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Latent structure in random sequences drives neural
learning toward a rational bias
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People generally fail to produce random sequences by overusing
alternating patterns and avoiding repeating ones—the gambler’s
fallacy bias. We can explain the neural basis of this bias in terms of
a biologically motivated neural model that learns from errors in
predicting what will happen next. Through mere exposure to ran-
dom sequences over time, the model naturally develops a repre-
sentation that is biased toward alternation, because of its sensitivity
to some surprisingly rich statistical structure that emerges in these
random sequences. Furthermore, the model directly produces the
best-fitting bias-gain parameter for an existing Bayesian model, by
which we obtain an accurate fit to the human data in random se-
quence production. These results show that our seemingly irrational,
biased view of randomness can be understood instead as the per-
fectly reasonable response of an effective learning mechanism to
subtle statistical structure embedded in random sequences.

gambler’s fallacy | waiting time | neural network | temporal integration |
Bayesian inference

People are prone to search for patterns in sequences of events,
even when the sequences are completely random. In a fa-
mous game of roulette at the Monte Carlo casino in 1913, black
repeated a record 26 times—people began extreme betting on
red after about 15 repetitions (1). The gambler’s fallacy—a belief
that chance is a self-correcting process where a deviation in one
direction would induce a deviation in the opposite direction—
has been deemed a misperception of random sequences (2). For
decades, this fallacy is thought to have originated from the
“representativeness bias,” in which a sequence of events generated
by a random process is expected to represent the essential char-
acteristics of that process even when the sequence is short (3).
However, there is a surprising amount of systematic structure
lurking within random sequences. For example, in the classic case of
tossing a fair coin, where the probability of each outcome (heads or
tails) is exactly 0.5 on every single trial, one would naturally assume
that there is no possibility for some kind of interesting structure to
emerge, given such a simple and desolate form of randomness. And
yet, if one records the average amount of time for a pattern to first
occur in a sequence (i.e., the waiting time statistic), it is significantly
longer for a repetition (head-head HH or tail-tail TT, six tosses)
than for an alternation (HT or TH, four tosses). This is despite the
fact that on average, repetitions and alternations are equally prob-
able (occurring once in every four tosses, i.e., the same mean time
statistic). For both of these facts to be true, it must be that repeti-
tions are more bunched together over time—they come in bursts,
with greater spacing between, compared with alternations. In-
tuitively, this difference comes from the fact that repetitions can
build upon each other (e.g., sequence HHH contains two instances
of HH), whereas alternations cannot. Statistically, the mean time
and waiting time delineate the mean and variance in the distribution
of the interarrival times of patterns, respectively (4). Despite the
same frequency of occurrence (i.e., the same mean), alternations
are more evenly distributed over time than repetitions (i.e., different
variances). Another source of insight comes from the transition
graph (Fig. 14), which reveals a structural asymmetry in the process
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of fair coin tossing. For example, when the process has the same
chance to visit any of the states, the minimum number of transitions
it takes to leave and then revisit a repetition state is longer than that
for an alternation state. Let p4 denote the probability of alternation
between any two consecutive trials; despite the same mean time at
pa=1/2, repetitions will have longer waiting times than alter-
nations as long as p4 > 1/3 (Fig. 1B). (See SI Text for the calcula-
tion of mean time and waiting time statistics.)

Is this latent structure of waiting time just a strange mathematical
curiosity or could it possibly have deep implications for our cogni-
tive-level perceptions of randomness? It has been speculated that
the systematic bias in human randomness perception such as the
gambler’s fallacy might be due to the greater variance in the
interarrival times or the “delayed” waiting time for repetition pat-
terns (4, 5). Here, we show that a neural model based on a detailed
biological understanding of the way the neocortex integrates in-
formation over time when processing sequences of events (6, 7) is
naturally sensitive to both the mean time and waiting time statistics.
Indeed, its behavior is explained by a simple averaging of the
influences of both of these statistics, and this behavior emerges in
the model over a wide range of parameters. Furthermore, this av-
eraging dynamic directly produces the best-fitting bias-gain param-
eter for an existing Bayesian model of randomness judgments (8),
which was previously an unexplained free parameter and obtained
only through parameter fitting. We also show that we can extend
this Bayesian model to better fit the full range of human data by
including a higher-order pattern statistic, and the neurally derived
bias-gain parameter still provides the best fit to the human data
in the augmented model. Overall, our model provides a neural
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The human mind has a unique capacity to find order in chaos.
The way the neocortex integrates information over time ena-
bles the mind to capture rich statistical structures embedded in
random sequences. We show that a biologically motivated
neural network model reacts to not only how often a pattern
occurs (mean time) but also when a pattern is first encountered
(waiting time). This behavior naturally produces the alternation
bias in the gambler’s fallacy and provides a neural grounding for
the Bayesian models of human behavior in randomness judg-
ments. Our findings support a rational account for human prob-
abilistic reasoning and a unifying perspective that connects the
implicit learning without instruction with the generalization un-
der structured and expressive rules.
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Fig. 1. Time of patterns described by the probability of alternation between
consecutive trials (pa). (A) Transitions between patterns of length 2. Atps =1/2,
the process has the same chance to visit either a repetition state (HH or TT) or an
alternation state (HT or TH). However, it takes a minimum of three transitions for
the process to leave and then revisit a repetition state (e.g, HH - HT - TH —
HH), but only two for an alternation state (e.g., HT — TH — HT). (B) Equilibriums
by pa values. A repetition (R) and an alternation (A) have the same mean time
E[TR]=E[Ta] at pa=1/2, the same waiting time E[T,:] =E[T:] atpa=1/3, and

*

the same sum E[Tg] + E[T, | =E[T4) +E[T:] at pa=3/7.

grounding for the pervasive gambler’s fallacy bias in human
judgments of random processes, where people systematically
discount repetitions and emphasize alternations (9, 10).

Neural Model of Temporal Integration

Our neural model is extremely simple (Fig. 24). It consists of
a sensory input layer that scans nonoverlapping binary digits of H
vs. T and an internal prediction layer that attempts to predict the
next input, while the prior inputs in the sequence are encoded in
the temporal context. This model is based on a biologically
motivated computational framework that has been used to ex-
plain the neural basis of cognition in a wide range of different
domains (6), with the benefit of integrating prior temporal
context information according to the properties of the deep
neocortical neurons (layers 5b and 6) (7).

Our main hypothesis is that the predictive learning and tem-
poral integration properties of this model, which reflect corre-
sponding features of the neocortex, will produce representations
that incorporate both the waiting time and mean time statistics
of the input sequences (despite the inability of the model to
accurately predict the next input in these random sequences). In
other words, we predict a systematic interaction between these
basic learning mechanisms and the surprisingly rich statistical
structure of the input. This is a principled prediction based on
the well-established sensitivity of these kinds of neural learning
mechanisms to the statistical structure of inputs (e.g., ref. 11),
and extensive parameter exploration demonstrates that our
results hold across a wide range of parameters and that the
model’s behavior is systematically affected by certain parameters
in sensible ways (SI Text). Thus, despite the emergent nature of
learning in our model, it nevertheless reflects systematic behavior
and is not the result of a random parameter-fitting exercise.
Moreover, we show below that the model’s behavior can be largely
explained by a simple equation as a function of the mean time and
waiting time statistics, further establishing the systematicity of the
model’s behavior and also establishing a direct connection to more
abstract Bayesian models as elaborated subsequently.

The model was trained with binary sequences generated at
various levels of the probability of alternation (p,), each se-
quence consisting of 10,000 coin tosses (although learning oc-
curred quickly within a few hundred trials). Crucially, learning
was concerned with only reconstructing the input sequence but
not pattern discrimination, as no teaching signals were provided
regarding the underlying p4 values and pattern time statistics.
After training, the model was tested with a sequence of 1,000
tosses generated at the same p4 level as in the training sequence.
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We then decoded these sequence representations through a re-
verse correlation technique. Based on the sensitivity of the unit
activations to the temporal patterns of length 2, we classified and
then counted the number of the units on the internal prediction
layer as either repetition detectors (R, being sensitive to either HH
or TT) or alternation detectors (A4, being sensitive to either HT or
TH). (See SI Text for the method of detector classification.)

Most intriguingly, at p4 =1/2 (i.e., independent tosses of a fair
coin), the model produced a ratio of R/A ~0.70—despite the
equal frequency of pattern occurrences, repetition detectors
were significantly less likely than alternation detectors. Such al-
ternation bias is in the same direction of the representativeness
bias, where people perceive alternation patterns as more repre-
sentative of a random process than repetition patterns (2, 3).
Effectively, this result demonstrates the gambler’s fallacy emerging
naturally as a consequence of the alternation bias, due to the
model’s sensitivity to the waiting time advantage of alternations
compared with repetitions.

We then used the R/A ratio to compute the subjective prob-
ability of alternation, pj4, as the model’s internal representation
of its actually experienced p4. With R/4 ~0.70, we have

A 1
PAS R A~ T+RA~ "> (1]

This p/ value is consistent with the empirical findings on sub-
jective randomness. From a comprehensive review of the studies
on random sequence perception and generation, it was found that
the subjective probability of alternation was around 0.58 ~ 0.63 (9).

To further characterize the nature of the alternation bias, we
systematically varied the probability of alternation (p4) in gen-
erating the training sequence (i.e., departures from tossing a fair
coin independently) and then measured the effects on the R/A4
ratio. We found a smooth curve, where the R/A ratio increased
(more repetition detectors) as p4 decreased (less frequent oc-
currences of alternations). At p4=3/7, the model reached an
equilibrium point with equal numbers of repetition and alter-
nation detectors, R/A =1 (Fig. 2B). That is, alternations have to
be this much less frequent (i.e., greater mean time) to cancel out
their waiting time advantage. This corresponds exactly to the
equilibrium point where repetitions and alternations have the
same sum of mean and waiting times (Fig. 1B).
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Fig. 2. Neural model of temporal integration to capture the statistics of pattern
times in random sequences. (A) Architecture of the neural model. A single sensory
input layer scans through a sequence of binary digits one digit at a time (input at
t — 1 is for illustration only). An internal prediction layer, with bidirectional con-
nections from the input layer and its own temporal context representation,
attempts to predict the next input. (B) Neural model behavior depicted by the
ratio between repetition and alternation detectors in response to the actual
probability of alternation (pa) in the input sequences. At ps =1/2, the model
showed R/A=~0.70 (i.e., fewer repetition detectors than alternation detectors).
Error bars (+ SEM) represent the variability of model predictions. The dotted line is
the squared total time ratio between alternation and repetition patterns (Eq. 2).
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Overall, the model’s behavior can be mostly replicated by a
simple equation that averages the effects of the mean time and
waiting time statistics (dotted line in Fig. 2B),

AT \E[TR|+E[T;] )’

where E[T] is the mean time, E[T”] is the waiting time, and sub-
scripts R and A represent repetitions and alternations, respec-
tively. This establishes a clear higher-level explanation for the
emergent behavior of the model, allowing us to summarize its
behavior as simply averaging the effects of these two relevant
statistics over the random sequences.

Bayesian Models of Random Sequence Production

A unifying perspective on human statistical learning requires
bridging the gap between the implicit learning without instruc-
tion and the generalization of the learned patterns under struc-
tured and expressive rules (12). On the one hand, our neural
model shows that through mere exposure to a set of input stimuli,
a systematic bias was developed toward the alternation pattern in
random sequences. On the other hand, recent Bayesian accounts
for probabilistic learning suggest that the human mind performs
rational inferences at both neural and behavioral levels (13, 14).
Thus, we asked whether it was possible to relate the emergent be-
havior of the neural model to an existing Bayesian model of ran-
domness judgments, specifically whether we could demonstrate
a quantitative connection between the bias for local patterns at
the neural level and the behavior of generating longer random
sequences governed by the rules of Bayesian inference.

Let f(H,T) denote the degree of the belief that a sequence of
coin tosses consisting of H heads and T tails is generated by a fair
coin, where the probability of heads in any single toss is p=1/2.
By Bayes’ theorem, assuming a uniform prior distribution p € [0, 1],
f(H,T) can be formulated as the posterior probability density,

2—(H+T)
f(H>T)= 1
H 1= T
/Op (I-p)'dp 3]
H+T
—»—(H+T)
2 (H+T+1)< o )

. . .. H+T . .
Because of the binomial coefficient ; ), Eq. 3 is maxi-

mized when H=T. That is, governed by the belief function
f(H,T), the optimal solution to generating a random sequence is
to always seek a balance between the numbers of heads and tails
(10). Based on this belief function, Griffiths and Tenenbaum (8)
proposed a Bayesian model of random sequence production.
They first defined a likelihood function, L, to represent the local
representativeness that choosing a head instead of a tail as the
outcome of the kth toss would result in a more random sequence,

k-1

L=y log f(H;i+1,T;)~log f(H;, T +1)
i=1

k-1
Ti+1

i=1 !

[4]

where H; and T; were, respectively, the numbers of heads and
tails counting back i steps in the sequence. Then, with a free
parameter (1) to scale the contribution of L, the probability
of choosing a head at each response (Ry) was obtained by a lo-
gistic function:
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1
T lte

P(R«=H) [51

This Bayesian model was then used to fit a massive database
from the “Zenith radio experiment,” where 20,099 participants
attempted to produce five random binary symbols one at a time
(15). It was found that a A value of around 0.60 produced the
optimal fit to 15 of the 16 data points from the human data
(Fig. 34).

The data point that Griffiths and Tenenbaum (8) did not
predict well was the sequence HTHTH, which was judged by
people to not be a very good random sequence, but Eq. 5 ranked
it highly. It seems that in generating random sequences, people
were seeking a balance not only between the heads and tails but
also between higher-order pattern events (e.g., alternation itself
is repeated four times in HTHTH). We can add this mechanism
into the Bayesian model with an additional term, M,

Mk=1og(g;:), k>3, [6]

where M performs a similar function to that of Ly, except being
based on the numbers of the second-order pattern events, Oy
and Or (either alternation or repetition, depending the choice
at Ry_1).

Applying the same scaling factor A to both Ly and My, Eq. 5§
becomes

1
P(R«=H)= [EpTETAL [71
This augmented model now produces an excellent fit to the full
set of sequence data points (Pearson’s R? ~0.86), with A~ 0.51
as the optimal parameter value (Fig. 34). In addition to im-
proving the prediction on the sequence HTHTH, Eq. 7 also
consistently makes better predictions than Eq. 5 on other data
points, and the same value 1~ 0.51 also produces the best fit to
the partial dataset excluding the sequence HTHTH (Pearson’s
R?~0.89) (Fig. 3B).

The Bayesian model provides a formalization of the repre-
sentativeness heuristic (2, 3, 8, 14). It captures the idea that when
generating random sequences, people are seeking a balance be-
tween heads and tails and between repetitions and alternations
not only in the global sequence, but also in the local subsequences
(10). Apparently, the extent to which this balance is adjusted is
determined by the free scaling parameter 4 in Eqs. 5 and 7. How-
ever, beyond parameter fitting, the Bayesian model does not have
any independent basis for specifying this parameter.

In the light of the neural model’s behavior (i.e., the alternation
bias in Eq. 1), we predict that the scaling parameter A should
have originated naturally from people’s actual experiences of
random sequences in the learning environment. Specifically, we
can deduce from either Eq. 5 or Eq. 7 that 4 actually serves as
a bias-gain parameter that modulates the strength of the alter-
nation bias:

1

4 =P(Ry=T|Ry =H)=———.
pa=PRy=TIRi =H)=1——7

[8]
When 1=0, Eq. 8 produces unbiased responses with the subjec-
tive probability of alternation p4 =1/2, corresponding to the pro-
cess of independent coin tossing; and higher values A > 0 produce
an increasing alternation bias with p/4 > 1/2. In other words, >0
corresponds to the tendency of avoiding repetitions, which
applies to both the first- and second-order events (Eq. 7).
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Fig. 3.

Bayesian models fitting to human data in random sequence production. (A) Probabilities of the generated random sequences, collapsed over the first choice

(e.g., HHHHH is combined with TTTTT). Human data represent the responses of 20,099 participants (15). In the model by Griffiths and Tenenbaum (G&T 2001; ref. 8)
(Eq. 5), the bias-gain parameter 1~ 0.60 was obtained by best fitting the model to 15 of 16 human data points (excluding “HTHTH"). In our augmented model (Eq. 7),
2A~0.51 can be derived from the emergent behavior of the neural model. (B) Best-fitting 1 values for the model by Griffiths and Tenenbaum (8) and the augmented
model, with either the partial or the full dataset. In both datasets, the optimal A value for the augmented model remained the same at 0.51 as predicted by the

neural model.

Then, we are able to show that A can actually be derived from
the behavior of the neural model. Substituting p/ in Eq. 8 with
Eq. 1, 4 can be computed directly by the neural model’s R/A4
ratio (repetitions over alternations):

R
A=-log, T 91

For independent fair coin tossing (i.e., p4=1/2), the neural
model showed R/A=0.7, resulting in A~ 0.51—precisely the
value that optimizes the fit to the human data for the augmented
model (Fig. 3B).

The implication of Eq. 9 is that the naturally emergent properties
of the neural model can in effect provide an independent anchor to
the previously free parameter in the Bayesian model. Specifically, it
shows that the bias-gain parameter A is anchored to the alternation
bias, which has been learned by the neural model through mere
exposure to random sequences of fair coin tossing. Moreover, Eq. 9
is in accord with both the subjective probability of alternation p4
(Eq. 1) and the normative measure of pattern mean time and
waiting time statistics (Eq. 2). Most significantly, the derivation of
the A value demonstrates a quantitative connection between the
implicit learning without instruction and the generalization of the
learned patterns under structured and expressive rules, supporting
a unified perspective on these two different learning mechanisms
(12). This represents a remarkable convergence across multiple
levels of analysis and further bolsters the validity of our un-
derstanding of the nature and origin of the systematic preference
for alternating sequences and against repeating ones.

Conclusion

We find that the latent structure in simple probabilistic sequences
shapes the learning dynamics in a neural model, producing an
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alternative “rational” explanation for what has generally been
considered a curious failure of human probabilistic understanding.
Our findings demonstrate that the waiting time statistics can be
captured implicitly by the learning mechanism of temporal in-
tegration, without instruction, through mere exposure to the input
stimuli. This supports the claim that the human mind might have
evolved an accurate sense of randomness from the learning en-
vironment but may fail to reveal it by the criterion of a particular
measuring device (16). For example, the alternation bias, as a re-
sult of averaging the mean time and waiting time statistics, would
have been judged as “irrational” if it is measured against the mean
time statistics alone.

In addition, our results highlight the connection between the
temporally distributed predictive learning (6, 7, 11, 17) and ab-
stract structured representations (8, 14). The remarkable fit of
the parameters derived from this neural model with a Bayesian
model derived from very different considerations reinforces the
idea that the temporal integration mechanisms in our neural
model provide a good account of human information integration
over time. This ability to bridge between levels of analysis rep-
resents a rare and important development, with the potential to
both ground the abstract models in underlying neural mecha-
nisms and provide a simpler explanatory understanding of the
emergent behavior of the neural models.
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