). The epistemic uncertainty is characterized by an
ensemble {Hm: m ∈ M} of alternative hazard models consis-
tent with our present knowledge. A probability πm is assigned to
Fm(x) that measures its plausibility, based on present knowledge,
relative to other hazard curves drawn from the ensemble.
Ideally, the model ensemble {Hm} could be constructed and

the model probabilities assigned according to how well the
candidates explain prior data. Various objective methods have
been developed for this purpose: resampling, adaptive boosting,
Bayesian information criteria, etc. (46, 47). However, the high-
intensity, low-probability region of the hazard space F ⊗ x most
relevant to many risk decisions is dominated by large, infrequent
earthquakes. The data for these extreme events are usually too
limited to discriminate among alternative assumptions and fix
key parameters. Therefore, in common practice, the model en-
semble {Hm} is organized as branches of a logic tree, and the
branch weights {πm}, which may depend on the hazard level x,
are assigned according to expert opinion (5, 48, 49).
If the logic tree spans a hypothetically mutually exclusive and

completely exhaustive (MECE) set of possibilities (50), πm can
be interpreted as the probability that Fm(x) is the “true” hazard
value F̂ðxÞ, and operations involving the plausibility measure
{πm} must obey Kolmogorov’s axioms of probability; e.g.,

X
m∈M

πm = 1: [1]

In PSHA practice, logic trees are usually constructed to sample
the possibilities, rather than exhaust them, in which case the
MECE assumption is inappropriate. One can then reinterpret
πm as the probability that Fm(x) is the “best” among a set of
available models (12, 47, 51) or “the one that should be used”
(52). This utilitarian approach increases the subjective content of
{Fm(x), πm}, as well as the possibilities for ontological error. We
will call {Fm(x), πm} the experts’ distribution to recognize this
subjectivity, regardless of whether {Hm} comes from a logic tree
or is constructed in a different way.
For conceptual simplicity, we will assume the discrete experts’

distribution {Fm(x), πm} samples a continuous probability dis-
tribution with density function p(ϕ), where ϕ = F(x0) at a fixed
hazard value x0. We denote this relationship by {ϕm} ∼ p(ϕ) and
call p the extended experts’ distribution. Various data-analysis
methods have been established to move from a discrete sample
to a continuous distribution, although the process also com-
pounds the potential for ontological error. Given the extended
experts’ distribution, the expected hazard at fixed x0 is

ϕ =
Z1

0

ϕ pðϕÞdϕ: [2]

This central value measures the aleatory variability of the hazard,
conditional on the model, and the dispersion of p about ϕ
describes the epistemic uncertainty in its estimation.
Epistemic uncertainty is thus described by imposing a sub-

jective probability on the target behavior of Hm, which is an
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objective exceedance probability, ϕm. This procedure is well
established in PSHA practice (5, 53), but it encounters fre-
quentist discomfort with degrees of belief and Bayesian re-
sistance to attaching measures of precision to probabilities. [In
Bayesian semantics, the frequency parameters of aleatory vari-
ability are usually labeled as “chances” rather than as probabil-
ities. According to Lindley (14), “the distinction becomes useful
when you wish to consider your probability of a chance, whereas
probability on a probability is, in the philosophy, unsound.”
Jaynes (24) also rejects the identification of frequencies with
probabilities.] Although these concerns do not matter much in
the routine application of risk analysis, where only the mean
hazard is considered (32, 54, 55), they must be addressed within
the conceptual framework of model testing.
In our framework, testability derives from a null hypothesis,

here called the “ontological hypothesis,” which states that data-
generating hazard curve ϕ̂ (the “true” hazard) is a sample from
the extended experts’ distribution, ϕ̂∼ pðϕÞ. If an observational
test rejects this null hypothesis, then we can claim to have found
an ontological error.

Testing PSHA Models
One straightforward test of a PSHA model is to collect data on
the exceedance frequency of a specified shaking intensity, x0,
during N equivalent trials, each lasting 1 y. If ϕm = Fm(x0) is the
1-y exceedance probability for a particular hazard model Hm, and
the data are judged to be unbiased and exchangeable under the
experimental conditions—i.e., to have a joint probability distri-
bution invariant with respect to permutations in the data or-
dering (56–58)—then the likelihood of observing k or more
exceedances for each member of the experts’ ensemble is given
by the tail of a binomial distribution:

PðkjϕmÞ=
XN
n=k

�
N
n

�
ϕn
mð1−ϕmÞN−n: [3]

Under the extended experts’ distribution, the unconditional
probability is the expectation,

PðkÞ=
Z1

0

PðkjϕÞpðϕÞdϕ: [4]

For notational simplicity, we suppress the dependence of P on N.
There have been only a few published attempts to test PSHA

models against ground motion observations (59–62). To our
knowledge, all have assumed a test distribution PðkjϕÞ that has
been computed from [3] using the mean exceedance proba-
bility rather than from the unconditional distribution [4]. This
reflects the view shared by many hazard practitioners that the
mean hazard is the only hazard needed for decision making
(54, 55, 63, 64).
However, a test based on PðkjϕÞ is often overly stringent, as

can be seen from a simple example. We consider a PSHA model
that comprises an experts’ ensemble of 20 equally weighted
hazard curves, each an exponential function, FmðxÞ= expð−λmxÞ
(Fig. 1). The values sampled at x0 (arbitrarily chosen to be 0.29)
give a mean exceedance probability of ϕ= 0:085 and can be
represented by a beta distribution Be(α, β) with parameters α =
1.0 and β = 10.7 (Fig. 2A). Suppose this ground motion threshold
is exceeded k = 10 times in n = 50 y; then the P value conditioned
on the mean hazard is PðkjϕÞ= 0:008, whereas the unconditional
value is P(k) = 0.123 (Fig. 2B). Thus, although this observa-
tional test rejects ϕ̂=ϕ at a fairly high (99%) confidence level,
it cannot reject the ontological hypothesis ϕ̂∼ pðϕÞ, even at a low
(90%) level.
Finding an ontological error may not directly indicate what is

wrong with the model. The ontological error might indicate that
the parameters of the model were badly estimated, or that the

basic structure of the model is far from reality. In our example
test, a small P value could imply that either the beta distribution
of ϕ, which characterizes the epistemic uncertainty, or the ex-
ponential distribution of Fm(x), which characterizes the aleatory
variability, is wrong (or that both are). A small P value might also
indicate that the data-generating process is evolving with time, so
the data used for testing do not have the same distribution as the
data used to calibrate the model.
Bayesian updating under the ontological hypothesis can im-

prove the parameter estimates and thereby sharpen the extended
experts’ distribution, but it cannot discover ontological errors, such
as the inadequacy of the exponential distribution or a time de-
pendence of the parameter λ not included in the time-independent
model. To do that wemust subject our “model of the world,” given
here by p(ϕ), to a testing regime guided by an experimental concept
that appropriately conditions nature’s aleatory variability.

Primacy of the Experimental Concept in Ontological Testing
The experimental concept in our PSHA example is very simple.
We collect a set of yearly data {xn: n = 1, 2, . . ., N} and construct
a binary sequence {en: n = 1, 2, . . ., N} by assigning en = 1 if xn
exceeds a threshold value x0 and en = 0 if it does not. We observe
that the sequence sums to k. We judge that the joint probability
distribution of {en} is unchanged by any permutation of the in-
dices; the yearly data are thus exchangeable and the sequence is
Bernoulli. In the earthquake forecasting problem, we further
assert, through a leap of faith, that future years are exchangeable
with past years; i.e., the data sequence is exchangeable in Draper
et al.’s (57) second sense. The predictive power of the time-
independent PSHA model hangs on this assertion.
In general terms, the experimental concept specifies collec-

tions of data, observed and not yet observed, that are judged
to be exchangeable when conditioned on a set of explanatory
variables. Exchangeable events can be modeled as identical
and independently distributed random variables with a well-
defined frequency of occurrence (65, 66). This event frequency
or chance—the limiting value of k/N in our example—represents
the aleatory variability of the data-generating process (5, 6).
Theoretical considerations and a finite amount of data can only
constrain this probability within some epistemic uncertainty,
quantified by the extended expert’s distribution.
Exchangeability thus distinguishes the aleatory variability, given

by P(k j ϕ), from the epistemic uncertainty, given by p(ϕ). In our
PSHA example, the exchangeability judgment links Eqs. 3 and 4 to
de Finetti’s (65) representation of a Bernoulli process conditioned
on p(ϕ) and thus connects the testing experiment to the fre-
quentist concept of repeatability.
The primacy of the experimental concept can be illustrated by

extending our PSHA example. The test in Fig. 2 (test 1) derives
from an experimental concept based on a single exchangeability
judgment. Now consider a second experimental concept (test 2)

10 10 100

Ground motion (arbitrary units)
x0

E
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ee
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ty

Fig. 1. A simple PSHA model used in our testing examples. Gray lines show
the experts’ ensemble of 20 exponential hazard curves {Fm(x): m = 1, . . ., 20}.
Black line is the corresponding mean hazard curve FðxÞ. The distribution of
values sampled at x0 (dashed line) is given in Fig. 2.
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that distinguishes exceedance events in years when some observable
index A is zero from those in years when A is unity. The data-
generating process provides two sequences, {en

(0): n = 1, 2, . . .,N0}
whenA = 0 and {en

(1): n = 1, 2, . . .,N1} whenA = 1. Both are judged
to be Bernoulli, and they are observed to sum to k0 and k1
respectively. If A correlates with the frequency and/or magnitude
variations in the earthquake rupture process, e.g., if the occurrence
of large earthquakes and consequent ground shaking stronger than x0
are more likely when A = 1, then the expected frequency of k1/N1
might be greater than that of k0/N0.
As this example makes clear, it is not the aleatory variability

intrinsic to themodel thatmatters in testing, but rather the aleatory
variability defined by the exchangeability judgments of the exper-
imental concept. In other words, aleatory variability is an ob-
servable behavior of the data-generating process—nature itself—
conditioned by the experimental concept to have well-defined
frequencies. A model predicting this behavior can thus be tested
for ontological error by frequentist (error statistical) methods.
Suppose that, in a 50-y PSHA experiment, there are N0 = 35 y

when A = 0 and N1 = 15 y with A = 1. Further suppose that no
exceedances of the ground motion threshold are observed in the
former set (k0 = 0), and 10 are recorded in the latter (k1 = 10).
Test 1 applied to these datasets returns an identical result (k =
10), so the model passes with a prior predictive P value of 0.123,
as shown in Fig. 2. However, in test 2, the A = 1 observation is
much less likely under the ontological hypothesis (P1 = 0.0006)
than the A = 0 observation (P0 = 0.231), and the P value for the
combined result is quite small, 0.0012 (Fig. 3). Therefore, the
model can be rejected by test 2 with high confidence.
From this experiment, we infer that the data-generating process

F̂ is probablyA dependent and therefore time dependent (all years
are not exchangeable). Hence, we might seek an alternative model
that captures this type of time dependence in its aleatory vari-
ability, and we might reelicit expert opinion to characterize the
epistemic uncertainty in its (two or more) aleatory frequencies.
In ontological testing, Box’s famous generalization that “all

models are wrong, but some are useful” (67) can be restated as
“all models are wrong, but some are acceptable under particular
experimental concepts.” Qualifying a model under an appropri-
ate set of experimental concepts is the key to model validation,
in which we decide if a model replicates the data-generating
process well enough to be sufficiently reliable for some useful
purpose, such as long-term seismic forecasting. In our example, a
model that passes test 1 may be adequate for time-independent
forecasting, but, by failing test 2, it should be rejected as a viable
time-dependent forecast.

Discussion
For frequentists, a probability is the limiting frequency of a ran-
dom event or the long-term propensity to produce such a limiting
frequency (9, 68); for Bayesians, it is a subjective degree of belief
that a random event will occur (14). Advocates on both sides
have argued that degrees of belief cannot be measured and, by
implication, cannot be rejected (9, 24, 69). In the words of one
author (70), “the degree of belief probability is not a property of
the event (experiment) but rather of the observer. There exists
no uniquely true probability, only one’s true belief.” Within the
subjectivist Bayesian framework, one’s true belief can be in-
formed, but not rejected, by experiment.
For us, the use of subjective probability such as expert opinion

poses no problems for ontological testability as long as the ex-
perimental concept defines sets of exchangeable data with long-
run frequencies determined by the data-generating process.
These frequencies, which characterize the aleatory variability,
have epistemic uncertainty described by the experts’ distribution.
Expert opinion is thus regarded as a measurement system that
produces a model that can be tested.
To illustrate this point with an example far from PSHA, we

recall an experiment reported by Sir Francis Galton in 1907.
During a tour of the English countryside, he recorded 787 guesses
of the weight of an ox made by a farming crowd and found that the
average was correct to a single pound (71). The experts’ distri-
bution he tabulated passes the appropriate Student’s t test (ret-
rospectively, of course, because this test was not invented
until 1908).
We note one difference between farmers and PSHA experts.

The experts’ distribution measures the epistemic uncertainty at
a particular epoch, which may be larger or smaller depending on
how the experts are able to sample the appropriate information
space. In Galton’s experiment, a farmer looks individually at the
ox, reaching his estimate more or less independently of his col-
leagues. As more farmers participate, they add new data, and the
epistemic uncertainty is reduced by averaging their guesses. At
a particular epoch, adding more PSHA experts will better de-
termine, but usually not reduce, the epistemic uncertainty, because
they rarely make independent observations but work instead from
a common body of knowledge, which may be very limited. This and
other issues related to the elicitation of expert opinion, such as
how individuals should be calibrated and how a consensus should
be drawn from groups, have been extensively studied (5, 72, 73).
The ontological tests considered here are conditional on the

experimental concept, which may be weak or even wrong. An
experimental concept will be incorrect when one or more of
its exchangeability judgments violate reality. The constituent
assumptions can often be tested independently of the model;
e.g., through correlation analysis and other types of data
checks (57, 74, 75). In our example, if the frequency estimator
k/N increases in the long run (e.g., if the proportion N1/N0
increases), then the event set is not likely to be exchangeable,
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and the experimental concept of test 1 needs to be rethought
to allow for this secular time dependence.
Through exchangeability judgments, the experimental concept

ensures that aleatory variables have well-defined frequencies,
which is just what we need to set up a regime for testing the
ontological hypothesis. Bayesian model checking provides us
with several options for pure significance testing. The onto-
logical hypothesis can be evaluated using

i) the prior predictive P value, computed directly from Eq. 4 (17);
ii) the posterior predictive P value, computed after the experts’

distribution has been updated according to Bayes; e.g.,
π′m ∝ϕk

mð1−ϕmÞN−kπm (18, 76); or
iii) a partial posterior predictive P value, computed for a data

subset after the experts’ distribution has been updated using
a complementary (calibration) data subset (77).

An ontological error is discovered when the new data are
shown to be inconsistent with p(ϕ) or its updated version p′(ϕ);
e.g., when a small P value is obtained from the experiment.
Among these options, the posterior predictive checks (ii) and

(iii) are most often used by Bayesian objectivists because their
priors are often improper and uninformative (20, 77). Moreover, in
many types of statistical modeling, the goal is to assess the model’s
ability to fit the data a posteriori, not its ability to predict the data
a priori. According to Gelman (78), for example, “All models are
wrong, and the purpose of model checking (as we see it) is not to
reject a model but rather to understand the ways in which it does
not fit the data. From a Bayesian point of view, the posterior
distribution is what is being used to summarize inferences, so this is
what we want to check.” In particular, the power of the test, or
more generally its severity (9), is not very important. “If a certain
posterior predictive check has zero or low power, this is not
a problem for us: it simply represents a dimension of the data that
is automatically or virtually automatically fit by the model” (75).
In forecasting, however, we are most interested in a model’s

predictive capability; therefore, severe tests based on the prior
predictive check (i) are always desirable. This testing regime is
entirely prospective; the models are independent of the data
used in the test (the testing is blind), and there are no nuisance
parameters. The extended experts’ distribution p(ϕ) is subjective,
informative, and always proper. “Using the data twice” is not an
issue, as it is with the posterior predictive check (ii) (16). If based
on the same data, prior predictive tests are always more severe
than posterior predictive tests. Continual prospective testing now
guides the validation of forecasting models in civil protection and
other operational applications (79–82).
When the experimental concept is weak, lots of models, even

poor predictors, can pass the test. An experimental concept pro-
vides a severe test, in Mayo’s (9) sense, if it has a high probability
of detecting an ontological error of the type that matters to the
model’s forecasting application. Severe tests require informative
ensembles of exchangeable observations (although we must ad-
mit that these are often lacking in long-term PSHA). In practice,
batteries of experimental concepts must be used to specify the
aleatory variability of the data-generating process and organize
severe testing gauntlets relevant to the problem at hand.
When the problem is forecasting, the most crucial features of

an experimental concept are the assertions that past and future
events are exchangeable. Scientists make these leaps of faith not
blindly, but through careful consideration of the physical prin-
ciples that govern the system behaviors they seek to predict.
Therefore, the experimental concepts used to test models, as
much as the models themselves, are the mechanism for encoding
our physical understanding into the iterative process of system
modeling. Validating our predictions through ontological testing
is the primary means by which we establish our understanding

of how the world works, and thus an essential aspect of the sci-
entific method (1). It seems to us that the more pessimistic views
of system predictability (2, 3) fail to recognize the power of this
methodology in separating behaviors that are predictable from
those that are not.
This power can be appreciated by considering cases where the

exchangeability of past and future events is dubious. A notorious
example is the prediction of financial markets. Exchangeability
judgments are problematic in these experiments, because the
markets learn so rapidly from past experience (83, 84). Without
exchangeability, no experimental concept is available to disci-
pline the system variability. Processes governed by physical laws
are less contingent and more predictable than these agent-based
systems; for example, exchangeability judgments can be guided
by the characteristic scales of physical processes, leading to well-
configured experimental concepts.
The points made in this paper are basic and without mathe-

matical novelty. In terms of the interplay between Bayesian and
frequentist methods, our view aligns well with the statistical
unificationists (10, 85). However, it differs in the importance we
place on the experimental concept in structuring the uncertainty
hierarchy—aleatory, epistemic, ontological—and our empha-
sis on testing for ontological errors as a key step in the iter-
ative process of forecast validation.
As with many conceptual discussions of statistical methodology,

the proof is in the pudding. Does the particular methodology ad-
vocated here help to clarify any persistent misunderstandings that
have hampered practitioners? We think so, particularly in regard to
the widespread confusion about how to separate aleatory variability
from epistemic uncertainty. Consider two examples:

• In a review of the SSHAC methodology requested by the US
Nuclear Regulatory Commission, a panel of the National Re-
search Council asserted that “the value of an epistemic/alea-
tory separation to the ultimate user of a PSHA is doubtful. . .
The panel concludes that, unless one accepts that all uncer-
tainty is fundamentally epistemic, the classification of PSHA
uncertainty as aleatory or epistemic is ambiguous.” (54).
Here the confusion stems from SSHAC’s (5) epistemic/ale-
atory classification scheme, which is entirely model-based
and thus ambiguous.

• In his discussion of “how to cheat at coin and die tossing,”
Jaynes (24) describes the ambiguity of randomness in terms of
how the tossing is done; e.g., how high a coin is tossed. “The
writer has never thought of a biased coin ‘as if it had a physical
probability’ because, being a professional physicist, I know
that it does not have a physical probability.” His confusion
arises because he associates the aleatory frequency with the
physical process, which is ambiguous unless we fix the
experimental concept.

Both the model-based and physics-based ambiguity in setting
up the aleatory/epistemic dichotomy can be removed by speci-
fying an experimental concept. By testing the ontological hypothesis
under appropriate experimental concepts, we can answer the
important question of whether a model’s predictions conform
to our conditional view of nature’s true variability.
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