

The human sex ratio from conception to birth

Steven Hecht Orzack^{a,1}, J. William Stubblefield^a, Viatcheslav R. Akmaev^{b,2}, Pere Colls^c, Santiago Munné^c, Thomas Scholl^{b,3}, David Steinsaltz^d, and James E. Zuckerman^e

^aFresh Pond Research Institute, Cambridge, MA 02140; ^bGenzyme Genetics, Westborough, MA 01581; ^cReprogenetics, Livingston, NJ 07039; ^dOxford University, Oxford OX1 3TG, United Kingdom; and ^eHarvard Medical School and Brigham and Women's Hospital, Boston, MA 02115

Edited by James R. Carey, University of California, Davis, CA, and accepted by the Editorial Board February 24, 2015 (received for review August 27, 2014)

We describe the trajectory of the human sex ratio from conception to birth by analyzing data from (i) 3- to 6-d-old embryos, (ii) induced abortions, (iii) chorionic villus sampling, (iv) amniocentesis, and (v) fetal deaths and live births. Our dataset is the most comprehensive and largest ever assembled to estimate the sex ratio at conception and the sex ratio trajectory and is the first, to our knowledge, to include all of these types of data. Our estimate of the sex ratio at conception is 0.5 (proportion male), which contradicts the common claim that the sex ratio at conception is malebiased. The sex ratio among abnormal embryos is male-biased, and the sex ratio among normal embryos is female-biased. These biases are associated with the abnormal/normal state of the sex chromosomes and of chromosomes 15 and 17. The sex ratio may decrease in the first week or so after conception (due to excess male mortality); it then increases for at least 10-15 wk (due to excess female mortality), levels off after ~20 wk, and declines slowly from 28 to 35 wk (due to excess male mortality). Total female mortality during pregnancy exceeds total male mortality. The unbiased sex ratio at conception, the increase in the sex ratio during the first trimester, and total mortality during pregnancy being greater for females are fundamental insights into early human development.

demography | development | evolution | genetics | sex ratio

The sex ratio at conception in humans is unknown, despite hundreds of years of speculation and research. Investigations of the sex ratio date back at least as far as Graunt (1) who described a net excess of male births (2). By the late 1800s, it was clear that more males than females die during later pregnancy (3). Beyond these facts, the demographic and genetic dynamics of the sex ratio from conception to birth are poorly resolved.

The claim that the conception or primary sex ratio (PSR) is more male-biased than the birth sex ratio appears often in textbooks (4, 5) and in the scientific literature (e.g., refs. 6–11), usually with little or no description of evidence. Estimates of the PSR in these studies are typically 0.56 (proportion males) or greater. Many fewer researchers have claimed that the PSR is unbiased or slightly male-biased (12–16). A handful of researchers has claimed or implied that the PSR is female-biased (17–19) or claimed that the PSR cannot be estimated due to lack of appropriate data and/or methodological problems (20–22).

Previous estimates of the PSR have no meaningful basis in data from the time of conception (or within at least a month of it). At best, the PSR has been estimated via backward extrapolation from data on induced or spontaneous abortions, fetal deaths, or live births; most of the non-live-birth data stems from the second or third trimester of pregnancy. In addition, even if one ignores the fallibility of extrapolation, biased estimates of the PSR based on spontaneous abortions and fetal deaths have usually been regarded as arising from unbiased samples of a population of embryos or fetuses having a biased PSR. The alternative possibility that the estimates arise from biased samples of a population having an unbiased PSR has received little attention. The most likely source of bias is the differential tendency of the two sexes to die during pregnancy, which has long been recognized (see above), although its implications for the estimation of the PSR have usually been ignored.

Here, we estimate the trajectory of the sex ratio from conception to birth by analyzing 3- to 6-d-old embryos derived from assisted reproductive technology (ART) procedures, induced abortions, fetuses that have undergone chorionic villus sampling (CVS) or amniocentesis, and US census records of fetal deaths and live births. Our assemblage of data is the most comprehensive and largest ever assembled to estimate the PSR and the sex ratio trajectory and is the first, to our knowledge, to include all of these types of data.

Materials and Methods

We measured gestation time as elapsed time since conception (syngamy) or conception age (CA). CA estimates were inferred from the date of the last menstrual period (LMP) or the clinical estimate (based on an ultrasound scan or the assessment of the birth attendant) by subtracting 2 wk from the original estimate. This approximation captures the central tendency of the distribution of days since the date of conception; the modal time is 15 d, and more than 50% of conceptions are estimated to occur between 12 and 16 d after LMP (23).

We defined the cohort sex ratio (CSR) at a given CA as the sex ratio of the cohort of embryos (fetuses) inside mothers. CSR is directly calculated from amniocentesis, CVS, and induced-abortion data and inferred from ART and fetal-death and live-birth data. By definition, the PSR is equal to the CSR at conception. We further defined the abnormal CSR and the normal CSR as the cohort sex ratio of embryos (fetuses) that were karyotypically abnormal and karyotypically normal, respectively.

We analyzed five kinds of data.

Three- to 6-d-Old Embryos. We used FISH or array comparative genomic hybridization (aCGH) to karyotype embryos. See ref. 24 for an overview of FISH and refs. 25 and 26 for reviews of its use for karyotypic assessment. FISH may

Significance

The human sex ratio has long interested cell biologists, developmental biologists, demographers, epidemiologists, evolutionary biologists, gynecologists, and statisticians. Nonetheless, the trajectory of the human sex ratio from conception to birth has been poorly characterized. We present the most comprehensive analysis of this trajectory ever done. Our dataset is the largest ever assembled to estimate the sex ratio at conception and is the first, to our knowledge, to include data from 3- to- 6-d-old embryos, induced abortions, chorionic villus sampling, amniocentesis, and fetal deaths and live births. Our results indicate that the sex ratio at conception is unbiased, the proportion of males increases during the first trimester, and total female mortality during pregnancy exceeds total male mortality; these are fundamental insights into early human development.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission. J.R.C. is a guest editor invited by the Editorial Board.

Freely available online through the PNAS open access option.

See Commentary on page 4839

¹To whom correspondence should be addressed. Email: orzack@freshpond.org.

²Present address: Berg, Framingham, MA 01701.

³Present address: Beckman Coulter, Danvers, MA 01923.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. 1073/pnas.1416546112/-/DCSupplemental.

Author contributions: S.H.O., J.W.S., S.M., and J.E.Z. designed research; S.H.O., J.W.S., P.C., S.M., and D.S. performed research; V.R.A., P.C., S.M., and T.S. contributed new reagents/ analytic tools; S.H.O. and D.S. analyzed data; and S.H.O. wrote the paper.

PNAS PLUS

The model stratified with karyotypic state (Abnormal and Normal) had substantially more support than a model without stratification (Any); the ER for the stratified and unstratified models is greater than 1,000 ($\geq 0.999/<0.001$). The abnormal CSR estimate is 0.508 (95% CI: 0.505–0.512), and the normal CSR estimate is 0.493 (95% CI: 0.488–0.497). These estimates suggest that very early development is more hazardous for males than for females. Nature's filter against abnormalities such as

suggest that very early development is more hazardous for males than for females. Nature's filter against abnormalities such as aneuploidy must be similar to our filter because the frequency of such abnormalities among newborns is 1% at most. This frequency implies that most abnormalities cause embryonic death [although embryos may self-correct (44)]; the timing of mortality may be such that the CSR is temporarily female-biased soon after conception.

in the set of models considered (37-39).] One can also assume that the simplest

model among those considered is a true null hypothesis and estimate the

probability that a \triangle AIC value could have arisen via random sampling (40–43).

Critical values of \triangle AIC depend on the difference, k, in the number of model

parameters between the null and alternative hypotheses (43). For example, for

k = 5 (all model comparisons in Tables 1-4 and Tables S3-S5), critical values for

 Δ AIC are 1.07 (α = 0.05), 5.09 (α = 0.01), 6.75 (α = 0.005), and 10.52 (α = 0.001).

Model comparisons here differ in k, but the critical value of \triangle AIC for $\alpha = 0.05$ is

at most 1.84 and for α = 0.01 it is at most 5.34. In all tables, N denotes

Analysis of ART Data. We assigned random effects to women and

to procedures within women and treated karyotypic state as

the CSR estimate of 0.502 (95% CI: 0.499-0.505) suggests that

the PSR is unbiased or slightly male-biased. This estimate derives

from the largest amount of data ever assembled from a known

time close to conception; an estimate closer to conception is likely

We first estimated the PSR. For all embryos (Any) in Table 1,

sample size.

Results

a factor.

impossible.

We assessed if CSR estimates depended on whether one cell or more than one cell was scored (Table 2) because it is possible that mosaic embryos were falsely scored as normal because abnormal cells were not scored; only FISH data were analyzed (few aCGH analyses involved more than one cell). Most had one cell (90,580 embryos) or two cells (2,567 embryos) scored. The CSR estimates based on one cell qualitatively match those based on more than one cell. When one cell was scored, the stratified model had greater support. When multiple cells were scored, the nonstratified and stratified models had similar support; this is likely due to a small sample size. These results suggest that the false scoring of abnormal embryos as normal has little influence on our observation that the normal CSR is female-biased (Table 1).

We assessed the association of each target chromosome and the CSR in two ways. In the first, the embryo could be normal or abnormal for any other chromosome (Table 3); FISH and aCGH data are presented separately. Estimates of the CSR for FISH and aCGH based on any chromosome are 0.503 (95% CI: 0.500– 0.507, n = 94,535) and 0.500 (95% CI: 0.495–0.505, n = 45,169), respectively. The CSR estimate "all" is ~0.500 for each target chromosome assayed by FISH. This similarity suggests that the embryos chosen for analysis of a given target chromosome were chosen randomly from the assemblage. (There is only one CSR

Table 1. Mixed-effect analyses of the association between the karyotypic state of all ART embryos and the CSR

Scoring	Embryos	CSR	Ν	ΔAIC	Akaike weight
Any	All Abnormal Normal	0.502 0.508 0.493	139,704 84,881 54 823	22.870 0	<0.001 >0.999
	Norma	0.155	51,025		

Scoring denotes the chromosomes used to assess karyotypic state. Any denotes assessment based on any number of chromosomes scored (between 2 and 23).

overestimate the incidence of aneuploidy (27). There is no indication that this would influence sex ratio estimates. Chromosomes X, Y, 8, 9, 13, 14, 15, 16, 17, 18, 20, 21, and 22 were scored. The number of chromosomes scored for a given embryo ranged from 2 (X and Y) to 13. The FISH probes are shown in the *SI Text*. Embryos analyzed by FISH were at least 3 d old and were at the blastomere stage; almost all were 3 d old. See refs. 28 and 29 for an overview of aCGH. All chromosomes were scored. Embryos analyzed by aCGH were between 3 and 6 d old; ~30% were 3 d old (blastomere stage), with most of the remainder being 5 d old (blastocyst stage). FISH and aCGH produce functionally equivalent screens of karyotypic abnormality (30); further cross-validation is needed.

Most embryos had one cell analyzed; results for embryos with multiple cells analyzed are aggregated over the cells. Embryos analyzed by FISH included all submitted for analysis, even if developmentally arrested by day 3. Embryos analyzed by aCGH included only those that were not arrested at the time of sampling (days 3–6).

An embryo was scored as a male if it had a Y chromosome in at least one cell and as a female if it had no Y chromosome and at least two X chromosomes. An embryo was scored as normal if cells were identically XX or XY and had exactly two copies of each autosome scored. Other sexable karyotypes were scored as abnormal. There were 139,704 sexable embryos (94,535 FISH and 45,169 aCGH).

Induced Abortions. To our knowledge, there are only 41 studies of the sex of fetuses from induced abortion (*SI Text*); these data have never before been assembled and analyzed. It is almost certain that all fetuses were naturally conceived (most analyses were published before 1978, when ART was introduced) and virtually all were sampled randomly with respect to fetal health and sex. The methods used to assign sex were histology (1 study), karyotype (20 studies), morphology (3 studies), and sex chromatin (17 studies). Thirty-nine studies specify trimester for each fetus; of these, 12 studies provide data allowing a CSR estimate for trimester 1 and for trimester 2. Twenty-four studies specify gestational age in weeks.

CVS. The procedures used to process and assess each sample are shown in *SI Text*. The use of CVS is reviewed in refs. 31 and 32.

The CVS data provided estimates of the CSR from 6 to 25 wk CA. In our analysis of the relationship between CSR and CA, we used data from 6 to 12 wk (97% of the sample) to avoid possible overrepresentation of troubled pregnancies. In almost all cases, CA estimates were based on the LMP.

Amniocentesis. The procedures used to process and assess each sample were identical to those for CVS (*SI Text*). The use of amniocentesis is reviewed in refs. 31 and 32.

The amniocentesis data provided estimates of the CSR from 10 to 39 wk CA. In our analysis of the relationship between CSR and CA, we used data from 10 to 20 wk (96% of the sample) to avoid possible overrepresentation of troubled pregnancies and because the cohort of fetuses is increasingly influenced by birth after 24 wk (so that mortality is not the sole influence on the CSR). In almost all cases, CA estimates were based on the LMP.

Our ART, CVS, and amniocentesis data were based on similar criteria for scoring karyotypes and therefore provide comparable insights into the CSR from the beginning of pregnancy to the end.

Fetal Deaths and Live Births. We created a dataset containing sex and CA for all US fetal deaths and live births for 1995–2004 using data from www.cdc. gov/nchs/data_access/Vitalstatsonline.htm. Reporting is poor before 18 wk CA, and it is nearly complete only after 25 wk (33). We included CA estimates derived from the LMP and from the clinical estimate. We omitted records with imputed sex or gestational age (*SI Text*).

Statistical Approach. We estimated sex ratios using mixed-effect analyses (34) or fixed-effect analyses on the logit scale. All model comparisons involved nested models. We provide two ways of assessing a given model comparison. First, we present the absolute difference (Δ AlC) between the model with lowest Akaike information criterion (AlC) value and the other model(s). A Δ AlC value of 2 or more is often taken to indicate that two models differ in their level of support (35, pp. 70–71). Second, we present the Akaike weight for each model. The evidence ratio (ER) for a pair of models is the ratio of their model likelihoods. An ER between 100 and 1,000 denotes strong support for the model with the larger weight (36). [An Akaike weight is also controversially interpreted as an approximate Bayesian posterior probability that the model is true given the assumption that the true model is contained

SOCIAL SCIENCES

Table 2. Mixed-effect analyses of the association between the karyotypic state of ART embryos analyzed by FISH and the CSR when one cell was scored and when more than one cell was scored

Number of cells scored	Embryos	CSR	N	ΔΑΙΟ	Akaike weight
1	All	0.503	90,580	27.107	<0.001
	Abnormal	0.511	56,354	0	>0.999
	Normal	0.491	34,226		
>1	All	0.502	3,955	0	0.731
	Abnormal	0.513	3,170	2.374	0.269
	Normal	0.458	785		

estimate "all" for the aCGH analyses because the same embryos provided all of the target chromosome estimates.)

As noted, the FISH sample included arrested and nonarrested embryos and the aCGH sample contained only nonarrested embryos (most had undergone blastocyst formation). Comparison of the two samples provides insight into the early association between chromosome abnormality and the attainment of a critical developmental milestone.

For the FISH sample, there was greater support for the nonstratified model for all but three of the chromosomes, which suggests that there is no sex bias in the expression of abnormality for most chromosomes. For XY, 15, and 17, there was greater support for the stratified model. The ER is ~140 for chromosome 17 and is >1,000 for XY and for chromosome 15. Thus, there is strong to very strong support for a sex bias in the abnormality of these chromosomes. For these cases, the abnormal CSR estimate is male-biased and the normal CSR estimate is female-biased. Note that the abnormal CSR estimate (0.589) for the embryos with abnormal sex chromosomes (XY) is biased upward because XO embryos are not included (*Discussion*).

For the aCGH sample, there was greater support for the nonstratified model for all but 4 of the 23 chromosomes, which suggests that there is no sex bias in the expression of abnormality for most chromosomes. For chromosomes 5 and 22, there was marginally greater support for the stratified model. The ER is ~ 2 for both. For chromosomes XY and 7, there is moderate to very strong support for a sex bias of abnormality. The ER is >1,000 for XY and is ~9 for chromosome 7. As noted above, the abnormal CSR estimate (0.840) for the embryos with abnormal sex chromosome is biased upward. The abnormal CSR estimate for chromosome 7 is female-biased.

The male bias among FISH embryos abnormal for chromosome 15 (0.518) and for 17 (0.517) and the female bias among abnormal aCGH embryos (15: 0.490; 17: 0.480) are consistent with excess death of male embryos before the time of blastocyst formation. We lack data on chromosome 7 among FISH embryos, but the support for the stratified model among aCGH embryos suggests that this chromosome may also play an important role in blastocyst formation.

In the second way we assessed the association of each target chromosome and the CSR, all scored chromosomes were normal except the target chromosome, which could be normal or abnormal (SI Text). This analysis allowed us to assess whether the association between the state of a target chromosome and the CSR was a consequence of the target chromosome by itself or of an ensemble of chromosomes (in which only the target chromosome has a known state). There are relatively few embryos that are abnormal for just one chromosome. Only the analysis for XY suggests substantially greater support for the stratified model. For chromosome 15, the abnormal CSR estimate is female-biased compared with the normal CSR estimate, which is reversed compared with when other chromosomes could be normal or abnormal; reasons for this other than reduced sample size are unclear. For chromosome 17, the abnormal CSR estimate is male-biased compared with the normal CSF estimate, which is the same as when other chromosomes were normal or abnormal.

Taken together, these results indicate that abnormalities occur more frequently in male embryos than in female embryos and suggest that the female bias of the normal CSR estimate (0.493; Table 1) is associated with abnormality of just a few autosomes. However, the role of each of these autosomes by itself is ambiguous. See *Discussion* for the possible cause of the association of chromosome 15 and the abnormal CSR. The decrease in the abnormal CSR estimate pre- and postarrest (Table 3; Any: 0.511 vs. 0.502) is consistent with embryonic mortality before blastocyst formation being male-biased. The normal CSR estimate is femalebiased, which implies that the CSR may temporarily become female-biased due to the death of karyotypically abnormal embryos.

There were differences among chromosomes in frequency of abnormalities. The frequency of karyotypic abnormality is greater in the FISH sample compared with the aCGH sample, the likely reason being that most abnormalities are incompatible with continuing development. The average frequency of abnormality for FISH is 25.39% (low: 17.22% for XY, high: 31.31% for chromosome 22), and for CGH, it is 6.94% (low: 4.15% for XY, high: 11.48% for chromosome 16). There is significant heterogeneity among chromosomes for frequency of abnormality (FISH: $\chi^2 = 7,679.748, 11 \text{ df}, P \ll 0.001$; CGH: $\chi^2 = 6,193.179, 22 \text{ df}, P \ll 0.001$). (There is also significant heterogeneity when the sex chromosomes are omitted; as noted, their frequency of abnormality is underestimated.) These statistical tests have the probably incorrect assumption that abnormality for a chromosomes.

Additional analyses of the association between karyotype and the CSR are shown in *SI Text* (blastomere aCGH data vs. blastocyst aCGH data and blastomere FISH data vs. blastocyst aCGH data).

We analyzed maternal age (MA) as a metric predictor of the CSR (Table 4). The model without age has strong support (ER \sim 33), which suggests that there is no association between the CSR and maternal age; most studies indicate that maternal age has little or no influence on the sex ratio at birth (45–46).

Analysis of limited data (n = 819) suggested that there is no association between mother's race and the CSR. We compared an overall model, a model stratified between black and nonblack mothers, and a model stratified between white and nonwhite mothers. The overall model had substantially greater support than either stratified model.

Analysis of Induced-Abortion Data. We assessed the effect of trimester on the CSR by using a mixed-effect analysis in which random effects were assigned to each study (Table 5); we analyzed only the data from the 12 studies that each provided a first and second trimester estimate. We did not distinguish between diagnostic methods or between abnormal and normal sex ratios because karyotypic information for aborted fetuses is limited. The stratified model had greater support (ER ~ 10.6). The associated estimates suggest that the CSR increases with trimester (first: 0.511 vs. second: 0.559). This increase is consistent with greater net female mortality during the first and second trimesters (see below).

We also assessed the relationship between the CSR and CA by using a mixed-effect logistic regression analysis in which random effects were assigned to each study. The sole study based on histology was omitted because it contained fetuses of a single age. Fourteen of the remaining 23 studies present a several-week range of CA for some or all fetuses. We fit separate models for the early CA estimates and for the late estimates. A model with no influence of CA as a metric predictor had the most support. In keeping with the increased CSR estimate in the second trimester compared with the first trimester (see above), we present the CSR estimates based on the early CA estimates are qualitative identical). The model with most support was diagnostic method specific (ER \sim 39). We focus on the chromatin and karyotype

		FISH			aCGH				
Chromosome	Embryos	CSR	Ν	ΔAIC	Akaike weight	CSR	Ν	ΔAIC	Akaike weight
Any	All	0.503	94,535	31.275	<0.001	0.500	45,169	0	0.953
	Abnormal	0.511	59,524	0	>0.999	0.502	24,357	6.004	0.047
	Normal	0.490	35,011			0.498	19,812		
XY	All	0.503	94,535	533.156	<0.001	0.500	45,169	850.311	<0.001
	Abnormal	0.589	16,282	0	>0.999	0.840	1,874	0	>0.999
	Normal	0.486	78,253			0.486	43,295		
1	All	—	—	—	_	0.500	45,169	0	0.942
	Abnormal	_	_	_	_	0.481	2,972	5.571	0.058
	Normal	_	_	_	_	0.502	42,197		
2	All	—	—	—	—	0.500	45,169	0	0.784
	Abnormal	—	—	_	_	0.478	2,856	2.579	0.216
	Normal	—	—	—	—	0.502	42,313		
3	All	_	_	—	—	0.500	45,169	0	0.982
	Abnormal	_	_	_	_	0.486	2,255	7.898	0.018
	Normal	_	_	_	_	0.501	42,914		
4	All	_	_	_	_	0.500	45,169	0	0.948
	Abnormal	_	_	_	_	0.484	2,459	5.704	0.052
	Normal	_	_	_	_	0.501	42,710		
5	All	_	_	_	_	0.500	45,169	1.460	0.325
	Abnormal	_	_	_	_	0.468	2,547	0	0.675
	Normal	_	_	_	_	0.502	42.622	C C	0107.0
6	All	_	_	_	_	0 500	45 169	0	0 959
•	Abnormal	_	_	_	_	0.483	2 365	6 300	0.041
	Normal	_	_	_		0.501	42 804	0.500	0.011
7		_	_	_		0.501	15169	4 400	0 100
1	Abnormal					0.300	2 637	4.400	0.100
	Normal					0.400	12,007	Ū	0.500
•	All	0 505	22 112		0.084	0.502	42,552	0	0 002
0	All	0.505	4 1 1 0	0	0.964	0.500	45,109	0 8 102	0.965
	Normal	0.505	4,119	0.274	0.010	0.400	2,030 12 521	0.102	0.017
0	All	0.500	2 6 7 9	0	0.047	0.501	42,551	0	0.945
9	All	0.524	3,070 655	U E 700	0.947	0.500	45,109	0 2 204	0.645
	Abnormal	0.510	CC0 CC0 C	5.760	0.055	0.470	42 150	5.594	0.155
10	Normai	0.526	5,025			0.502	42,159	0	0.051
10	All	_	_			0.500	45,109	U E 020	0.951
	Abnormai	_	_			0.401	2,005	5.950	0.049
11	Normai	_	_	_	—	0.501	42,480	0	0.062
11	All	_	_			0.500	45,109	0	0.962
	Abnormal	_	_	_	_	0.484	2,748	6.438	0.038
42	Normai	_	_	_	—	0.501	42,421	0	0.070
12	All	_	_	_	—	0.500	45,169	0	0.978
	Abnormal	_	_	_	—	0.486	2,360	7.583	0.022
	Normal		_	_	_	0.501	42,809		
13	All	0.503	89,263	0	0.976	0.500	45,169	0	0.936
	Abnormal	0.505	23,598	12.075	0.024	0.482	3,133	5.361	0.064
	Normal	0.503	65,665			0.502	42,036		
14	All	0.503	18,378	0	0.992	0.500	45,169	0	0.936
	Abnormal	0.500	4,727	9.542	0.008	0.485	3,078	5.366	0.064
	Normal	0.504	13,651			0.501	42,091		
15	All	0.500	78,437	42.555	<0.001	0.500	45,169	0	0.963
	Abnormal	0.518	24,120	0	>0.999	0.490	4,209	6.512	0.037
	Normal	0.492	54,317			0.501	40,960		
16	All	0.504	79,589	0	0.881	0.500	45,169	0	0.990
	Abnormal	0.508	24,097	7.213	0.119	0.497	5,187	9.164	0.010
	Normal	0.502	55,492			0.501	39,982		
17	All	0.502	76,327	9.821	0.007	0.500	45,169	0	0.889
	Abnormal	0.517	18,489	0	0.993	0.480	2,755	4.154	0.111
	Normal	0.498	57,838			0.502	42,414		
18	All	0.503	88,607	0	0.796	0.500	45,169	0	0.927
	Abnormal	0.510	23,587	2.717	0.204	0.481	3,168	5.080	0.073
	Normal	0.500	65,020			0.502	42,001		

Table 3.	Mixed-effect analyses of the association between the overall state of the embryo (Any) or the state of
individua	I chromosomes and the CSR

PNAS PLUS

			FISH			aCGH			
Chromosome	Embryos	CSR	N	ΔΑΙΟ	Akaike weight	CSR	Ν	ΔΑΙΟ	Akaike weight
19	All	_	_	_		0.500	45,169	0	0.995
	Abnormal	_	_	_	—	0.492	4,499	10.459	0.005
	Normal	_	_	_	_	0.501	40,670		
20	All	0.502	17,866	0	0.969	0.500	45,169	0	0.975
	Abnormal	0.497	4,896	6.910	0.031	0.486	3,213	7.332	0.025
	Normal	0.504	12,970			0.501	41,956		
21	All	0.503	89,669	0	0.973	0.500	45,169	0	0.987
	Abnormal	0.510	25,434	7.151	0.027	0.496	4,362	8.624	0.013
	Normal	0.500	64,235			0.501	40,807		
22	All	0.504	80,548	0	0.992	0.500	45,169	1.441	0.327
	Abnormal	0.503	25,218	9.567	0.008	0.480	5,098	0	0.673
	Normal	0.504	55,330			0.503	40,071		

studies because the diagnosis of sex from morphology likely overestimates the CSR, especially in early pregnancy (47, 48), due to the difficulty of distinguishing between female and male genitalia of early fetuses. We regard the chromatin estimate and especially the karyotype estimate as much more accurate; for these, CSR increases with CA (Fig. 1), which is consistent with greater net mortality for female fetuses during the first two trimesters. The male bias of the chromatin trend compared with the karyotype trend is consistent with the claim that the former method overestimates the CSR because female cells with poor staining of the Barr body are falsely classified as male.

Analysis of CVS Data. We assessed whether the abnormal and the normal CSR differed by using a fixed-effect analysis because there was only one sample per mother (Table 7). The stratified and unstratified models have similar support (ER \sim 1.61). The CSR is more male-biased (0.514) compared with the CSR among embryos (0.502; Table 1). Approximately 9% of fetuses were abnormal during this period compared with ~61% among embryos (Table 1).

We also used a fixed-effect regression analysis to assess the relationship between the CSR and CA (Table 8). The model without CA as predictor has greater support (ER ~ 8.52); this model indicates that the CSR increases between 6 and 12 wk (Fig. 2).

Analysis of Amniocentesis Data. We assessed whether the abnormal and the normal CSR differed by using a fixed-effect analysis because there was only one sample per mother (Table 9). The stratified model has much greater support (ER > 1,000), which suggests that the abnormal and normal CSRs are distinct. The CSR is less male-biased (0.506) compared with the CSR among CVS fetuses (0.514). Approximately 3.5% of embryos are abnormal; the abnormal CSR estimate is male-biased.

We also used a fixed-effect regression analysis to assess the relationship between the CSR and CA (Table 10). The model with CA as predictor has much greater support (ER > 1,000); this model indicates that the CSR increases between 10 and 20 wk (Fig. 3).

There could be an overrepresentation of females among the fetuses undergoing amniocentesis, especially among early procedures, because there is a higher false-positive rate among females in tests for chromosome 21 aneuploidy based on maternal serum

Table 4. Mixed-effect analyses of the association between MAand the CSR, as estimated from ART embryos analyzed by FISH

Model	Fitted model	ΔAIC	Akaike weight
	Logit(CSR) = 0.012	0	0.971
I + MA	Logit(CSR) = -0.075 + 0.002MA	7.043	0.029

I denotes intercept. n = 92,037.

levels of α -fetoprotein (AFP) and free β -human CG (β -hCG) (49). Such a bias could generate an increasing relationship between the CSR and CA. The CSR of screened pregnancies in our sample is less male-biased than for unscreened pregnancies. However, the CSR increases between 10 and 20 wk for screened pregnancies and for unscreened pregnancies. We conclude that maternal screening does not distort our qualitative understanding of the CSR.

Analysis of Fetal-Death and Live-Birth Data. Karyotypic information for fetuses and babies is very limited. We did not distinguish between the abnormal CSR and the normal CSR. The CSR declines markedly after 35 wk CA (Fig. 4) due to the tendency of males to be born earlier. The birth sex ratio can be viewed as an admixture of an earlier male-biased wave followed by a female-biased wave. This shift is no fluke of sampling; there were 17,309,547 births and fetal deaths during weeks 35–37 and 14,010,729 thereafter.

The trend of the CSR estimates when CA is based on the clinical estimate is virtually identical to that shown in Fig. 4 up to 33 wk. The CSR then declines until week 38, but it never becomes female-biased. The estimates for later CAs are very variable, perhaps because there are many fewer pregnancies with late clinical estimates, especially those greater than or equal to 41 wk (clinical: n = 27,567; LMP: n = 1,309,690). We do not view the greater stability of late LMP-based CSR estimates as a reason to prefer this dating method; we urge further research to resolve the controversy over dating methods (50–52).

Discussion

Analysis of ART Embryos. Sex-biased mortality may have occurred before assay, although this is unlikely. Such mortality could be caused by disrupted expression of maternally inherited mRNA or of RNA synthesized by the embryo. The ART embryos had at least eight cells when assayed. Some gene expression starts at the one-cell stage, and some X- or Y-linked loci are expressed before the eight-cell stage (53–58); embryonic genome activation is reviewed by refs. 59 and 60. It is implausible that any such differential mortality just happens to produce an assemblage of embryos whose CSR is statistically coincident with 0.5, a value expected given unbiased segregation of sex chromosomes during spermatogenesis and unbiased fertilization. An exact a posteriori

Table 5. Mixed-effect analyses of the influence of trimester onthe CSR estimated from induced-abortion data

Sample of fetuses	CSR	Ν	ΔAIC	Akaike weight
All with known trimester	0.524	4,999	4.737	0.086
First trimester	0.511	3,392	0	0.914
Second trimester	0.559	1,607		

Model	Fitted model	Ν	ΔΑΙΟ	Akaike weight
I + CA	$Logit(CSR) = 0.063 + 0.006CA_{early}$	14,839	7.322	0.025
I + CA method-specific	$Logit(CSR)_{C} = 0.086 + 0.005CA_{early}$	8,373	0	0.975
	$Logit(CSR)_{K} = -0.157 + 0.013CA_{early}$	4,872		
	$Logit(CSR)_{M} = 0.852 - 0.044CA_{early}$	1,594		

I denotes intercept, _c denotes chromatin, _K denotes karyotype, and _M denotes morphology. _{early} denotes analyses based on early conception ages (see text).

power calculation provides additional insight. Assume that the (false) null hypothesis is that the CSR is 0.5 and that the (true) alternative hypothesis is that the CSR is, say, 0.505. For n = 139,704, when $\alpha = 0.05$, there is an ~59% statistical power to reject the false hypothesis that the CSR is 0.5. If the true CSR is 0.510, there is an ~98% power to reject the false hypothesis.

abortion data

There are nine reasons why ART embryos provide a meaningful estimate of the CSR and why our unbiased estimate of the PSR is plausible; we list them in rough order of their importance. Details are provided in *SI Text*.

- *i*) The birth sex ratio of babies conceived via ART matches the birth sex ratio of babies conceived naturally.
- *ii*) The birth sex ratio for ART with in vivo conception and the birth sex ratio for ART with in vitro conception appear to be identical.
- iii) Our estimate of the PSR matches the value expected given unbiased segregation of sex chromosomes during spermatogenesis and unbiased fertilization.
- *iv*) Analyses of data from other species do not provide conclusive evidence that the mammalian PSR is male-biased.
- v) The method of in vitro conception does not appear to influence the ART estimate of the CSR.
- *vi*) A high proportion of early naturally conceived embryos may be abnormal (as in our ART sample).
- vii) Typical methods for collection and preparation of gametes appear to have little or no influence on the ART birth sex ratio.
- viii) The average age difference between women who use ART and women who conceive naturally does not imply that ART embryos are unsuitable as a basis for an estimate of the PSR.
- *ix*) Ionic strength, pH, and temperature during fertilization and early development vary across ART protocols but are not grossly different from in vivo conditions as far as they are known.

Fig. 1. The relationship between conception age and cohort sex ratio estimated from induced-abortion data. Observed sex ratios and estimated regression for chromatin (\bullet) and for karyotype (\bigcirc) data (Table 6). A dashed line denotes a sex ratio of 0.5.

Analysis of XO Embryos. ART embryos with one X chromosome and no Y chromosome (XO) were not included in our CSR estimate because their sex is ambiguous; the many fewer YO embryos were included. Each XO embryo may never have had a maternal and a paternal sex chromosome or it may have lost one. The latter kind of embryo should contribute to a CSR estimate. We calculated their potential influence on the CSR estimate derived from the FISH analyses as follows. The percentage of XO embryos having a maternal X chromosome may be similar to the live-born frequency, which is at least 75% (61) [there is only one study of XO embryos known to us; all had a maternal X chromosome, n = 10]. If true and XO embryos had equal probabilities of resulting from X- and Y-bearing sperm, one expects that 62.5% of XO embryos were female (XX) and 37.5% were male (XY). There were 11,372 XO samples in our ART sample. The argument above implies that there are more "hidden" females (at most 7,107.5) than hidden males (at most 4,264.5). Accordingly, any correction for the missing embryos will leave unchanged or reduce the CSR estimate. For example, if h is the proportion of hidden zygotes in the XO sample, when h = 0 (no hidden zygotes), the CSR estimate is 0.502 [=70,171/ (70,171 + 69,533)], which is the CSR estimate in Table 1. When h = 0.5, the CSR estimate is 0.497 {=[70,171 + 0.5(4,264.5)]/ [70,171 + 69,533 + 0.5(11,372)]. When h = 1.0, the CSR estimate is 0.493 = (70,171 + 4,264.5)/(70,171 + 69,533 + 11,372). We believe that the value of h for our sample is closer to 1.0 than to 0.0; most XO embryos had two copies of at least several chromosomes. No matter what the value of h, these estimates demonstrate that inclusion of hidden zygotes from among the XO sample does not generate a male bias in the CSR estimate.

This argument implies that our abnormal CSR estimate in Table 1 (0.508, n = 84,881) is based on a sample from which abnormal females were 66% (=62.5/37.5) more likely than abnormal males to be excluded. When h = 0, the abnormal CSR estimate is 0.508 [=43,144/(43,144 + 41,737)], which is the estimate in Table 1. When h = 0.5, the abnormal estimate is 0.500 {=[43,144 + 0.5(0.375)(11,372)]/[43,144 + 0.5(0.375)(11,372) + 41,737 + 0.5(0.625)(11,372)]/[43,144 + (0.375)(11,372) + 41,737 + (0.625)(11,372)]/[43,144 + (0.375)(11,372) + 41,737 + (0.625)(11,372)]]. When h = 1.0, the estimate is 0.493 {=[43,144 + (0.375)(11,372)]/[43,144 + (0.375)(11,372) + 41,737 + (0.625)(11,372)]]. The normal CSR estimate remains female-biased (0.493 in Table 1). None of the corrections of the CSR or of the abnormal CSR suggest that there is a substantial male bias of the PSR or of the CSR during early pregnancy.

Possible Causes of the Influence of Specific Chromosomes. The association between CSR estimates and the state of the sex chromosomes and of chromosome 15 (Table 3, FISH) may be caused by entanglement of the bivalents of the Y chromosome

Table 7. Fixed-effect analyses of the influence of karyotypicstate on the CSR estimated from CVS data

Fetuses	CSR	Ν	ΔΑΙΟ	Akaike weight
All	0.514	61,769	0	0.617
Abnormal	0.521	5,481	0.956	0.383
Normal	0.513	56,288		

Table 8. Fixed-effect analyses of the influence of CA on the CSR estimated from CVS data

Model	Fitted model	ΔAIC	Akaike weight
l l + CA	Logit(CSR) = 0.053 Logit(CSR) = -0.218 + 0.023CA	4.294 0	0.105 0.895

I denotes intercept. n = 60,081.

and those of chromosome 15 at the pachytene stage of meiosis I. There is sequence homology between repetitive DNA in the heterochromatin of chromosome 15 and the heterochromatin of the q arm of the Y chromosome (62, 63). Such homology likely generates a physical association between the sex vesicle or "XY body" (64, 65) and the short arm of chromosome 15; physical association likely also occurs during metaphase (66). Sequence homology between repetitive DNA in chromosome 15 (and the other acrocentric chromosomes: 13, 14, 21, and 22) and in the X chromosome may also help generate a physical association (67); this may cause the excess of translocations involving the X chromosome and chromosomes 15, 21, and 22 (68). Entanglement may underlie the susceptibility of chromosome 15 to karyotypic abnormalities (69).

Karyotypic abnormalities generated in spermatogenesis, although rarer than those generated during oogenesis, may have a special influence on early development (70). Chromosomes 7 (Table 3, aCGH) and 17 (Table 3, FISH) may also exhibit this influence, although we lack possible causal explanations at the molecular level. Abnormality involving chromosome 7 (uniparental disomy that may disrupt imprinting; polysomy) is known or suspected to be associated with male-biased pathology after birth (71, 72), but the association of this chromosome with sex-specific prenatal morbidity and mortality appears not to have been investigated. An association between the Y chromosome and disomy for chromosome 21 has been described in sperm by ref. 73, although its cause is unknown (74, 75). This association is consistent with the decrease in the male bias of the abnormal CSR estimate for chromosome 21 (Table 3, FISH: 0.510 vs. aCGH: 0.496), although there is equivocal support for either stratified model. The apparent lack of influence of the state of chromosomes 13 and 18 on the CSR suggests that sex ratio biases among newborns aneuploid for these chromosomes are due to mortality during later development, as suggested by refs. 76 and 77.

Our assessments of the association between specific chromosomes and the abnormal and normal CSR estimates are based on Akaike weights (Table 3). For the FISH data, these assessments are identical to those based on adjusted *P* values derived from the change in deviance between nonstratified and stratified models [adjustments were based on a Bonferroni correction that

Fig. 2. The relationship between conception age and cohort sex ratio estimated from CVS data. Observed cohort sex ratio (with 95% confidence limits) and the estimated regression (Table 8). Fractional ages are rounded to the nearest integer. A dashed line denotes a sex ratio of 0.5.

Table 9. Fixed-effect analyses of the influence of karyotypic state on the CSR estimated from amniocentesis data

Fetuses	CSR	Ν	ΔAIC	Akaike weight
All Abnormal Normal	0.506 0.523 0.505	839,590 36,833 802,757	44.814 0	<0.001 >0.999

controls in the weak sense the familywise type 1 error rate at 0.05 or on a correction that controls the false-discovery rate (78, 79) at 0.05]. For the aCGH data, Akaike weights, a Bonferroni correction, and a correction of the false discovery rate underwrite identical conclusions for all chromosomes except chromosome 7 (Δ AIC = 4.400, $P_{\text{Bonferroni}} = 0.305$, $P_{\text{False-discovery-rate}} = 0.152$).

Analysis of Induced-Abortion Data. Our analysis suggests that femalebiased mortality causes the CSR to increase between 2 and 20 wk CA. This increase is consistent with the inference from the ART analysis that the early CSR could be female-biased. Inducedabortion studies reporting female-biased first-trimester CSR estimates appear to be carefully done (17, 80–85). In addition, refs. 48 and 86–88 described female-biased CSRs for first trimester spontaneous abortions, but see ref. 89.

Analysis of CVS Data. Our analysis suggests that the CSR is femalebiased early in pregnancy and that female-biased mortality causes it to increase between 6 and 12 wk CA.

Analysis of Amniocentesis Data. Our analysis suggests that the CSR increases between 10 and 20 wk due to female-biased mortality and that it surpasses 0.5 at ~15 wk CA.

Analysis of Fetal-Death and Live-Birth Data. Male-biased mortality during the second half of the second trimester and during the third trimester has little influence on the CSR (Fig. 4); the small size of this influence appears to be underappreciated.

The biphasic nature of the sex ratio of births (Fig. 4) has not been investigated thoroughly (90–92), although it has important implications for how to define a "premature" birth. One proximate cause of the sex ratio change may be that males typically attain a critical fetal weight earlier than do females (the average weight of newborn males is ~100 g greater than females in the US data). Birth initiation is discussed in refs. 93 and 94.

James claimed that there is "a [positive] association of male births with long gestations" (95, p. 264) and that there is an "excess of males among post-term births" (92). A postterm birth is defined as one having a CA of 38 wk (40 wk LMP) or greater. For the US data, the CSR estimate for all post–38-wk births is 0.493 (95% CI: 0.493–0.493, n = 6,573,562), which is lower than the estimate for week 38 (0.497, 95% CI: 0.497–0.497, n =7,437,167), suggesting an opposite trend, if any, to the one posited by James.

Overview. Our analysis suggests that the PSR is unbiased. Analysis of the ART data suggests that the CSR could become femalebiased within a week or two of conception because more male embryos are abnormal (assuming that the death rate of abnormal male embryos during this period is at least equal to that of abnormal female embryos). The CSR then increases early in

Table 10. Fixed-effect analyses of the influence of CA on theCSR estimated from amniocentesis data

Model	Fitted model	ΔAIC	Akaike weight
I	Logit(CSR) = 0.022	168.522	<0.001
I + CA	Logit(CSR) = -0.241 + 0.017CA	0	>0.999

I denotes intercept. n = 809,274.

Fig. 3. The relationship between conception age and cohort sex ratio estimated from amniocentesis data. Observed cohort sex ratio (with 95% confidence limits) and the estimated regression (Table 10). Fractional conception ages are rounded to the nearest integer. A dashed line denotes a sex ratio of 0.5.

pregnancy (due to higher female mortality) and decreases later in pregnancy (due to higher male mortality). Three independent datasets (induced abortions, CVS, and amniocentesis) suggest that the CSR increases until the latter half of the second trimester. If the PSR is 0.5, total female mortality must be greater than total male mortality during pregnancy because the sex ratio of all births is male-biased.

Female-biased mortality during the second trimester is likely not caused by gross karyotypic abnormalities such as monosomy and trisomy, because these probably cause earlier death. A female bias has been reported among apparently karyotypically normal spontaneous abortions during the first two trimesters (86–88). The apparent increase in female mortality occurs despite gene expression by two X chromosomes (although most loci on one or the other X chromosome are not expressed in a given cell). The expression of deleterious mutations is thought to be masked when the two X chromosomes have equal inactivation probabilities (96). Sex differences in gene expression are known later in pregnancy and later in life (97-99), but we lack information on how sex differences in gene expression earlier in pregnancy might contribute to female-biased mortality. One possible mechanism is that a paternal X chromosome retards development in such a way that female mortality rate increases; this has been confirmed in the mouse (100). Another possible mechanism is skewed X-inactivation (usually defined as >75% of cells sampled having, say, the paternal X chromosome inactivated), which can unmask recessive deleterious alleles (101, 102); it can also mask them (103). Skewed inactivation is associated with female-biased pathology later in life (104–106) and also with an elevated risk of spontaneous abortion (107, 108), although the sex ratio of the abortions appears to be unknown.

There are ambiguities in regard to our estimate of the trajectory of the CSR from conception to birth (Fig. 5). One is the discrepancy among the quantitative estimates of the CSR between 10 and 20 wk. A likely cause of the female bias of the amniocentesis estimates compared with the induced-abortion estimates is the presence of more than 200,000 fetuses in our sample that have undergone amniocentesis due to elevated AFP and total hCG levels (see above). When such fetuses are excluded, CSR estimates are higher than those in Fig. 3 and are consistent with those from induced abortions. For example, among fetuses whose rounded conception age is 20 wk, the CSR for those with elevated AFP and total hCG levels is 0.492 (n = 8,598) and 0.552 (n = 11,873) for the others. The latter estimate is close to the CSR at 20 wk inferred from the inducedabortion data.

We now address James' causally explicit claim (109, 110) that more males than females are conceived due to the interaction between the timing of fertilization and fluctuations of estrogen, testosterone, gonadotrophins, and progesterone during the menstrual cycle. The key assumption of this hypothesis is that the male-biased birth sex ratio is the result of a male-biased PSR. Such backward extrapolation is potentially misleading, and in this instance, the analysis of the induced-abortion data indicates that the CSR is female-biased during the first trimester of pregnancy and only later becomes male-biased. We do not deny the reality of the hormonal fluctuations and the nonuniformity of fertilization times, although whether the birth sex ratio depends on hormonal fluctuations is controversial (111-115). Even if there is such a dependency, the birth sex ratio does not have any necessary implication for the PSR; perhaps, for example, the timing of conception has a differential effect on the fate of male and female embryos (116). We conclude that James' claim is incorrect, given our results that the PSR is unbiased, that the CSR may be female-biased during the first trimester, that the CSR increases during the first trimester, and that the predicted male bias among postterm births is absent.

Our results are also inconsistent with the hypothesis that the male-biased birth sex ratio arises from male-biased implantation of blastocysts after unbiased conception (117). The CSR early in the first trimester (after implantation) could be female-biased and the CSR increases during the first two trimesters. To this extent, male-biased implantation cannot by itself explain the male-biased birth sex ratio. In addition, the normal CSR estimate for the aCGH embryos is not male-biased (Table 3, Any = 0.498). Most of these embryos had undergone blastocyst formation, which may indicate competency for implantation.

We now consider the implications of our results for understanding of the evolution of the human sex ratio.

Extending the argument of Düsing (118), Fisher (8) claimed that the sex ratio had evolved via a process of natural selection and that the equilibrium outcome of this process is equal investment in the two sexes at "the end of the period of parental expenditure." Fisher implied that there is a monotonic trajectory of the CSR towards this equilibrium; this is contradicted by our results (see Fig. 5 and *SI Text*).

We address two specific claims as to the sex ratio associated with this equal investment equilibrium (see *SI Text*). First, many scientists believe that 0.5 is the equilibrium sex ratio, although Fisher did not make this specific claim. We show using US data that the sex ratio for the 1900 cohort at age 40 is consistent with 0.5. However, the evolutionary implications of this result are ambiguous given the lack of real data on the sex specificity and timing of investment. This ambiguity is an important cautionary lesson, which is underscored by our result that female mortality during pregnancy may be greater than male mortality. All other things being equal, this greater female mortality implies that the sex ratio at investment equilibrium should be male-biased.

Fig. 4. The relationship between conception age and cohort sex ratio estimated from US fetal deaths and live births for 1995–2004 (combined). Observed cohort sex ratio (with 95% confidence limits). Conception age is based on the date of the last menstrual period; 18 denotes \leq 18 wk. A dashed line denotes a sex ratio of 0.5.

Fig. 5. The trajectory of the cohort sex ratio from conception to birth. ALL and NORMAL denote the total and normal sex ratio estimates based on ART embryos (Table 1), respectively, CVS denotes the estimated sex ratio trend based on CVS data (Table 8), ABORTION denotes the estimated trend based on induced abortions sexed via karyotype (Table 6), AMNIO denotes the estimated trend based on amniocentesis data (Table 10), and FDN denotes the trend of cohort sex ratio based on US fetal deaths and live births. A dashed line denotes a sex ratio of 0.5.

Second, we show that Charlesworth's (119) prediction that the equilibrium sex ratio is female-biased (p. 356) by "the end of the

- Graunt J (1662) Natural and Political Observations Made Upon the Bills of Mortality (Martyn, London).
- Campbell RB (2001) John Graunt, John Arbuthnott, and the human sex ratio. Hum Biol 73(4):605–610.
- Nichols JB (1907) The numerical proportions of the sexes at birth. Mem Am Anthropol Assoc 1(4):247–300.
- 4. Klug WS, Cummings MR, Spencer C (2006) Concepts of Genetics (Pearson/Prentice Hall, Upper Saddle River, NJ), 8th Ed.
- Cunningham FG, et al. (2010) 2010 Williams Obstetrics (McGraw-Hill Medical, New York), 23rd Ed.
- Tschuprow AA (1915) Zur frage des sinkenden knabenüberschusses unter den ehelich geborenen. Bull l'institut Int Stat 20(2):378–492.
- 7. Parkes AS (1926) The mammalian sex-ratio. Biol Rev Camb Philos Soc 2(1):1-51.
- Fisher RA (1930) The Genetical Theory of Natural Selection (Clarendon Press, Oxford).
- Shettles LB (1964) The great preponderance of human males conceived. Am J Obstet Gynecol 89(1):130–133.
- McMillen MM (1979) Differential mortality by sex in fetal and neonatal deaths. Science 204(4388):89–91.
- 11. Pergament E, Toydemir PB, Fiddler M (2002) Sex ratio: A biological perspective of 'Sex and the City'. Reprod Biomed Online 5(1):43–46.
- Keller CA (1969) Embryonal sex ratios in animals and man. PhD thesis (University of California, Berkeley).
- Boué A (1976) L'excès de conceptus mâles. La surmortalité des embryons mâles: Réalités ou mythe. Nouv Presse Med 5(20):1307.
- 14. Creasy MR (1977) The primary sex ratio of man. Ann Hum Biol 4(4):390-392.
- 15. Degenhardt A, Tholey P, Michaelis H (1980) Primary sex ratio of 125 males to 100 females? Analysis of an artifact. *J Hum Evol* 9(8):651–654.
- Boklage CE (2005) The epigenetic environment: Secondary sex ratio depends on differential survival in embryogenesis. *Hum Reprod* 20(3):583–587.
- 17. Mikamo K (1969) Female preponderance in the sex ratio during early intrauterine development: A sex chromatin study. *Jinrui Idengaku Zasshi* 13(4):272–277.
- Hytten FE, Leitch I (1971) The Physiology of Human Pregnancy (Blackwell Scientific Publications Ltd, Oxford), 2nd Ed.
- Hassold TJ, et al. (1978) A cytogenetic study of spontaneous abortions in Hawaii. Ann Hum Genet 41(4):443–454.
- McKeown T, Lowe CR (1951) The sex ratio of stillbirths related to cause and duration of gestation; an investigation of 7,066 stillbirths. *Hum Biol* 23(1):41–60.
- Bodmer WF, Edwards AW (1960) Natural selection and the sex ratio. Ann Hum Genet 24(3):239–244.
- Stevenson AC, Bobrow M (1967) Determinants of sex proportions in man, with consideration of the evidence concerning a contribution from X-linked mutations to intrauterine death. J Med Genet 4(3):190–221.
- Stirnemann JJ, Samson A, Bernard J-P, Thalabard J-C (2013) Day-specific probabilities of conception in fertile cycles resulting in spontaneous pregnancies. *Hum Reprod* 28(4):1110–1116.
- Volpi EV, Bridger JM (2008) FISH glossary: An overview of the fluorescence in situ hybridization technique. *Biotechniques* 45(4):385–386, 388, 390 passim.

first year of postnatal life" for populations with little or no postbirth investment is not consistent with the data from the 1900 cohort or with data from hunter-gatherer, horticultural, and pastoral societies (120).

Finally, we suggest (see *SI Text*) that it is not self-evident that the sex ratio of a human cohort attains any fixed value (apart from sampling error) before only one sex remains. Static idealization of a trait can be misleading if dynamic expression is a central component of a trait's evolutionary response to natural selection (121, 122). Determining the validity of this static idealization that the ultimate target of natural selection is a single sex ratio (as opposed to the target being, say, an agespecific sequence of sex ratios) will require data on the sex specificity and timing of parental investment, statistical assessment of the age-specific sex ratios to determine whether they are reasonably regarded as age invariant, and a comparison of the predictive accuracy of relevant static and dynamic adaptive models.

ACKNOWLEDGMENTS. We thank two anonymous reviewers, Paul Bain, Martin Bobrow, Ben Bolander, Ben Bolker, Fred Burchsted, Dan Chasman, Ariane Cherbuliez, Jean Gladstone, Andrew Guarnaccia, Elena Labatta, Jeffrey Lebowski, Ron Lee, Richard Lewontin, Marian Macdorman, Renée Martin, Brian McLoone, Erik Moore, Sterling Puck, Lia Ribustello, Lorena Rodrigo, Barbara Rolfe, Luke Rogers, the Ronin Institute, Seymour Sacks, Mary Sears, Gill Shaddick, Korbinian Strimmer, Henri Termeer, Syzmon Tolak, Giles Tomkin, and Nathan Treff for assistance. This project was partially supported by Eunice Kennedy Shriver National Institute of Child Health and Human Development Grant R03HD055685, and the National Academies Keck Futures Initiative.

- Wilton L (2002) Preimplantation genetic diagnosis for aneuploidy screening in early human embryos: A review. Prenat Diagn 22(6):512–518.
- Munné S, Wells D, Cohen J (2010) Technology requirements for preimplantation genetic diagnosis to improve assisted reproduction outcomes. *Fertil Steril* 94(2):408–430.
- Treff NR, et al. (2010) SNP microarray-based 24 chromosome aneuploidy screening is significantly more consistent than FISH. *Mol Hum Reprod* 16(8):583–589.
- Hu DG, Guan XY, Hussey N (2007) Gender determination and detection of aneuploidy in single cells using DNA array-based comparative genomic hybridization. *Methods Mol Med* 132:135–151.
- Gutiérrez-Mateo C, et al. (2011) Validation of microarray comparative genomic hybridization for comprehensive chromosome analysis of embryos. *Fertil Steril* 95(3):953–958.
- Colls P, et al. (2012) Validation of array comparative genome hybridization for diagnosis of translocations in preimplantation human embryos. *Reprod Biomed Online* 24(6):621–629.
- Eisenberg B, Wapner RJ (2002) Clinical proceduress in prenatal diagnosis. Best Pract Res Clin Obstet Gynaecol 16(5):611–627.
- 32. Brambati B, Tului L (2005) Chorionic villus sampling and amniocentesis. Curr Opin Obstet Gynecol 17(2):197–201.
- MacDorman MF, Munson ML, Kirmeyer S (2007) Fetal and perinatal mortality, United States, 2004. Natl Vital Stat Rep 56(3):1–19.
- 34. Pinheiro JC, Bates DM (2004) Mixed-Effects Models in S and S-PLUS (Springer, New York).
- Burnham KP, Anderson DR (2002) Model Selection and Multi-Model Inference: A Practical Information-Theoretic Approach (Springer, New York), 2nd Ed.
- Lukacs PM, et al. (2007) Concerns regarding a call for pluralism of information theory and hypothesis testing. J Appl Ecol 44(2):456–460.
- Burnham KP, Anderson DR (2004) Multimodel inference: Understanding AIC and BIC in model selection. Sociol Methods Res 33:261–304.
- Link WA, Barker RJ (2006) Model weights and the foundations of multimodel inference. Ecology 87(10):2626–2635.
- Bolker BM (2008) Ecological Models and Data in R (Princeton University Press, Princeton).
 Sakamoto Y, Akaike H (1978) Analysis of cross classified data by AIC. Ann Inst Stat
- Sakamoto Y, Akaike H (1978) Analysis of cross classified data by AlC. Ann inst Stat Math 30(1):185–197.
- Forster MR (2000) Key concepts in model selection: Performance and generalizability. J Math Psychol 44(1):205–231.
- Mundry R (2011) Issues in information theory-based statistical inference-a commentary from a frequentist's perspective. *Behav Ecol Sociobiol* 65(1):57–68.
- 43. Murtaugh PA (2014) In defense of P values. Ecology 95(3):611-617.
- Barbash-Hazan S, et al. (2009) Preimplantation aneuploid embryos undergo self-correction in correlation with their developmental potential. *Fertil Steril* 92(3):890–896.
- Jacobsen R, Møller H, Mouritsen A (1999) Natural variation in the human sex ratio. Hum Reprod 14(12):3120–3125.
- Ein-Mor E, Mankuta D, Hochner-Celnikier D, Hurwitz A, Haimov-Kochman R (2010) Sex ratio is remarkably constant. *Fertil Steril* 93(6):1961–1965.
- 47. Tietze C (1948) A note on the sex ratio of abortions. Hum Biol 20(3):156-160.
- Stevenson AC (1966) The Sex Chromatin, ed Moore KL (W. B. Saunders, Philadelphia), pp 263–276.
- Spencer K (2000) The influence of fetal sex in screening for Down syndrome in the second trimester using AFP and free beta-hCG. *Prenat Diagn* 20(8):648–651.
- Joseph KS, et al.; (2007) Reconciling the high rates of preterm and postterm birth in the United States. Obstet Gynecol 109(4):813–822.

SEE COMMENTARY

- 51. Klebanoff MA (2007) Gestational age: Not always what it seems. Obstet Gynecol 109(4):798-799
- 52. Wingate MS, Alexander GR, Buekens P, Vahratian A (2007) Comparison of gestational age classifications: Date of last menstrual period vs. clinical estimate. Ann Epidemiol 17(6):425-430.
- 53. Tesarík J, Kopecný V, Plachot M, Mandelbaum J (1988) Early morphological signs of embryonic genome expression in human preimplantation development as revealed by quantitative electron microscopy. Dev Biol 128(1):15-20.
- 54. Ao A, Erickson RP, Winston RM, Handvside AH (1994) Transcription of paternal Y-linked genes in the human zygote as early as the pronucleate stage. Zygote 2(4): 281-287
- 55. Abdel-Rahman B, Fiddler M, Rappolee D, Pergament E (1995) Expression of transcription regulating genes in human preimplantation embryos. Hum Reprod 10(10): 2787-2792.
- 56. Fiddler M, Abdel-Rahman B, Rappolee DA, Pergament E (1995) Expression of SRY transcripts in preimplantation human embryos. Am J Med Genet 55(1):80-84.
- 57. Taylor DM, Ray PF, Ao A, Winston RM, Handyside AH (1997) Paternal transcripts for glucose-6-phosphate dehydrogenase and adenosine deaminase are first detectable in the human preimplantation embryo at the three- to four-cell stage. Mol Reprod Dev 48(4):442-448.
- 58. Monk M, Salpekar A (2001) Expression of imprinted genes in human preimplantation development. Mol Cell Endocrinol 183(Suppl 1):S35-S40.
- 59. Jeanblanc M, Salvaing J, Mason K, Debey P, Beaujean N (2008) Activation du génome embryonnaire. Gynecol Obstet Fertil 36(11):1126-1132.
- 60. Gardner DK, Larman MG, Thouas GA (2010) Sex-related physiology of the preimplantation embryo. Mol Hum Reprod 16(8):539-547.
- 61. Uematsu A. et al. (2002) Parental origin of normal X chromosomes in Turner syndrome patients with various karyotypes: Implications for the mechanism leading to generation of a 45,X karyotype. Am J Med Genet 111(2):134–139.
- 62. Metzler-Guillemain C, Mignon C, Depetris D, Guichaoua MR, Mattei MG (1999) Bivalent 15 regularly associates with the sex vesicle in normal male meiosis. Chromosome Res 7(5):369–378.
- 63. Vogt P (1990) Potential genetic functions of tandem repeated DNA sequence blocks in the human genome are based on a highly conserved "chromatin folding code". Hum Genet 84(4):301–336.
- 64. Handel MA (2004) The XY body: A specialized meiotic chromatin domain. Exp Cell Res 296(1):57-63
- 65. Codina-Pascual M, et al. (2006) Behaviour of human heterochromatic regions during the synapsis of homologous chromosomes. Hum Reprod 21(6):1490-1497.
- 66. Vergés L, Blanco J, Valero O, Vidal F, Sarrate Z (2014) Chromosome size, morphology, and gene density determine bivalent positioning in metaphase I human spermatocytes. Fertil Steril 101(3):818-824.
- 67. Stahl A, Hartung M, Devictor M, Bergé-Lefranc JL (1984) The association of the nucleolus and the short arm of acrocentric chromosomes with the XY pair in human spermatocytes: Its possible role in facilitating sex-chromosome acrocentric translocations. Hum Genet 68(2):173-180.
- 68. Mattei MG, Mattei JF, Ayme S, Giraud F (1982) X-autosome translocations: cytogenetic characteristics and their consequences. Hum Genet 61(4):295-309.
- 69. Makoff AJ, Flomen RH (2007) Detailed analysis of 15q11-q14 sequence corrects errors and gaps in the public access sequence to fully reveal large segmental duplications at breakpoints for Prader-Willi, Angelman, and inv dup(15) syndromes. Genome Biol 8(6):R114.
- 70. Bishop MW (1964) Paternal contribution to embryonic death. J Reprod Fertil 7(3): 383-396.
- 71. Suthers G, Smith S, Springbett S (1999) Skewed sex ratios in familial holoprosencephaly and in people with isolated single maxillary central incisor. J Med Genet 36(12):924-926.
- 72. Keng VW, et al. (2013) Sex bias occurrence of hepatocellular carcinoma in Poly7 molecular subclass is associated with EGFR. Hepatology 57(1):120-130.
- 73. Griffin DK, Abruzzo MA, Millie EA, Feingold E, Hassold TJ (1996) Sex ratio in normal and disomic sperm: Evidence that the extra chromosome 21 preferentially segregates with the Y chromosome. Am J Hum Genet 59(5):1108-1113.
- 74. Petersen MB, et al. (1993) Paternal nondisjunction in trisomy 21: Excess of male patients. Hum Mol Genet 2(10):1691-1695.
- 75. Savage AR, et al. (1998) Elucidating the mechanisms of paternal non-disjunction of chromosome 21 in humans. Hum Mol Genet 7(8):1221-1227.
- 76. Huether CA, et al. (1996) Sex ratios in fetuses and liveborn infants with autosomal aneuploidy. Am J Med Genet 63(3):492-500.
- 77. Niedrist D, Riegel M, Achermann J, Rousson V, Schinzel A (2006) Trisomy 18: Changes in sex ratio during intrauterine life. Am J Med Genet A 140(21):2365-2367.
- 78. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: A practical and powerful approach to multiple testing. J R Stat Soc B 57(1):289-300.
- 79. Strimmer K (2008) A unified approach to false discovery rate estimation. BMC Bioinformatics 9:303.
- 80. Hahnemann N (1973) Chromosome studies in induced abortions. Clin Genet 4(4): 328-332.
- 81. Yamamoto M, Ito T, Watanabe GI (1977) Determination of prenatal sex ratio in man. Hum Genet 36(3):265-269.
- 82. Ohama K (1978) Chromosomal anomalies and sex ratio of induced abortions in early embryogenesis. Acta Obstet Gynaecol Jpn 30(12):1687-1695.
- 83. Tsuji K, Nakano R (1978) Chromosome studies of embryos from induced abortions in pregnant women age 35 and over. Obstet Gynecol 52(5):542–544.
- 84. Hoshi N, Yamagami Y, Hanatani K, Tanaka T, Fujimoto S (1990) Chromosomal studies on 934 induced abortuses of middle-aged pregnant women. Asia Oceania J Obstet Gynaecol 16(3):275-281.

- 85. Hoshi N, Hanatani K, Kishida T, Sagawa T, Fujimoto S (1997) Chromosomal analysis in 894 induced abortuses from women of advanced maternal age in relation to gestational weeks and fetal sex ratio. J Obstet Gynaecol Res 23(1):1-7.
- 86. Bartels I, Hansmann I, Eiben B (1990) Excess of females in chromosomally normal spontaneous abortuses. Am J Med Genet 35(2):297-298.
- 87. Guerneri S, et al. (1987) Prevalence and distribution of chromosome abnormalities in a sample of first trimester internal abortions. Hum Reprod 2(8):735-739.
- 88. Eiben B, et al. (1990) Cytogenetic analysis of 750 spontaneous abortions with the direct-preparation method of chorionic villi and its implications for studying genetic causes of pregnancy wastage. Am J Hum Genet 47(4):656-663.
- Byrne J, Warburton D (1987) Male excess among anatomically normal fetuses in spontaneous abortions. Am J Med Genet 26(3):605-611.
- Zeitlin J, et al. (2002) Fetal sex and preterm birth: Are males at greater risk? Hum 90. Reprod 17(10):2762-2768.
- 91. Ingemarsson I (2003) Gender aspects of preterm birth. BJOG 110(Suppl 20):34-38.
- 92. James WH (2003) The causes of the excess males among pre-term and post-term births. Hum Reprod 18(3):655-656
- 93. Navara KJ (2014) Low gestational weight gain skews human sex ratios towards females. PLoS ONE 9(12):e114304.
- 94. Lesiński J (1962) Relationship between length of gestation, birth weight and certain other factors. Bull World Health Organ 26(2):183-191.
- 95. James WH (1994) Cycle day of insemination, sex ratio of offspring and duration of gestation. Ann Hum Biol 21(3):263-266.
- 96. Veitia RA, Veyrunes F, Bottani S, Birchler JA (2015) X chromosome inactivation and active X upregulation in therian mammals: Facts, questions, and hypotheses. J Mol Cell Biol 7(1):2-11.
- 97. Ober C. Loisel DA, Gilad Y (2008) Sex-specific genetic architecture of human disease. Nat Rev Genet 9(12):911-922.
- 98. Cvitic S, et al. (2013) The human placental sexome differs between trophoblast epithelium and villous vessel endothelium. PLoS ONE 8(10):e79233
- 99. Buckberry S, Bianco-Miotto T, Bent SJ, Dekker GA, Roberts CT (2014) Integrative transcriptome meta-analysis reveals widespread sex-biased gene expression at the human fetal-maternal interface. Mol Hum Reprod 20(8):810-819.
- 100. Thornhill AR, Burgoyne PS (1993) A paternally imprinted X chromosome retards the development of the early mouse embryo. Development 118(1):171-174.
- 101. Minks J, Robinson WP, Brown CJ (2008) A skewed view of X chromosome inactivation. J Clin Invest 118(1):20-23.
- 102. Yang C, et al. (2011) X-chromosome inactivation: Molecular mechanisms from the human perspective. Hum Genet 130(2):175-185.
- 103. Desai V, et al. (2011) Favorably skewed X-inactivation accounts for neurological sparing in female carriers of Menkes disease. Clin Genet 79(2):176-182
- 104. Brown CJ (1999) Skewed X-chromosome inactivation: Cause or consequence? J Natl Cancer Inst 91(4):304-305.
- 105. Kristiansen M, et al. (2002) High frequency of skewed X inactivation in young breast cancer patients. J Med Genet 39(1):30-33.
- 106. Ozbalkan Z. et al. (2005) Skewed X chromosome inactivation in blood cells of women with scleroderma. Arthritis Rheum 52(5):1564-1570.
- 107. Pegoraro E, et al. (1997) Familial skewed X inactivation: A molecular trait associated with high spontaneous-abortion rate maps to Xq28. Am J Hum Genet 61(1):160–170.
- 108. Sangha KK, Stephenson MD, Brown CJ, Robinson WP (1999) Extremely skewed X-chromosome inactivation is increased in women with recurrent spontaneous abortion. Am J Hum Genet 65(3):913–917.
- James WH (2008) Evidence that mammalian sex ratios at birth are partially con-109. trolled by parental hormone levels around the time of conception. J Endocrinol 198(1):3-15
- 110. James WH (2008) Further support for the hypothesis that parental hormone levels around the time of conception are associated with human sex ratios at birth. J Biosoc Sci 40(6):855-861.
- 111. Harlap S (1979) Gender of infants conceived on different days of the menstrual cycle. N Engl J Med 300(26):1445-1448.
- 112. Wilcox AJ, Weinberg CR, Baird DD (1995) Timing of sexual intercourse in relation to ovulation. Effects on the probability of conception, survival of the pregnancy, and sex of the baby. N Engl J Med 333(23):1517-1521.
- 113. Spira A, et al. (1993) Biomedical and Demographic Determinants of Reproduction, eds Grav R. Leridon H. Spira A (Oxford Univ Press, New York), pp 271–284
- 114. Bernstein ME (1995) Genetic control of the secondary sex ratio. Hum Reprod 10(10): 2531-2533
- 115. Gray RH, et al. (1998) Sex ratio associated with timing of insemination and length of the follicular phase in planned and unplanned pregnancies during use of natural family planning. Hum Reprod 13(5):1397-1400.
- 116. Gray RH, et al. (1995) Timing of conception and the risk of spontaneous abortion among pregnancies occurring during the use of natural family planning. Am J Obstet Gynecol 172(5):1567-1572.
- 117. Krackow S (1995) The developmental asynchrony hypothesis for sex ratio manipulation. J Theor Biol 176(2):273-280.
- 118. Düsing C (1884) Die Regulierung des Geschlechtsverhältnisses bei der Vermehrung der Menschen, Tiere, und Pflanzen. Jenaische Zeitschrift fur Naturwiss 17:593-940.
- 119. Charlesworth B (1977) Measuring Selection in Natural Populations, eds Christiansen FB, Fenchel TM (Springer, Berlin), pp 345–363.
- 120. Hewlett BS (1991) Demography and childcare in preindustrial societies. J Anthropol Res 47(1):1-37.
- 121. Tuljapurkar S, Steiner UK, Orzack SH (2009) Dynamic heterogeneity in life histories. Ecol Lett 12(1):93-106.
- 122, Stubblefield JW, Orzack SH (2013) Resource transfers and evolution: Helpful offspring and sex allocation. Theor Popul Biol 83:64-81.

SOCIAL SCIENCES

Supporting Information

Orzack et al. 10.1073/pnas.1416546112

SI Text

FISH Probes Used to Karyotype ART Embryos. The FISH probes and their target locus and region (both in parentheses) were X chromosome: CEP X (DXZ1, p11.1-q11.1), Y chromosome: CEP Y Alpha Satellite at Genzyme Genetics (DYZ3, p11.1-q11.1), and CEP Y Satellite III at Reprogenetics (DYZ1, q12), chromosome 8: CEP 8 (D8Z2, p11.1-q11.1), chromosome 9: CEP 9 Alpha Satellite at Genzyme Genetics (unknown, p11.1-q11), chromosome 13: LSI 13 (RB1, q14.1-q14.3), chromosome 14 at Reprogenetics: TelVysion 14q (STS-X58399/SHGC-36156/STS/AA034492/telomeric IGHV segments, q32.3), chromosome 15: CEP 15 Alpha Satellite (D15Z4, p11.1-q11.1), chromosome 16: CEP 16 Satellite II (D16Z3, q11.2), chromosome 17: CEP 17 at Reprogenetics (D17Z1, p11.1- q11.1), chromosome 18: CEP 18 (D18Z1, p11.1-q11), chromosome 20 at Reprogenetics: TelVysion 20p (D20S1157, p13), chromosome 21: LSI 21 (D21S259/D21S341/D21S342, q22.13-q22.2), and chromosome 22: LSI 22q (BCR, q11.2). Details of sample preparation and protocols are available on request (see refs. 1 and 2 for protocols used at Reprogenetics). All probes were obtained from Abbott Molecular (www.abbottmolecular.com).

Summary of Induced Abortion Studies. The 41 studies of the sex ratio of induced abortions are shown in Table S1.

Procedures Used to Process CVS and Amniocentesis Samples. Cells were cultured following refs. 3–5. Cell suspensions were placed on coverslips in Petri dishes containing growth media. After 5–10 d, a mitotic inhibitor (colcemid) was added. Cells were harvested by removing the media and mitotic inhibitor and adding a hypotonic solution, followed by changes of fixative (3:1 methanol to acetic acid). The cells were dried, thereby breaking the nuclei of dividing cells and spreading the chromosomes. After treatment with trypsin, chromosomal bands were visualized with Wright-Giemsa stain. Images of at least four metaphase cells per sample were recorded, and karyotypes were recorded for two or three cells.

Week-Specific Estimates of the CSR Based on Fetal-Death and Live-Birth Data for the US 1995–2004. Data for weeks postconception (CA) based on LMP are shown in Table S2.

Mixed-Effect Analyses of the Association Between the State of Individual Chromosomes in ART Embryos and the Cohort Sex Ratio. Analyses of the combined FISH and aCGH data are shown in Table S3.

Mixed-Effect Analyses of the Association Between the Overall State of the Embryo (Any) or the State of Individual Chromosomes and the Cohort Sex Ratio. Analyses of the aCGH data for blastomere samples and blastocyst samples are shown in Table S4.

Mixed-Effect Analyses of the Association Between the Overall State of the Embryo (Any) or the State of Individual Chromosomes and the Cohort Sex Ratio. Analyses of blastomere samples (FISH only) and blastocyst samples (aCGH) are shown in Table S5.

Nine Reasons Why ART Embryos Provide a Meaningful CSR Estimate. The birth sex ratio of babies conceived via ART matches the birth sex ratio of babies conceived naturally. The birth sex ratio arising from our sample of ART embryos is unknown. We analyzed data from the Australian Institute of Health and Welfare (www.npesu.unsw. edu.au/surveillance-reports); this is the largest comparison of ART and natural sex ratios to date. As shown in Table S6, the sex ratio of ART births (0.515, 95% CI: 0.512–0.517, n = 136,647) and the sex ratio of natural births (0.514, 95% CI: 0.514–0.514, n = 5,500,467) are statistically identical. These estimates match previous results. Ref. 6 (table 3) reported an ART birth sex ratio for Denmark from 1995 to 2000 of 0.521 (95% CI: 0.511–0.531, n = 8,894) and a sex ratio for all births from 1995 to 2004 of 0.513 (95% CI: 0.512–0.515, n = 663,276). Other smaller studies reporting this overlap include refs. 7–10. However, ref. 11 (p. 1582) reported an ART sex ratio of 0.498 (95% CI: 0.490–0.506, n = 15,164) and a sex ratio for 2005 US births of 0.512 (95% CI: 0.511–0.512, n = 4,138,349).

Our overall conclusion is that ART generates a cohort of fetuses whose fates during pregnancy match those of naturally conceived fetuses.

The birth sex ratio for ART with in vivo conception and the birth sex ratio for ART with in vitro conception appear to be identical. We assessed the influence of in vivo vs. in vitro conception by comparing standard ART and gametic intrafallopian transfer (GIFT) birth sex ratios. This comparison holds constant the influence of in vitro treatment of eggs and sperm; standard ART involves a variety of artificial conception methods and GIFT involves natural conception. We analyzed data collected by the Australian Institute of Health and Welfare. As shown in Table S7, the sex ratio for GIFT is 0.521 (95% CI: 0.511–0.531, n = 9,312) compared with the estimate for ART (0.515, 95% CI: 0.512–0.517; Table S6); almost all of the ART births involved IVF and ICSI and not GIFT. We conclude that there is no influence of in vitro conception per se on the birth sex ratio.

Our estimate of the PSR matches the value expected given unbiased segregation of sex chromosomes during spermatogenesis and unbiased fertilization. We further note that this match occurs despite geographic and temporal heterogeneity of samples (embryos came from ART clinics across the United States and other countries between 1995 and 2009). There is no evidence that spermatogenesis results in a ratio of X- and Y-bearing sperm similar to the sex ratio bias among births. Instead, studies suggest that spermatogenesis results in an unbiased ratio of X- and Y-bearing sperm (12–15) or perhaps a slight bias (toward X chromosomebearing sperm) (16–18). In addition, segregation of other human chromosomes appears to be unbiased.

Analyses of data from other species do not provide conclusive evidence that the mammalian PSR is male-biased. There are nonmolecular estimates (derived from sex chromatin or karyotyping) and molecular estimates. The nonmolecular estimates should be interpreted cautiously for four reasons. First, scoring sex chromatin likely overestimates the number of males (19). Second, some estimates are based on fetal morphology, which can be unreliable, especially for early fetuses. Third, some estimates are based on an amalgamation of embryos and fetuses. Fourth, some studies based their estimate only on the sex ratio at birth. The molecular estimates involve protein-based and DNA-based techniques (20, 21). Estimates are shown in Table S8.

We analyzed these data (without phylogenetic correction) with a mixed-effect analysis in which studies within species were treated as random effects and species were treated as factors. We analyzed the nonmolecular data and the molecular data separately; in both cases, there is substantially more support for the model with an overall sex ratio compared with the species-specific model. The overall nonmolecular estimate is 0.531 (95% CI: 0.516–0.547), and the overall molecular estimate is 0.498 (95% CI: 0.485– 0.512). The latter, more reliable, estimate does not provide compelling evidence that the PSR is male-biased in mammals. We note that there is also no indication that the sex ratio at birth in mammals is usually male-biased (22, p. 400).

The method of in vitro conception does not appear to influence the ART estimate of the CSR. The method of conception is known for a subset of embryos in our FISH sample (n = 8,214). These embryos were conceived via standard ART (IVF) or via intracytoplasmic sperm injection (ICSI). We assigned random effects to women and treated method of conception as a factor (this sample contained only a single procedure for each woman). Support for the two models is comparable; the overall CSR is 0.508 (95% CI: 0.496-0.519, n = 8,214); this is similar to the estimate for the entire sample (0.502) in Table 1. The IVF estimate is 0.518 (95% CI: 0.502-0.533, n = 4,361), and the ICSI estimate is 0.496 (95% CI: 0.480-0.513, n = 3,853). Neither conception method is the same as natural conception, but we caution against simple conclusions as to which one is more like natural conception, especially given the lack of evidence for a difference in the associated sex ratios. A high proportion of early naturally conceived embryos may be abnormal (as in our ART sample). A high proportion of abnormal ART embryos has been previously reported (23, 24). Very few naturally conceived embryos less than 1 wk old have been studied, but some authors reported abnormalities (25–38); to our knowledge, none of these embryos has been karyotyped.

There are three kinds of circumstantial evidence that many naturally conceived embryos are karyotypically abnormal. First, possibly up to 70–80% of conceptions fail (even among young mothers). Perhaps 50% fail subclinically within the first few weeks (39–61). Much mortality may be caused by an abnormal karyotype (57, 62); many spontaneous abortuses have karyotypic abnormalities (63–73). Second, oogenesis is error prone (74–77). Spermatogenesis appears to be less error prone; a few percent of sperm are abnormal (15). Karyotypically abnormal gametes can form zygotes (78–82). Third, mitotic errors occur frequently in cleavage-stage embryos and in blastocysts (56, 83, 84). Limited evidence suggests that the frequencies of karyotypic abnormalities in embryos conceived in vitro and in vivo differ in some species (85, 86) but not all (87).

Typical methods for collection and preparation of gametes (88, 89) appear to have little or no influence on the birth sex ratio. For example, it is likely that many embryos in our sample were derived from oocytes collected after ovarian stimulation via gonadotropin or clomiphene citrate (90). Limited data indicate that the birth sex ratio after such stimulation (but with natural conception) does not differ from the sex ratio without stimulation (91). The typical techniques used to capacitate sperm have little influence on the sex ratio of ART births (92). In addition, limited data indicate that embryos derived from unstimulated oocytes and those derived from stimulated oocytes have similar frequencies of abnormality (93).

The average age difference between women who use ART and women who conceive naturally does not imply that ART embryos are unsuitable as a basis for an estimate of the PSR. Women who use ART are not a random sample of pregnant women. For example, the average mother's age in our sample is 36.6 y, which is older than the average mother's age in the United States. However, young women who use ART, but not for fertility problems, produce a high percentage of karyotypically abnormal embryos (94, 95), which suggests that age and fertility problems do not cause this high percentage (96, 97). It is believed that most such embryos arise from abnormal oocytes and that the rate of meiotic aneuploidy in oocytes increases with age (98). However, such an increase has not always been observed (99). In addition, aneuploidy increases linearly with age for some chromosomes (100, 101), whereas for others, it increases only after age 40 y (102).

lonic strength, pH, and temperature during fertilization and early development vary across ART protocols but are not grossly different from in vivo conditions as far as they are known (103–105). Much progress has been made at characterizing in vivo conditions (106–110). We know of no evi-

dence that known differences between in vitro and in vivo conditions affect the in vivo sex ratio (111) or that in vitro conditions affect the birth sex ratio. However, we acknowledge that even small differences between in vitro and in vivo conditions might cause a difference in their associated sex ratios.

The Implications of Our Results for Understanding of the Evolution of the Human Sex Ratio. Extending the argument of Düsing (112), Fisher (113) claimed that the evolutionary equilibrium resulting from the long-term process of natural selection on the sex ratio was equal investment in the two sexes at "the end of the period of parental expenditure." The evolution of this equilibrium is driven by a Darwinian dynamic in which individuals or couples whose heritable investment in the two sexes is closer to equal gain higher representation in the population over the long-term. All other things being equal, this process of selection among individuals or couples stops when the evolutionary equilibrium of equal investment is attained, i.e., the population as a whole invests equal amounts into the two sexes of offspring (114, 115). Specific assumptions are needed in order to generate the prediction that an individual or a couple produce equal investment when the population is at the equal investment equilibrium (116).

Fisher claimed that the human sex ratio has evolved to an equal investment equilibrium at the end of parental expenditure via the Darwinian process described above. He did not state at what age of offspring the end occurs. However, he did describe the trajectory of the sex ratio of a cohort from conception to the equal investment equilibrium. He stated that more males are conceived than females and implied that the equilibrium is approached monotonically due to higher mortality of males between conception and the end of parental expenditure (p. 159). Fisher did not specifically predict that the sex ratio is 0.5 when parental expenditure ends (this prediction depends on assumptions about energy investment and mortality schedules that may not be true for humans); nonetheless, many scientists believe that this sex ratio is the outcome predicted by Fisher. Our results suggest that the CSR starts at 0.5, becomes female-biased, reattains 0.5, becomes malebiased, and decreases past 0.5. Whatever equilibrium one might specify, this trajectory indicates that the CSR does not exhibit a monotonic trajectory like the one implied by Fisher.

We can still heuristically assess whether the equal investment equilibrium is attained in a human population. We stress that data on the sex specificity and timing of investment are required if any claims are to go beyond crude speculation. Equal investment is predicted for age-structured populations (117), given random mating of individuals of different ages and little or no influence of parental age on the sex ratio produced. We assume that the net energetic cost of a son and of a daughter are equal at the end of parental investment; this implies that the sex ratio will be 0.5 at that age. We also assume that data from a single cohort are sufficient to test this prediction.

Age-specific estimates of the sex ratio can be obtained using the estimated numbers of males and females resident in the US who were born in 1900 (Table S9); their sex ratio trajectory is essentially complete. (Data for ages 0–79 y are available at www. census.gov/popest/data/national/asrh/pre-1980/PE-11.html. Data for ages 80–89 y are available at www.census.gov/popest/data/national/asrh/1980s/80s_nat_detail.html, and data for ages 90–99 y are available at www.census.gov/popest/data/intercensal/national/ index.html. Data for ages 100+ y for this cohort are not available. Census estimates of the sex ratio of this cohort are available only for ages 0, 10, 20, and 30 y.) These sex ratio estimates are not CSRs because they are defined by age from birth, not by age from conception.

The sex ratio at age 18 y was 0.488 (95% CI: 0.487-0.489, n = 1,843,000). At age 40 y, it was 0.501 (95% CI: 0.500-0.501, n = 1,823,210). At age 60, it was 0.483 (95% CI: 0.482-0.484, n = 1,525,828). If parental expenditure ends at age 40 y, these

data support the prediction of 0.5. This adaptationist conclusion would be more credible if we understood why natural selection has not eliminated the high level of prebirth mortality, especially when it appears to result in no net change in the sex ratio from conception to age 40 y. The failure of three-quarters of conceptions to reach sexual maturity engenders energetic costs, which presumably could be eliminated to the evolutionary benefit of parents. Alternatively, such "screening" could be beneficial to parents. We take no position and stress the need to consider the totality of evidence when making adaptive claims about the human sex ratio and human pregnancy (118-121). We emphasize that our analysis of the 1900 cohort data illustrates how little one conclude about the adaptive significance of the human sex ratio without data on investment, even when the analysis is based on age-specific sex ratio estimates that are among the best available. This ambiguity is an important cautionary lesson, which is underscored by our result that female mortality during pregnancy may be greater than male mortality. All other things being equal, this greater female mortality implies that the sex ratio at investment equilibrium should be male-biased.

The 1900 cohort data can also be compared with the predictions of Charlesworth's (122) model of sex ratio evolution for an age-structured population. His evolutionarily stable strategy model predicts that the PSR is male-biased and that the agespecific sex ratio attains a female-biased equilibrium value (p. 356) by "the end of the first year of postnatal life"; Charlesworth defined parental investment solely as the production of offspring plus the replacement of offspring lost during pregnancy or soon thereafter. As such, his model is at best applied to our primate ancestors or to those human groups and societies in which the

- Velilla E, Escudero T, Munné S (2002) Blastomere fixation techniques and risk of misdiagnosis for preimplantation genetic diagnosis of aneuploidy. *Reprod Biomed Online* 4(3):210–217.
- Colls P, Goodall N, Zheng X, Munné S (2009) Increased efficiency of preimplantation genetic diagnosis for aneuploidy by testing 12 chromosomes. *Reprod Biomed Online* 19(4):532–538.
- Hoehn H, Bryant EM, Karp LE, Martin GM (1974) Cultivated cells from diagnostic amniocentesis in second trimester pregnancies. I. Clonal morphology and growth potential. *Pediatr Res* 8(8):746–754.
- Goetz IE (1975) Growth of human skin fibroblasts from punch biopsies. *Methods Cell* Sci 1(1):13–15.
- Barch MJ, Knutsen T, Spurbeck JL (1997) The AGT Cytogenetics Laboratory manual (Lippincott-Raven Publishers, Philadelphia), 3rd Ed.
- Fedder J, et al. (2007) Malformation rate and sex ratio in 412 children conceived with epididymal or testicular sperm. *Hum Reprod* 22(4):1080–1085.
- Steptoe PC, Edwards RG, Walters DE (1986) Observations on 767 clinical pregnancies and 500 births after human in-vitro fertilization. *Hum Reprod* 1(2):89–94.
- 8. Steer C, et al. (1989) Sex ratio and in-vitro fertilisation. Lancet 2(8667):863.
- MRC Working Party on Children Conceived by In Vitro Fertilisation (1990) Births in Great Britain resulting from assisted conception, 1978-87. *BMJ* 300(6734): 1229–1233.
- Langley MT, Marek DE, Nackley AC, Doody KM, Doody KJ (2004) Comparison of sex ratio between day 5 and day 6 blastocyst transfer. *Fertil Steril* 82(S2):S192.
- Luke B, et al.; Society for Assisted Reproductive Technology Writing Group (2009) The sex ratio of singleton offspring in assisted-conception pregnancies. *Fertil Steril* 92(5):1579–1585.
- Goldman AS, et al. (1993) Analysis of the primary sex ratio, sex chromosome aneuploidy and diploidy in human sperm using dual-colour fluorescence in situ hybridisation. *Eur J Hum Genet* 1(4):325–334.
- Samura O, Miharu N, He H, Okamoto E, Ohama K (1997) Assessment of sex chromosome ratio and aneuploidy rate in motile spermatozoa selected by three different methods. *Hum Reprod* 12(11):2437–2442.
- Graffelman J, Fugger EF, Keyvanfar K, Schulman JD (1999) Human live birth and sperm-sex ratios compared. Hum Reprod 14(11):2917–2920.
- Tempest HG, et al. (2009) Intra-individual and inter-individual variations in sperm aneuploidy frequencies in normal men. *Fertil Steril* 91(1):185–192.
- Martin RH, et al. (1983) The chromosome constitution of 1000 human spermatozoa. Hum Genet 63(4):305–309.
- 17. Templado C, et al. (1988) Human sperm chromosomes. Hum Reprod 3(2):133-138.
- 18. Martin RH (1990) Sex ratio among sperm cells. Am J Hum Genet 47(2):349-351.
- Park WW (1957) The occurrence of sex chromatin in early human and macaque embryos. J Anat 91(3):369–373.
- van Vliet RA, Verrinder Gibbins AM, Walton JS (1989) Livestock embryo sexing: A review of current methods, with emphasis on Y-specific DNA probes. *Theriogenol*ogy 32(3):421–438.

human sex ratio might have evolved. Nonetheless, he asserted that his "firm prediction" of a female bias at the "end of infancy" is confirmed in "pre-industrial" societies, although he did not provide sex ratio data. The 1900 cohort exhibits significantly male-biased sex ratios until age 15, which are not consistent with his prediction. This cohort presumably does not qualify as "pre-industrial"; however, sex ratios in hunter–gatherer, horticultural, and pastoral societies are most often similarly male-biased at birth and at age 15 y (123).

Finally, we note that it is not self-evident that the sex ratio trajectory of a human cohort attains any fixed value (apart from sampling error) before only one sex remains. For example, the sex ratio for the 1900 cohort declines throughout life (although not monotonically). Sex ratio estimates are male-biased until age 15 y, after which almost all are between 0.48 and 0.5 until age 61 y. Estimates then become increasingly female-biased and will attain a value of 0.0, because the oldest humans are female (124). Static idealization of a trait can be misleading if dynamic expression is a central component of a trait's evolutionary response to natural selection (125-127). For the 1900 cohort, perhaps the midlife sex ratios ranging from 0.48 to 0.5 can be idealized as a trait that is a target of natural selection. Determining the validity of this static idealization that the ultimate target of natural selection is a single sex ratio (as opposed to the target being, say, an age-specific sequence of sex ratios) will require data on the sex specificity and timing of parental investment, statistical assessment of the agespecific sex ratios to determine whether they are reasonably regarded as age invariant, and a comparison of the predictive accuracy of relevant static and dynamic adaptive models.

- Zeleny R, Schimmel H (2002) Sexing of beef a survey of possible methods. *Meat Sci* 60(1):69–75.
- 22. Lush JL (1943) Animal Breeding Plans (Iowa State College Press, Ames, IA), 2nd Ed.
- Gianaroli L, Magli MC, Ferraretti AP (2001) The in vivo and in vitro efficiency and efficacy of PGD for aneuploidy. *Mol Cell Endocrinol* 183(Suppl 1):S13–S18.
- Magli MC, Gianaroli L, Ferraretti AP (2001) Chromosomal abnormalities in embryos. Mol Cell Endocrinol 183(Suppl 1):S29–S34.
- Hertig AT, Rock J, Adams EC, Menkin MC (1959) Thirty-four fertilized human ova, good, bad and indifferent, recovered from 210 women of known fertility; a study of biologic wastage in early human pregnancy. *Pediatrics* 23(1 Part 2):202–211.
- 26. Khvatov BP (1959) [New data on fertilization in man]. Arkh Anat Gistol Embriol 36(3):42–43.
- Khvatov BP (1960) Fertilization and early development of human ova in the tubes. Anat Rec 136(2):222–223.
- Khvatov BP (1967) [The human embryo at the stage of blastodermic vesicle]. Arkh Anat Gistol Embriol 53(7):51–56.
- Dickmann Z, Chewe TH, Bonney WA, Jr, Noyes RW (1965) The human egg in the pronuclear stage. Anat Rec 152(3):293–302.
- Noyes RW, Dickmann Z, Clewe TH, Bonney WA (1965) Pronuclear ovum from a patient using an intrauterine contraceptive device. Science 147(3659):744–745.
- Noyes RW, et al. (1966) Searches for ova in the human uterus and tubes. I. Review, clinical methodology, and summary of findings. Am J Obstet Gynecol 96(2):157–167.
- Zamboni L, Bell J, Baca M, Mishell DR, Jr (1966) A penetrated human ovum studied by electron microscopy. *Nature* 210(5043):1373–1375.
- Hertig AT (1967) Comparative Aspects of Reproductive Failure, ed Benirschke K (Springer, New York), pp 11–41.
- Avendaño S, Croxatto HD, Pereda J, Croxatto HB (1975) A seven-cell human egg recovered from the oviduct. *Fertil Steril* 26(12):1167–1172.
- Pereda J, Croxatto HB (1978) Ultrastructure of a seven-cell human embryo. Biol Reprod 18(3):481–489.
- Buster JE, et al. (1985) Biologic and morphologic development of donated human ova recovered by nonsurgical uterine lavage. Am J Obstet Gynecol 153(2):211–217.
- Pereda J, Coppo M (1987) Ultrastructure of a two-cell human embryo. Anat Embryol (Berl) 177(1):91–96.
- Sauer MV, Bustillo M, Rodi IA, Gorrill MJ, Buster JE (1987) In-vivo blastocyst production and ovum yield among fertile women. *Hum Reprod* 2(8):701–703.
- French FE, Bierman JM (1962) Probabilities of fetal mortality. Public Health Rep 77: 835–847.
- Shapiro S, Jones EW, Densen PM (1962) A life table of pregnancy terminations and correlates of fetal loss. *Milbank Mem Fund Q* 40:7–45.
- Warburton D, Fraser FC (1964) Spontaneous abortion risks in man: Data from reproductive histories collected in a medical genetics unit. Am J Hum Genet 16:1–25.
- 42. Abramson FD (1973) Spontaneous fetal death in man. Soc Biol 20(4):375-403.
- Cutright P (1975) Spontaneous fetal loss: A note on rates and some implications. J Biosoc Sci 7(4):421–433.

- Roberts CJ, Lowe CR (1975) Where have all the conceptions gone? Lancet 305(7905): 498–499.
- 45. Léridon H (1977) Human Fertility: The Basic Components (Univ of Chicago Press, Chicago).
- Miller JF, et al. (1980) Fetal loss after implantation. A prospective study. Lancet 2(8194):554–556.
- Edmonds DK, Lindsay KS, Miller JF, Williamson E, Wood PJ (1982) Early embryonic mortality in women. *Fertil Steril* 38(4):447–453.
- 48. Rolfe BE (1982) Detection of fetal wastage. Fertil Steril 37(5):655-660.
- Grudzinskas JG, Nysenbaum AM (1985) Failure of human pregnancy after implantation. Ann N Y Acad Sci 442:38–44.
- Wilcox AJ, et al. (1988) Incidence of early loss of pregnancy. N Engl J Med 319(4): 189–194.
- Wilcox AJ, Baird DD, Weinberg CR (1999) Time of implantation of the conceptus and loss of pregnancy. N Engl J Med 340(23):1796–1799.
- Boklage CE (1990) Survival probability of human conceptions from fertilization to term. Int J Fertil 35(2):75–90, 79–80, 81–94.
- Simpson JL (1990) Incidence and timing of pregnancy losses: Relevance to evaluating safety of early prenatal diagnosis. Am J Med Genet 35(2):165–173.
- Norwitz ER, Schust DJ, Fisher SJ (2001) Implantation and the survival of early pregnancy. N Engl J Med 345(19):1400–1408.
- Sandalinas M, et al. (2001) Developmental ability of chromosomally abnormal human embryos to develop to the blastocyst stage. Hum Reprod 16(9):1954–1958.
- Macklon NS, Geraedts JPM, Fauser BCJM (2002) Conception to ongoing pregnancy: The 'black box' of early pregnancy loss. Hum Reprod Update 8(4):333–343.
- Racowsky C (2002) High rates of embryonic loss, yet high incidence of multiple births in human ART: Is this paradoxical? *Theriogenology* 57(1):87–96.
- Nepomnaschy PA, et al. (2006) Cortisol levels and very early pregnancy loss in humans. Proc Natl Acad Sci USA 103(10):3938–3942.
- Vitzthum VJ, Spielvogel H, Thornburg J, West B (2006) A prospective study of early pregnancy loss in humans. *Fertil Steril* 86(2):373–379.
- Holman DJ, Wood JW (2001) Reproductive Ecology and Human Evolution, ed Ellison PT (Aldine de Gruyter, New York), pp 15–38.
- Simpson JL, Carson S (1993) Biomedical and Demographic Determinants of Reproduction, eds Gray R, Leridon H, Spira A (Oxford Univ Press, New York), pp 287–315.
- 63. Geneva Conference (1966) Standardization of procedures for chromosome studies in abortion. Bull World Health Organ 34(5):765–782.
- Carr DH (1967) Comparative Aspects of Reproductive Failure, ed Benirschke K (Springer, New York), pp 96–117.
- 65. Carr DH (1971) Chromosomes and abortion. Adv Hum Genet 2:201–257.
- Boué J, Bou A, Lazar P (1975) Retrospective and prospective epidemiological studies of 1500 karyotyped spontaneous human abortions. *Teratology* 12(1):11–26.
- Creasy MR, Crolla JA, Alberman ED (1976) A cytogenetic study of human spontaneous abortions using banding techniques. *Hum Genet* 31(2):177–196.
- Geisler M, Kleinebrecht J (1978) Cytogenetic and histologic analyses of spontaneous abortions. Hum Genet 45(3):239–251.
- 69. Hassold TJ, et al. (1978) A cytogenetic study of spontaneous abortions in Hawaii. Ann Hum Genet 41(4):443–454.
- Shepard TH, Fantel AG (1979) Embryonic and early fetal loss. *Clin Perinatol* 6(2):219–243.
 Kajii T, et al. (1980) Anatomic and chromosomal anomalies in 639 spontaneous
- abortuses. Hum Genet 55(1):87–98.
 72. Craver RD, Kalousek DK (1987) Cytogenetic abnormalities among spontaneously aborted previable fetuses. Am J Med Genet Suppl 3:113–119.
- Menasha J, Levy B, Hirschhorn K, Kardon NB (2005) Incidence and spectrum of chromosome abnormalities in spontaneous abortions: New insights from a 12-year study. *Genet Med* 7(4):251–263.
- Hassold T, et al. (1996) Human aneuploidy: Incidence, origin, and etiology. Environ Mol Mutagen 28(3):167–175.
- 75. Warburton D (1997) Human female meiosis: New insights into an error-prone process. Am J Hum Genet 61(1):1–4.
- Hassold T, Hunt P (2001) To err (meiotically) is human: The genesis of human aneuploidy. Nat Rev Genet 2(4):280–291.
- Hunt PA, Hassold TJ (2008) Human female meiosis: What makes a good egg go bad? Trends Genet 24(2):86–93.
- 78. Brennan BG, Carr DH (1979) Parental origin of triploidy and D and G trisomy in spontaneous abortions. J Med Genet 16(4):285–287.
- Jacobs PA, Szulman AE, Funkhouser J, Matsuura JS, Wilson CC (1982) Human triploidy: Relationship between parental origin of the additional haploid complement and development of partial hydatidiform mole. Ann Hum Genet 46(Pt 3):223–231.
- Meulenbroek GH, Geraedts JPM (1982) Parental origin of chromosome abnormalities in spontaneous abortions. Hum Genet 62(2):129–133.
- Baumer A, Balmer D, Binkert F, Schinzel A (2000) Parental origin and mechanisms of formation of triploidy: A study of 25 cases. *Eur J Hum Genet* 8(12):911–917.
- McFadden DE, Langlois S (2000) Parental and meiotic origin of triploidy in the embryonic and fetal periods. *Clin Genet* 58(3):192–200.
- Bielanska M, Tan SL, Ao A (2002) Chromosomal mosaicism throughout human preimplantation development in vitro: Incidence, type, and relevance to embryo outcome. *Hum Reprod* 17(2):413–419.
- Coonen E, et al. (2004) Anaphase lagging mainly explains chromosomal mosaicism in human preimplantation embryos. *Hum Reprod* 19(2):316–324.
- Viuff D, et al. (1999) A high proportion of bovine blastocysts produced in vitro are mixoploid. *Biol Reprod* 60(6):1273–1278.

- Coppola G, et al. (2007) Use of cross-species in-situ hybridization (ZOO-FISH) to assess chromosome abnormalities in day-6 in-vivo- or in-vitro-produced sheep embryos. *Chromosome Res* 15(3):399–408.
- Rambags BPB, et al. (2005) Numerical chromosomal abnormalities in equine embryos produced in vivo and in vitro. Mol Reprod Dev 72(1):77–87.
- 88. Mortimer D (2000) Sperm preparation methods. J Androl 21(3):357-366.
- Elder K, Dale B (2003) In Vitro Fertilization (Cambridge Univ Press, Cambridge), 2nd Ed.
- Dorn C, van der Ven H (2005) Clomiphene citrate versus gonadotrophins for ovulation stimulation. Reprod Biomed Online 10(Suppl 3):37–43.
- Dickey RP, Holtkamp DE (1996) Development, pharmacology and clinical experience with clomiphene citrate. Hum Reprod Update 2(6):483–506.
- Check JH, et al. (1994) Male:female sex ratio in births resulting from IVF according to swim-up versus Percoll preparation of inseminated sperm. Arch Androl 33(1):63–65.
- Labarta E, et al. (2012) Moderate ovarian stimulation does not increase the incidence of human embryo chromosomal abnormalities in in vitro fertilization cycles. J Clin Endocrinol Metab 97(10):E1987–1994.
- 94. Ledbetter DH (2009) Chaos in the embryo. Nat Med 15(5):490-491.
- Vanneste E, et al. (2009) Chromosome instability is common in human cleavagestage embryos. Nat Med 15(5):577–583.
- Baart EB, et al. (2006) Preimplantation genetic screening reveals a high incidence of aneuploidy and mosaicism in embryos from young women undergoing IVF. Hum Reprod 21(1):223–233.
- Munné S, et al. (2006) Wide range of chromosome abnormalities in the embryos of young egg donors. Reprod Biomed Online 12(3):340–346.
- Bishop JB, et al. (1996) Aneuploidy in germ cells: Etiologies and risk factors. Environ Mol Mutagen 28(3):159–166.
- Plachot M (2001) Chromosomal abnormalities in oocytes. Mol Cell Endocrinol 183(Suppl 1):S59–S63.
- Eichenlaub-Ritter U (1996) Parental age-related aneuploidy in human germ cells and offspring: A story of past and present. *Environ Mol Mutagen* 28(3):211–236.
- Warburton D, Kinney A (1996) Chromosomal differences in susceptibility to meiotic aneuploidy. *Environ Mol Mutagen* 28(3):237–247.
- Pellestor F, Anahory T, Hamamah S (2005) Effect of maternal age on the frequency of cytogenetic abnormalities in human oocytes. Cytogenet Genome Res 111(3-4):206–212.
- Bongso A, Trounson AO (2000) Handbook of In Vitro Fertilization, eds Trounson AO, Gardner DK (CRC Press, Boca Raton, FL), pp 127–143.
- Bongso A, Gardner DK (2000) Handbook of In Vitro Fertilization, eds Trounson AO, Gardner DK (CRC Press, Boca Raton, FL), pp 167–180.
- 105. Summers MC, Biggers JD (2003) Chemically defined media and the culture of mammalian preimplantation embryos: Historical perspective and current issues. *Hum Reprod Update* 9(6):557–582.
- Williams M, et al. (1993) Sperm numbers and distribution within the human fallopian tube around ovulation. *Hum Reprod* 8(12):2019–2026.
- De Jonge C (2005) Biological basis for human capacitation. Hum Reprod Update 11(3):205–214.
- Barratt CLR, Kirkman-Brown J (2006) Man-made versus female-made environment will the real capacitation please stand up? Hum Reprod Update 12(1):1–2.
- Eisenbach M, Giojalas LC (2006) Sperm guidance in mammals: An unpaved road to the egg. Nat Rev Mol Cell Biol 7(4):276–285.
- Suarez SS, Pacey AA (2006) Sperm transport in the female reproductive tract. Hum Reprod Update 12(1):23–37.
- Roberts RM (2005) Embryo culture conditions: What embryos like best. Endocrinology 146(5):2140–2141.
- Düsing C (1884) Die Regulierung des Geschlechtsverhältnisses bei der Vermehrung der Menschen, Tiere, und Pflanzen. Jenaische Zeitschrift fur Naturwiss 17:593–940.
- 113. Fisher RA (1930) The Genetical Theory of Natural Selection (Clarendon Press, Oxford).
- 114. Charnov EL (1982) The Theory of Sex Allocation (Princeton Univ Press, Princeton).
- Karlin S, Lessard S (1986) Theoretical Studies on Sex Ratio Evolution (Princeton Univ Press, Princeton).
- Orzack SH, Hines WGS (2005) The evolution of strategy variation: will an ESS evolve? Evolution 59(6):1183–1193.
- Charnov EL (1979) Genetic evolution of patterns of sexuality: Darwinian fitness. Am Nat 113(4):465–480.
- 118. Haig D (1993) Genetic conflicts in human pregnancy. Q Rev Biol 68(4):495-532.
- 119. Pike IL (2001) Reproductive Ecology and Human Evolution, ed Ellison PT (Aldine de Gruyter, New York).
- Levitis DA (2011) Before senescence: The evolutionary demography of ontogenesis. Proc Biol Sci 278(1707):801–809.
- Wells JC (2000) Natural selection and sex differences in morbidity and mortality in early life. J Theor Biol 202(1):65–76.
- Charlesworth B (1977) Measuring Selection in Natural Populations, eds Christiansen FB, Fenchel TM (Springer, Berlin), pp 345–363.
- Hewlett BS (1991) Demography and childcare in preindustrial societies. J Anthropol Res 47(1):1–37.
- 124. Koeslag JH (1981) The adult sex ratio and human population homeostasis. S Afr Med J 60(17):666–669.
- Tuljapurkar S, Steiner UK, Orzack SH (2009) Dynamic heterogeneity in life histories. Ecol Lett 12(1):93–106.
- Orzack SH, Steiner UK, Tuljapurkar SD, Thompson P (2011) Static and dynamic expression of life history traits in the northern fulmar Fulmarus glacialis. *Oikos* 120(3): 369–380.
- 127. Stubblefield JW, Orzack SH (2013) Resource transfers and evolution: Helpful offspring and sex allocation. *Theor Popul Biol* 83:64–81.

Study	Sex ratio	Males	Females	Sexing method
Bochkov and Kostrova (1)	0.489	440	460	С
Bochkov and Kostrova (2)*	0.508	1,525	1,475	С
Boué et al. (3)	0.600	21	14	К
Bowen and Lee (4)	0.714	5	2	К
Bunak (5)	0.611	33	21	М
Csordas et al. (6)	0.560	560	440	С
Evdokimova et al. (7)	0.526	41	37	К
Goldstein et al. (8)	0.376	35	58	С
Golovachev et al. (9)	0.327	16	33	К
Hahnemann (10)	0.500	86	86	К
Hnevkovsky et al. (11)	0.579	378	275	С
Hoshi et al. (12) [†]	0.455	407	487	К
Jakobovits et al. (13)	0.522	391	358	М
Kajii et al. (14) [‡]	0.486	530	561	К
Kellokumpu-Lehtinen and Pelliniemi (15)	0.539	297	254	С
Kerr and Rashad (16)	0.533	8	7	К
Klinger and Glasser (17) [§]	0.506	746	727	К
Kukharenko (18)	0.587	595	419	С
Kukharenko (19)	0.497	349	353	С
Lee and Takano (20)	0.605	848	554	н
Matsunaga et al. (21)	0.514	95	90	С
Matthiessen and Matthiessen (22)	0.580	459	332	М
Mikamo (23)¶	0.518	381	355	С
Momoli and Volet (24)	0.543	69	58	С
Moore and Hyrniuk (25)	0.475	131	145	С
Ohama (26)	0.505	545	534	К
Pogolrzelska (27)	0.531	69	61	С
Sasaki (28)	0.469	452	511	К
Schultze (29)	0.700	156	67	С
Serr and Ismajovich (30)	0.624	78	47	С
Stonova and Selezniova (31)	0.615	8	5	К
Suzomori (32)	0.600	6	4	К
Szontagh (33)**	0.550	165	135	С
Szulman (34)	0.733	11	4	К
Thiede and Metcalfe (35) ^{††}	0.595	22	15	С, К
Tonomura et al. (36) ^{‡‡}	0.534	325	284	К
Tsuji and Nakano (37)	0.477	122	134	К
Vaida (38)	0.579	123	91	С
Yamamoto (39) ^{§§}	0.518	570	530	К
Yasuda et al. (40)	0.439	65	83	К
Zhou et al. (41)	0.537	630	542	К

Table S1. Summary of induced abortion studies

NAS PNAS

All but two studies assigned fetuses to trimester. Twenty-four studies assigned gestational age in weeks or a narrow range of weeks. In almost all cases, age was based on an estimate of the LMP. C, chromatin; H, histology; K, karyotype; M, morphology.

*Included results from Kostrova (42).

[†]Probably included results from Hoshi et al. (43).

^{*}Probably included results from Kajii et al. (44).

[§]Included results from Klinger et al. (45).

[¶]Identical to Mikamo (46).

^{||}Included results from Makino and Sasaki (47), Makino et al. (48, 49), Sasaki et al. (50, 51), Shimba (52), Makino (53), and Makino et al. (54).

**Identical to Szontagh et al. (55).

⁺⁺Included results from Thiede and Salm (56).

**Included results from Tonomura et al. (57).

[§]Included results from Yamamoto et al. (58–60).

1. Bochkov NP, Kostrova AA (1971) [Human sex ratio in the embryonic period and among the newborn]. Dokl Akad Nauk SSSR 200(4):973–976.

2. Bochkov NP, Kostrova AA (1973) Sex ratio among human embryos and newborns in a Russian population. Humangenetik 17(2):91-98.

3. Boué JG, Boué A, Lazar P (1967) Les aberrations chromosomiques dans les avortements. Ann Genet 10(4):179-187.

8. Goldstein AI, Ketchum M (1974) Evaluation of the discrepancy between primary and secondary sex ratios. Obstet Gynecol 43(2):200–202.

9. Golovachev GD, Slozina NM, Petrova SP (1973) [Karyological study of human spontaneous and medical abortions]. Tsitologiia 15(7):948-952.

10. Hahnemann N (1973) Chromosome studies in induced abortions. Clin Genet 4(4):328-332.

^{4.} Bowen P, Lee CS (1969) Spontaneous abortion. Chromosome studies on 41 cases and an analysis of maternal age and duration of pregnancy in relation to karyotype. Am J Obstet Gynecol 104(7):973–983.

^{5.} Bunak VV (1934) [On the "true sex ratio."] Proc Maxim Gorky Medico-Biological Res Inst 3:195–212.

^{6.} Csordás T, Dömötöri E, Gergely E, Rechnitz K (1963) Über die geschlechtsproportion der früchte in der ersten 3 monaten des intrauterinen lebens. *Zentralbl Gynakol* 85:1036–1047. 7. Evdokimova VN, Nikitina TV, Lebedev IN, Sukhanova NN, Nazarenko SA (2000) [Sex ratio in early embryonal mortality in man]. *Ontogenez* 31(4):251–257.

11. Hnevkovsky O, Petrikova E, Cerny M (1964) Prenatal sex ratio in man. Acta Univ Carol [Med] (Praha) (Suppl 18):105.

- 12. Hoshi N, Hanatani K, Kishida T, Sagawa T, Fujimoto S (1997) Chromosomal analysis in 894 induced abortuses from women of advanced maternal age in relation to gestational weeks and fetal sex ratio. J Obstet Gynaecol Res 23(1):1–7.
- 13. Jakobovits AA, Jakobovits A, Iffy L (1986) Sex ratio of fetuses during the second trimester of gestation. Acta Anat (Basel) 126(1):54-56.
- 14. Kajii T, Ohama K, Mikamo K (1991) Prenatal sex ratio: A study of 1089 induced abortuses. Am J Hum Genet 49(4, Suppl):221.
- 15. Kellokumpu-Lehtinen P, Pelliniemi LJ (1984) Sex ratio of human conceptuses. Obstet Gynecol 64(2):220–222.
- 16. Kerr M, Rashad MN (1966) Chromosome studies on spontaneous abortions. Am J Obstet Gynecol 94(3):322-339.
- 17. Klinger HP, Glasser M (1981) Contraceptives and the conceptus. II. Sex of the fetus and neonate after oral contraceptive use. Contraception 23(4):367-374.
- 18. Kukharenko VI (1970) [Concerning the sex ratio in the human (analysis of 1014 abortuses)]. Genetika 6(5):142-149.
- 19. Kukharenko VI (1971) [Investigation of the prenatal sex ratio in humans by the method of short-term tissue cultures]. Genetika 7(8):166-169.
- 20. Lee S, Takano K (1970) Sex ratio in human embryos obtained from induced abortion: Histological examination of the gonad in 1,452 cases. Am J Obstet Gynecol 108(8):1294-1297.
- 21. Matsunaga E, Tonomura A, Inui N, Honda T (1963) Embryonal sex ratio in Japanese determined by the sex-chromatin test: A preliminary report. Jinrui Idengaku Zasshi 8(1):89.
- Matthiessen PC, Matthiessen ME (1977) Sex ratio in a sample of human fetuses in Denmark, 1962-1973. Ann Hum Biol 4(2):183–185.
 Mikamo K (1969) Female preponderance in the sex ratio during early intrauterine development: A sex chromatin study. Jinrui Idengaku Zasshi 13(4):272–277.
- 24. Momoli G, Volet B (1962) Sex chromatin, abortions and the primary sex ratio. Acta Cytol 6(1):134-138.
- 25. Moore KL, Hyrniuk W (1960) Sex diagnosis of early human abortions by the chromatin method. Anat Rec 136(2):247.
- 26. Ohama K (1978) Chromosomal anomalies and sex ratio of induced abortions in early embryogenesis. Acta Obstet Gynaecol Jpn 30(12):1687-1695.
- 27. Pogorzelska E (1963) [Studies on sex chromatins in human embyros and fetuses and in newborn infants]. Pr Lódzkie Tow Nauk Wydz IV. Nauk Lek 52:1-40.
- 28. Sasaki M (1973) Fertility and sterility. Proceedings of the VII World Congress, eds Hasegawa T, Hayashi M, Ebling F, Henderson IW (Excerpta Medica, Amsterdam), pp 339-344.
- 29. Schultze KW (1961) Geschlechtshestimmungen bei abortus verschiedener genese. Zentralbl Gynakol 83(2):56-58.
- 30. Serr DM, Ismajovich B (1963) Determination of the primary sex ratio from human abortions. Am J Obstet Gynecol 87(1):63-65.
- 31. Stonova NS, Selezniova TG (1968) [Chromosome aberrations in cases of human spontaneous abortions]. Genetika 4(7):126-144.
- 32. Suzumori K (1968) Studies on the cytogenetics of human abortions. 1. Chromosome analysis of induced abortions. 2. Chromosome analysis of spontaneous abortions. Nagoya Med J 14(3):167–192.
- 33. Szontágh FE, Jakobovits AA, Méhes C (1961) Primary embryonal sex ratio in normal pregnancies determined by the nuclear chromatin. Nature 192(4801):476.
- 34. Szulman AE (1965) Chromosome aberrations in spontaneous human abortions. N Engl J Med 272(16):811-818.
- 35. Thiede HA, Metcalfe S (1966) Chromosomes and human pregnancy wastage. Am J Obstet Gynecol 96(8):1132–1138.
- 36. Tonomura A, Sasaki MS, Yamada K, Aoki H (1973) Cytogenetic studies in induced abortions. Jpn J Hum Genet 18(1):120-121.
- 37. Tsuji K, Nakano R (1978) Chromosome studies of embryos from induced abortions in pregnant women age 35 and over. Obstet Gynecol 52(5):542-544.
- 38. Vaida R (1986) [Analysis of the primary and secondary sex ratios in man]. Akusherstvo Ginekol 3:67-68.
- 39. Yamamoto M, Ito T, Watanabe GI (1978) Ecocytogenetic observation on the sex ratio in the first trimester. Jpn J Hum Genet 23(3):307-308.
- 40. Yasuda M, Matsuda N, Tonomura A (1967) Proceedings of the Congenital Anomalies Research Association of Japan Seventh Annual Meeting, pp 51–52.
- 41. Zhou XT, et al. (1989) Chromosome abnormalities in early pregnancy analyzed by direct chromosome preparation of chorionic villi. Hum Genet 83(3):277-279.
- 42. Kostrova AA (1972) [Embryonic correlations of human sexes according to materials of medical abortions]. Biulleten Eksp Biol I Meditsiny 74(11):93–95.
- 43. Hoshi N, Yamagami Y, Hanatani K, Tanaka T, Fujimoto S (1990) Chromosomal studies on 934 induced abortuses of middle-aged pregnant women. Asia Oceania J Obstet Gynaecol 16(3):275–281.
- 44. Kajii T, Ohama K, Mikamo K (1978) Anatomic and chromosomal anomalies in 944 induced abortuses. Hum Genet 43(3):247-258.
- 45. Klinger HP, Glasser M, Kava HW (1976) Contraceptives and the conceptus. I. Chromosome abnormalities of the fetus and neonate related to maternal contraceptive history. Obstet Gynecol 48(1):40–48.
- 46. Mikamo K (1969) Prenatal sex ratio in man. Observations contradictory to the prevailing concept. Obstet Gynecol 34(5):710-716.
- 47. Makino S, Sasaki M (1961) A study of somatic chromosomes in a Japanese population. Am J Hum Genet 13(1):47–63.
- 48. Makino S, Kikuchi Y, Sasaki MS, Sasaki M, Yoshida M (1962) A further survey of the chromosomes in the Japanese. Chromosoma 13(2):148-162.
- 49. Makino S, Yamada K, Sofuni T (1963) A supplementary note on the somatic chromosomes in Japanese. Proc Jpn Acad 39(2):131–135.
- 50. Sasaki M, Makino S, Muramoto JI, Ikeuchi T, Shimba H (1967) A chromosome survey of induced abortuses in a Japanese population. Chromosoma 20(3):267-283.
- 51. Sasaki M, et al. (1971) Chromosome studies in early embryogenesis. Am J Obstet Gynecol 111(1):8-12.
- 52. Shimba H (1966) Notes on the chromosomes of human abortuses in early pregnancy. J Fac Sci Hokkaido Imp Univ Ser VI Zool 16:41-46.
- 53. Makino S (1968) Chromosome data and sex-ratio in induced abortion. Mamm Chromosom News/ 9:93–99.
- 54. Makino S, Awa AA, Sasaki M (1968) Chromosome studies in normal human subjects. Ann N Y Acad Sci 155:679-694.
- 55. Szontágh F, Jakobovits A, Mehes K (1961) [Fetal sex determination in normal pregnancy by means of sex-chromatins]. Orv Hetil 102:1593-1594.
- 56. Thiede HA, Salm SB (1964) Chromosome studies of human spontaneous abortions. Am J Obstet Gynecol 90(2):205–215.
- 57. Tonomura A, Sasaki MS, Yamada K, Aoki H (1969) Chromosome studies in induced abortions. Jpn J Hum Genet 14(3):264.
- 58. Yamamoto M, Fujimori R, Ito T, Kamimura K, Watanabe G (1975) Chromosome studies in 500 induced abortions. Humangenetik 29(1):9-14.
- 59. Yamamoto M, Ito T, Watanabe GI (1976) The sex ratio in 1,000 cases of induced abortions. *Teratology* 14(2):260.
- 60. Yamamoto M, Ito T, Watanabe GI (1977) Determination of prenatal sex ratio in man. Hum Genet 36(3):265-269.

Week	Sex ratio	Males	Females
18	0.512	18,162,805	17,335,131
19	0.512	18,149,803	17,325,305
20	0.512	18,133,380	17,311,832
21	0.512	18,115,431	17,296,645
22	0.512	18,096,738	17,280,309
23	0.512	18,075,460	17,261,458
24	0.511	18,052,256	17,240,668
25	0.511	18,026,483	17,217,305
26	0.511	17,997,574	17,191,404
27	0.511	17,958,594	17,157,699
28	0.511	17,912,050	17,117,048
29	0.511	17,850,789	17,062,918
30	0.511	17,769,904	16,991,973
31	0.511	17,655,443	16,892,387
32	0.511	17,484,850	16,745,317
33	0.510	17,200,884	16,498,846
34	0.510	16,736,525	16,095,007
35	0.508	15,925,796	15,394,480
36	0.506	14,362,094	14,035,032
37	0.501	11,273,505	11,245,724
38	0.495	6,934,085	7,076,644
39	0.493	3,238,602	3,334,960
40	0.493	1,298,124	1,337,331
41	0.493	646,232	663,458
42	0.493	330,479	339,250
43	0.493	163,099	167,812
44	0.495	75,062	76,481
45	0.499	28,537	28,674

Table S2.Week-specific estimates of the CSR based on fetal-death and live-birth data for the United States from 1995 to 2004

Week is defined postconception (CA) as determined by LMP.

Chromosome	Embryos	CSR	Ν	ΔΑΙΟ	Akaike weight
XY	All	0.505	20,116	341.468	<0.001
	Abnormal	0.999	323	0	>0.999
	Normal	0.498	19,793		
1	All	0.499	20,263	0	0.988
	Abnormal	0.524	452	8.776	0.012
	Normal	0.498	19,811		
2	All	0.498	20,278	0	0.992
	Abnormal	0.510	467	9.750	0.008
	Normal	0.498	19,811		
3	All	0.498	20,068	0	0.992
	Abnormal	0.485	257	9.499	0.008
	Normal	0.498	19,811	•	0.005
4	All	0.498	20,200	0	0.985
	Abnormai	0.523	389	8.358	0.015
F	Normai	0.498	19,811	0	0.000
5	All	0.496	20,117	0 0 0 0 0 0	0.966
	Normal	0.524	10 911	0.025	0.012
6	All	0.498	20 109	0	0.002
0	All	0.498	20,108	0 757	0.992
	Normal	0.312	10 911	5.757	0.008
7		0.498	20 155	0	0.967
,	Abnormal	0.457	20,133	6 756	0.007
	Normal	0.402	19 811	0.750	0.055
8	All	0.498	20 223	0	0 991
0	Abnormal	0.480	412	9,404	0.009
	Normal	0.498	19.811	51.101	01000
9	All	0.498	20.229	0	0.991
	Abnormal	0.486	418	9.430	0.009
	Normal	0.498	19,811		
10	All	0.498	20,166	0	0.991
	Abnormal	0.516	355	9.416	0.009
	Normal	0.498	19,811		
11	All	0.498	20,133	0	0.991
	Abnormal	0.478	322	9.445	0.009
	Normal	0.498	19,811		
12	All	0.498	20,026	0	0.992
	Abnormal	0.486	215	9.607	0.008
	Normal	0.498	19,811		
13	All	0.498	20,286	0	0.993
	Abnormal	0.503	475	9.876	0.007
	Normal	0.498	19,811		
14	All	0.499	20,285	0	0.981
	Abnormal	0.522	474	7.868	0.019
	Normal	0.498	19,811	_	
15	All	0.497	20,607	0	0.961
	Abnormal	0.466	/96	6.426	0.039
	Normal	0.498	19,811		
16	All	0.498	21,224	0	0.992
	Abnormai	0.498	1,413	9.764	0.008
17	Normai	0.498	19,811	0	0.000
17	All	0.498	20,103	0 207	0.990
	Abnormal	0.515	292	9.207	0.010
19		0.498	110,611	0	0 070
10	All	0.497	20,239	0 7 112	0.972
	Normal	0.457	448 10 911	7.112	0.028
10		0.490	19,011 20,00 <i>1</i>	0	0 000
19	All	0.499	20,004	U Q 192	0.990
	Normal	0.203	10 211	3.103	0.010
20		0.490 0.492	20 190	0	۵ ۵77
	Abnormal	0.476	279	7 503	0.077
	Normal	0.498	19,811		0.025

Table S3. Mixed-effect analyses of the association between the state of individual chromosomesin ART embryos and the CSR

Table S3. Cont.

PNAS PNAS

Chromosome	Embryos	CSR	Ν	ΔAIC	Akaike weight
21	All	0.499	20,673	0	0.985
	Abnormal	0.516	862	8.373	0.015
	Normal	0.498	19,811		
22	All	0.498	21,096	0	0.990
	Abnormal	0.493	1,285	9.167	0.010
	Normal	0.498	19,811		

All scored chromosomes were normal except the target chromosome, which could be normal or abnormal.

Table S4.	Mixed-effect analyses of the association between the overall state of the embryo (Any) or the state of
individual	chromosomes and the CSR (aCGH data)

ChromosomEmbryosCSRNAAICAkaike weightCSRNAAICAkaike weightAny NormalAll0.48412,69300.9850.50732,7600.989Normal0.4743,31000.59215,9744.3560.100Ahormal0.48412,693504,8250.0010.59977.700.00991Ahormal0.4731,10300.99937.0500.99977.100.9991All0.48412,69300.9820.50732,47600.9990.9913.07600.991Normal0.46610,92500.9820.50732,47600.9920.0110.4680.02920.9923.17800.982Ahormal0.46811,33800.9990.50732,47600.9820.9923.17800.98210.46811,33700.9890.50732,47600.9820.9923.13800.9923.13800.9923.13800.9923.13800.9923.13800.9923.1480.0010.50731,49300.9923.1480.0010.50731,49300.9923.1480.0010.50731,39300.9923.14800.9913.15900.9923.14800.9923.15900.992 <th></th> <th></th> <th></th> <th></th> <th>Blastomere</th> <th></th> <th></th> <th></th> <th>Blastocyst</th> <th></th>					Blastomere				Blastocyst	
Any All 0.484 2.693 0 0.985 0.507 2.2476 0 0.898 Normal 0.474 3.310 0.015 0.517 15.757 4.355 0.102 XY All 0.484 1.263 0.0150 0.507 32.476 0 0.001 All 0.484 1.263 0 0.983 0.507 32.476 0 0.991 All 0.484 1.263 0 0.982 0.507 32.476 0 0.991 Normal 0.486 10.257 0.229 0.507 32.476 0 0.992 1 Normal 0.486 10.327 0.503 32.476 0 0.992 3 All 0.484 12.693 0 0.990 0.507 32.476 0 0.992 4 All 0.483 1.317 0.507 31.475 0.516 0.016 31.57 0 0.992 All 0.484<	Chromosome	Embryos	CSR	Ν	ΔAIC	Akaike weight	CSR	N	ΔAIC	Akaike weight
Abnormal 0.487 9.384 8.367 0.015 0.511 1.5,974 4.316 0.102 XY All 0.484 1.2,693 504.355 -0.001 0.507 3.2,476 570.744 -0.001 Normal 0.453 1.1,590 0.999 771 0 >0.991 Normal 0.453 1.1,590 0.498 3.1,705 0.007 3.1,276 Normal 0.446 1.2,693 0.0192 0.507 3.2,476 0 0.9991 Abnormal 0.446 1.2,693 0.018 0.479 1.258 5.146 0.0711 Normal 0.448 1.2,693 0 0.990 0.507 3.2,476 0 0.982 Abnormal 0.448 1.2,693 0.011 0.468 1.317 0.011 0.468 1.338 0.057 3.2,476 0 0.992 Abnormal 0.444 1.2,693 0.0591 0.507 3.1,491 0.0507 3.1,393 0.057	Any	All	0.484	12,693	0	0.985	0.507	32476	0	0.898
Normal 0.474 3.310 0.502 1.502 1.502 Abnormal 0.812 1.103 0 >0.999 0.999 771 0 >0.999 1 Abnormal 0.812 1.103 0 >0.999 0.999 771 0 >0.999 1 All 0.483 1.103 0 9.099 1.71 0 >0.999 1 All 0.484 1.2693 0 0.981 0.017 0.498 1.375 0 0.929 Abnormal 0.476 1.398 8.013 0.018 0.479 1.278 0 0.929 Abnormal 0.476 1.378 9.247 0 0.935 3.175 0 0.982 All 0.488 1.325 9.247 0.010 0.483 9.037 3.137 0 0.985 Abnormal 0.484 1.2693 0.552 0.419 0.507 3.147 0 0.0184 Abnormal		Abnormal	0.487	9,384	8.367	0.015	0.511	15,974	4.356	0.102
XY All 0.484 12,683 504.835 <0.001 0.507 32,476 570.744 <0.009 Normal 0.453 11,900 0 0.999 7.71 0 >0.999 Normal 0.453 11,900 0 0.838 0.507 32,476 0 0.991 Abnormal 0.470 1.768 8.103 0.017 0.498 1.706 0.099 2 All 0.446 12,693 0 0.922 0.507 32,476 0 0.922 Abnormal 0.448 12,693 0 0.999 0.507 32,476 0 0.982 Abnormal 0.488 1,355 9.247 0.999 0.507 32,476 0 0.982 Abnormal 0.488 1,317 0.509 31,337 0.007 31,433 0.018 0.493 0.493 0.493 0.493 0.493 0.493 0.476 0 0.992 0.507 31,431 0.008 0.0093 0.507 32,476 0 0.992 0.009 0.413 0.009		Normal	0.474	3,310			0.502	16,502		
Abnormal 0.812 1,103 0 -0.999 0.771 0 >-0.999 1 All 0.483 1,593 0.991 0.507 31,772 0 0.992 0.991 0.507 32,476 0 0.992 0.991 0.507 32,476 0 0.992 0.991 0.507 31,574 0 0.992 0.991	XY	All	0.484	12,693	504.835	<0.001	0.507	32,476	570.744	<0.001
Normal 0.453 11,590 0.498 31,705 Abnormal 0.470 1,766 8.103 0.077 0.476 1,204 9.451 0.093 2 All 0.486 10,255 0.073 32,476 0 0.929 2 All 0.486 10,955 0.079 32,476 0 0.929 Normal 0.481 11,095 0.090 0.507 32,476 0 0.929 Abnormal 0.481 11,355 9,247 0.010 0.483 900 7.990 0.018 Abnormal 0.481 1,375 8,949 0.011 0.495 1,317 0.057 32,476 0 0.992 Abnormal 0.442 1,317 0.057 32,476 0 0.992 0.018 1,033 8,347 0.019 Abnormal 0.442 1,263 0.551 0.577 32,476 0 0.992 Abnormal 0.444 1,2639 0 <t< td=""><td></td><td>Abnormal</td><td>0.812</td><td>1,103</td><td>0</td><td>>0.999</td><td>0.999</td><td>771</td><td>0</td><td>>0.999</td></t<>		Abnormal	0.812	1,103	0	>0.999	0.999	771	0	>0.999
1 All 0.484 12,693 0 0.933 0.507 32,476 0 0.991 Normal 0.466 10,925 0.507 31,272 0.507 31,272 Abnormal 0.476 1,598 8.013 0.018 0.479 1,258 5.146 0.229 Abnormal 0.476 1,598 8.013 0.018 0.479 1,258 5.146 0.018 All 0.485 1,355 9.247 0.010 0.483 900 7.990 0.018 Abnormal 0.483 1,353 9.0507 31,2476 0 0.992 All 0.484 12,693 0.507 31,476 0 0.992 Abnormal 0.444 1,2693 0.507 32,476 0 0.992 Abnormal 0.444 1,481 0 0.507 32,476 0 0.992 Abnormal 0.448 1,481 0 0.507 32,476 0 0.966 Abnormal 0.448 1,2693 0 0.993 0.507 32,476		Normal	0.453	11,590			0.498	31,705		
Abnormal 0.470 1.768 8.103 0.071 0.498 1.204 9.451 0.092 2 All 0.486 10.952 0.073 32.476 0 0.929 Normal 0.476 15.98 8.013 0.018 0.507 32.476 0 0.929 All 0.488 1.335 9.247 0.010 0.507 32.476 0 0.989 All 0.488 1.335 9.247 0.010 0.433 900 7.990 0.918 Abnormal 0.448 1.2693 0 0.999 0.507 32.476 0 0.995 Abnormal 0.444 1.481 0 0.507 32.476 0 0.992 Abnormal 0.448 1.2693 0 0.993 0.507 32.476 0 0.996 All 0.448 1.2693 0 0.991 0.507 31.493 0.0191 0.507 31.493 0.0191 0.507 31.493	1	All	0.484	12,693	0	0.983	0.507	32,476	0	0.991
Normal 0.468 10.925 0.507 31,272 Ali 0.464 1,598 8.013 0.018 0.476 1.0 0.229 Abnormal 0.476 1,598 8.013 0.018 0.479 1,258 5.146 0.011 3 Ali 0.485 1,355 9.247 0.010 0.483 900 7.990 0.188 Abnormal 0.488 1,355 9.247 0.010 0.483 900 7.990 0.181 Abnormal 0.488 11,317 0.507 32,476 0 0.992 Abnormal 0.444 1,2693 0.507 32,476 0 0.992 Abnormal 0.444 1,811 0.507 32,476 0 0.992 Abnormal 0.444 1,311 0.507 32,476 0 0.966 Abnormal 0.448 1,2693 0 0.993 0.507 32,476 0 0.961 Abnormal 0.448		Abnormal	0.470	1,768	8.103	0.017	0.498	1,204	9.451	0.009
2 Ali 0.476 1,598 8,013 0,0182 0,507 32,476 0 0.929 Normal 0.476 1,095 . 0,508 31,218 0.018 Normal 0.484 1,355 9,247 0.010 0.483 900 7.990 0.018 Abnormal 0.483 1,355 9,247 0.010 0.483 900 7.990 0.018 Ali 0.483 1,356 . 0.999 0.507 32,476 0 0.992 Ali 0.484 1,2693 0.652 0.419 0.507 32,476 0 0.992 Abnormal 0.445 1,131 . 0.507 31,410 0.66 0.008 Normal 0.444 1,212 0.507 31,405 0 0.993 0.507 32,476 0 0.966 Ali 0.484 12,693 0 0.993 0.507 32,476 0 0.968 Normal 0.		Normal	0.486	10,925			0.507	31,272		
Abnormal 0.475 1,598 8.013 0.018 0.479 1,258 5.146 0.0711 3 Ali 0.485 11,055	2	All	0.484	12,693	0	0.982	0.507	32,476	0	0.929
Normal 0.484 11.095 0.598 31.218 Alu 0.484 1.355 9.247 0.010 0.483 900 0.999 0.507 32.476 0 0.985 Alu 0.483 1.355 9.247 0.010 0.483 900 0.985 Alu 0.483 11.355 9.247 0.011 0.466 1.083 8.347 0.015 Normal 0.474 1.376 8.949 0.011 0.466 1.083 8.347 0.015 Alu 0.445 11.212 0.507 31.410 0.066 9.666 0.008 Abnormal 0.489 1.352 9.871 0.007 0.485 9.33 6.714 0.0364 Alu 0.444 1.311 0.507 31.474 0.0364 0.1264 Alu 0.448 1.263 0 0.931 0.507 31.274 0.019 0.507 31.274 0.019 0.507 31.274 0.019 0.019		Abnormal	0.476	1,598	8.013	0.018	0.479	1,258	5.146	0.071
3 Ali 0.488 1,263 0 0.990 0.507 32,476 0 0.982 Abnormal 0.483 11,338 0.507 31,576 0.011 0.486 0.077 31,576 Ali 0.484 12,693 0 0.989 0.507 32,476 0 0.985 Abnormal 0.484 1,2633 0.652 0.419 0.393 8.347 0.015 Normal 0.484 1,2693 0.652 0.419 0.507 31,393 Ali 0.484 1,2693 0.652 0.419 0.507 32,476 0 0.992 Ali 0.484 1,2693 0 0.933 0.507 32,476 0 0.866 Abnormal 0.489 1,121 0.507 31,430 0 0.933 0.507 32,476 0 0.866 Abnormal 0.484 12,693 0 0.991 0.507 32,476 0 0.816 Normal		Normal	0.485	11,095			0.508	31,218		
Abnormal 0.483 1,355 9,247 0.010 0.483 900 7.990 0.018 A Ali 0.483 1,338 0.507 31,576 0 0.985 Abnormal 0.474 1,376 8.949 0.011 0.466 1.083 8.347 0.015 S Ali 0.485 11,317 0.507 31,393 0.012 5 Ali 0.488 12,293 0.652 0.419 0.507 31,476 0 0.992 6 Ali 0.448 12,263 0 0.993 0.507 32,476 0 0.966 Normal 0.484 13,21 0.007 0.485 933 6.714 0.366 Normal 0.484 13,263 0 0.993 0.507 32,476 0 0.806 Ali 0.483 14,2693 0 0.991 0.507 31,374 0.507 Ali 0.484 12,693 0 0.993 <td>3</td> <td>All</td> <td>0.484</td> <td>12,693</td> <td>0</td> <td>0.990</td> <td>0.507</td> <td>32,476</td> <td>0</td> <td>0.982</td>	3	All	0.484	12,693	0	0.990	0.507	32,476	0	0.982
Normal 0.484 11,338 0.057 31,572 4 All 0.484 1,2693 0 0.898 0.507 32,476 0 0.885 Normal 0.485 11,37 0.507 32,476 0 0.992 All 0.485 11,317 0.507 32,476 0 0.992 Ahnormal 0.444 1,2693 0.652 0.419 0.507 32,476 0 0.992 Ahnormal 0.484 1,2693 0 0.993 0.507 31,493 0 0.966 983 6.714 0.366 Ahnormal 0.484 1,311 0.007 0.485 983 6.714 0.380 Ahnormal 0.484 1,2693 0 0.919 0.507 31,493 0.019 0.507 31,493 0.019 0.507 32,476 0 0.881 Ahnormal 0.483 1,429 9.357 0.009 0.507 32,476 0 0.526 <t< td=""><td></td><td>Abnormal</td><td>0.488</td><td>1,355</td><td>9.247</td><td>0.010</td><td>0.483</td><td>900</td><td>7.990</td><td>0.018</td></t<>		Abnormal	0.488	1,355	9.247	0.010	0.483	900	7.990	0.018
4 All 0.484 12,693 0 0,985 0,507 32,476 0 0.985 Normal 0,485 11,317		Normal	0.483	11,338			0.507	31,576		
Abnormal 0.448 1,376 8,949 0.011 0.496 1,083 8,347 0.015 5 All 0.485 1,377 0.507 31,393 0.557 31,933 5 All 0.489 1,263 0.552 0.419 0.507 31,410 0.0983 0.507 31,410 6 All 0.489 1,212 0.507 31,410 0.034 7 All 0.484 1,263 0 0.933 0.507 31,433 0.034 7 All 0.484 1,263 0 0.943 0.507 31,437 0.034 8 All 0.487 1,125 0.508 31,274 0.034 Normal 0.487 1,263 0 0.991 0.507 32,476 0 0.526 All 0.484 1,2693 0 0.993 0.507 32,476 0 0.526 All 0.484 1,2693 0 0.993	4	All	0.484	12,693	0	0.989	0.507	32,476	0	0.985
Normal 0.489 11,317 0.507 31,347 0.507 32,476 0 0.992 Abnormal 0.449 1,481 0 0.581 0.498 1,066 9.656 0.008 Normal 0.489 11,212 0.507 32,476 0 0.966 All 0.484 12,693 0 0.933 0.507 32,476 0 0.966 Alnormal 0.484 12,693 0 0.943 0.507 32,476 0 0.806 Normal 0.484 12,693 0 0.943 0.507 32,476 0 0.806 Normal 0.487 1,435 5.626 0.057 32,476 0 0.981 Normal 0.483 11,204 0.0991 0.507 32,476 0 0.981 Abnormal 0.483 12,693 0 0.993 0.507 32,476 0 0.526 Abnormal 0.484 12,693 0 0.985		Abnormal	0.474	1,376	8.949	0.011	0.496	1,083	8.347	0.015
5 All 0.484 12,693 0.652 0.419 0.507 32,476 0 0.992 Abnormal 0.489 11,212 0 0,581 0.488 1,066 9.656 0.008 All 0.489 11,212 0.507 31,410 0.034 0.037 32,476 0 0.966 Abnormal 0.484 11,311 0.507 31,413 0.007 34,476 0 0.034 7 All 0.484 11,258 0.562 0.057 0.473 1,202 2.849 0.194 Abnormal 0.489 1,425 5.626 0.057 0.473 1,202 2.849 0.194 Abnormal 0.489 1,429 9.357 0.009 0.485 1,149 7.859 0.191 Normal 0.483 1,2693 0 0.993 0.507 32,476 0 0.888 All 0.484 12,693 0 0.993 0.507 32,476 0<		Normal	0.485	11,317			0.507	31,393		
Abnormal 0.444 1,481 0 0.581 0.498 1,166 9.656 0.008 Normal 0.489 1,212 0.507 31,410 6 All 0.484 12,693 0 0.993 0.507 31,410 7 All 0.484 12,693 0 0.943 0.507 31,493 7 All 0.484 12,693 0 0.943 0.507 32,74 0 0.806 Abnormal 0.487 11,258 5.626 0.057 0.473 1,202 2.849 0.194 Normal 0.489 1,626 9.855 0.007 0.567 32,476 0 0.981 All 0.484 12,693 0 0.993 0.507 32,476 0 0.526 Abnormal 0.484 11,207 0.508 31,132 0.11 0.413 0.426 0.426 0.357 32,476 0 0.583 All 0.484 1	5	All	0.484	12,693	0.652	0.419	0.507	32,476	0	0.992
Normal 0.489 11,212 0.507 31,410 6 All 0.480 1,382 9.871 0.007 0.485 983 6.714 0.034 Normal 0.480 1,381 0.007 0.485 983 6.714 0.034 7 All 0.484 11,311 0.507 31,493 0.806 0.806 Normal 0.487 11,258 0.507 0.473 1,202 2.849 0.194 Normal 0.487 11,258 0.507 31,476 0 0.981 Abnormal 0.489 1,459 9.357 0.009 0.485 1,149 7.859 0.019 Normal 0.484 12,693 0 0.993 0.507 32,476 0 0.526 Ahnormal 0.484 12,693 0 0.993 0.507 32,476 0 0.588 Normal 0.484 12,693 0 0.993 0.507 32,476 0 0.5959 </td <td></td> <td>Abnormal</td> <td>0.444</td> <td>1,481</td> <td>0</td> <td>0.581</td> <td>0.498</td> <td>1,066</td> <td>9.656</td> <td>0.008</td>		Abnormal	0.444	1,481	0	0.581	0.498	1,066	9.656	0.008
6 Alio 0.484 12,693 0 0.993 0.507 32,476 0 0.966 Abnormal 0.484 11,311 0.007 0.485 983 6.714 0.036 7 Ali 0.484 11,215 0.507 31,493 0.507 32,476 0 0.806 Abnormal 0.487 11,258 0 0.507 31,274 0 0.981 8 Ali 0.487 11,259 0 0.991 0.507 31,274 0 0.981 8 Ali 0.483 11,209 0.009 0.485 1,149 7.859 0.019 9 Ali 0.483 1,2693 0 0.993 0.507 31,327 9 Ali 0.484 1,493 8.402 0.015 0.475 1,190 4.131 0.012 10 Ali 0.484 1,493 8.402 0.015 0.475 1,190 4.131 0.012 <t< td=""><td>_</td><td>Normal</td><td>0.489</td><td>11,212</td><td></td><td></td><td>0.507</td><td>31,410</td><td></td><td></td></t<>	_	Normal	0.489	11,212			0.507	31,410		
Abnormal 0.480 1,322 9.8/1 0.007 0.485 983 6.714 0.034 Normal 0.484 12,693 0 0.943 0.507 31,493 7 Ali 0.484 12,693 0 0.943 0.507 32,476 0 0.806 Abnormal 0.487 11,258	6	All	0.484	12,693	0	0.993	0.507	32,476	0	0.966
Normal 0.484 11,311 0.507 32,476 0 0.806 All 0.459 1,435 5.626 0.057 0.473 1,202 2.849 0.194 Normal 0.487 11,258		Abnormal	0.480	1,382	9.871	0.007	0.485	983	6.714	0.034
/ Ali 0.494 12,693 0 0.493 0.507 31,202 2.849 0.194 Abnormal 0.487 11,258 0.508 31,274 0 0.981 8 Ali 0.484 12,693 0 0.991 0.507 32,476 0 0.981 Abnormal 0.483 11,204 0.507 31,327 0 0.507 31,327 9 Ali 0.484 12,693 0 0.993 0.507 32,476 0 0.526 Abnormal 0.484 12,693 0 0.993 0.507 31,327 0 0.474 Normal 0.484 12,693 0 0.985 0.507 31,44 0.210 0.474 Normal 0.484 12,693 0 0.985 0.507 32,476 0 0.888 11 Ali 0.484 12,693 0 0.983 0.475 1,185 6.281 0.041 Normal 0.484 12,693 0 0.992 0.507 31,291 0.981	_	Normal	0.484	11,311			0.507	31,493		
Abrormal 0.459 11,258 0.657 0.473 1,202 2.849 0.194 8 All 0.489 11,258 0.009 0.485 1,149 7.859 0.019 Normal 0.489 1,489 9.357 0.009 0.485 1,149 7.859 0.019 Normal 0.483 11,204 0.507 32,476 0 0.526 All 0.484 12,693 0 0.993 0.507 32,476 0 0.526 Abnormal 0.484 12,693 0 0.993 0.507 32,476 0 0.888 Normal 0.484 12,693 0 0.985 0.507 32,476 0 0.888 Normal 0.484 12,693 0 0.993 0.507 32,476 0 0.959 Normal 0.484 11,209 0 0.993 0.507 32,476 0 0.959 Normal 0.484 12,693 0	/	All	0.484	12,693	0	0.943	0.507	32,476	0	0.806
Normal 0.487 11,258 0.091 0.507 32,276 0 0.981 Abnormal 0.489 1,489 9.357 0.009 0.485 1,149 7.859 0.019 Normal 0.483 11,204 0.070 31,327 0.009 0.485 1,149 7.859 0.019 9 All 0.483 11,666 9.885 0.007 0.468 1,344 0.210 0.474 Normal 0.484 11,027 0.0885 0.507 32,476 0 0.888 Abnormal 0.484 12,029 0 0.958 0.507 32,476 0 0.888 Abnormal 0.484 12,029 0 0.950 32,476 0 0.959 Abnormal 0.484 12,693 0 0.993 0.507 32,476 0 0.959 Abnormal 0.484 12,693 0 0.992 0.507 32,476 0 0.981 Abnormal <t< td=""><td></td><td>Abnormal</td><td>0.459</td><td>1,435</td><td>5.626</td><td>0.057</td><td>0.4/3</td><td>1,202</td><td>2.849</td><td>0.194</td></t<>		Abnormal	0.459	1,435	5.626	0.057	0.4/3	1,202	2.849	0.194
8 Ali 0.484 12,693 0 0.991 0.507 32,476 0 0.981 Abnormal 0.483 11,204 0.507 31,327 0.019 9 All 0.484 12,693 0 0.993 0.507 32,476 0 0.526 Abnormal 0.485 1,666 9.885 0.007 0.468 1,344 0.210 0.474 Normal 0.484 11,027 0.508 31,132 0.012 0.474 10 All 0.484 12,693 0 0.885 0.507 32,476 0 0.888 Abnormal 0.484 12,693 0 0.993 0.507 32,476 0 0.959 Normal 0.484 12,693 0 0.993 0.507 32,476 0 0.959 Normal 0.484 12,693 0 0.992 0.507 32,476 0 0.981 Abnormal 0.484 12,693 <td< td=""><td></td><td>Normal</td><td>0.487</td><td>11,258</td><td></td><td>0.004</td><td>0.508</td><td>31,274</td><td>•</td><td>0.004</td></td<>		Normal	0.487	11,258		0.004	0.508	31,274	•	0.004
Abnormal 0.489 1,489 9.357 0.009 0.485 1,149 7.859 0.019 Normal 0.483 11,204 0.507 31,327 0 0.507 31,327 9 All 0.484 12,693 0 0.993 0.507 32,476 0 0.526 Abnormal 0.484 11,027 0.508 31,132 0 0.888 0.015 0.475 1,190 4.131 0.012 Abnormal 0.484 12,693 0 0.985 0.507 32,476 0 0.888 Abnormal 0.484 12,693 0 0.993 0.507 32,476 0 0.959 11 All 0.484 12,693 0 0.992 0.507 31,291 0 0.981 12 All 0.484 12,693 0 0.992 0.507 32,476 0 0.981 13 All 0.484 12,623 0 0.992 0.507<	8	All	0.484	12,693	0	0.991	0.507	32,476	0	0.981
Normal 0.483 11,204 0.993 0.507 31,327 9 All 0.485 1,666 9.885 0.007 0.468 1,344 0.210 0.474 Normal 0.484 11,027 0.508 31,132 0.007 0.468 1,444 0.210 0.474 10 All 0.484 1,2633 0 0.985 0.507 32,476 0 0.888 Abnormal 0.484 1,2693 0 0.993 0.577 32,476 0 0.9599 Abnormal 0.484 1,2693 0 0.993 0.577 32,476 0 0.9599 Abnormal 0.484 1,470 9.653 0.007 0.485 1,856 6.281 0.001 Normal 0.484 1,470 9.653 0.008 0.489 890 7.837 0.919 Normal 0.484 12,693 0 0.992 0.507 32,476 0 0.986 Abnorma		Abnormal	0.489	1,489	9.357	0.009	0.485	1,149	7.859	0.019
9 Ali 0.484 12,693 0 0.993 0.307 32,476 0 0 0.526 Abnormal 0.484 11,027 0.608 1,132 0.007 0.468 1,132 10 Ali 0.484 12,693 0 0.985 0.507 32,476 0 0.888 Abnormal 0.484 12,693 0 0.985 0.507 32,476 0 0.888 Normal 0.484 12,693 0 0.993 0.507 32,476 0 0.959 Abnormal 0.484 12,693 0 0.993 0.507 32,476 0 0.959 Abnormal 0.484 12,693 0 0.992 0.507 32,476 0 0.981 Abnormal 0.484 12,693 0 0.992 0.507 32,476 0 0.963 Abnormal 0.484 12,693 0 0.992 0.507 32,476 0 0.986 <tr< td=""><td>0</td><td>Normai</td><td>0.483</td><td>11,204</td><td>0</td><td>0.000</td><td>0.507</td><td>31,327</td><td>0</td><td>0.500</td></tr<>	0	Normai	0.483	11,204	0	0.000	0.507	31,327	0	0.500
Abnormal 0.485 1,966 9.885 0.007 0.486 1,344 0.107 0.474 Normal 0.484 11,027 0.985 0.507 32,476 0 0.888 Abnormal 0.484 11,209 0 0.985 0.507 32,476 0 0.888 Normal 0.484 11,200 0.508 31,132 0 0.508 31,286 11 All 0.484 12,693 0 0.993 0.507 32,476 0 0.959 Abnormal 0.484 12,693 0 0.992 0.507 32,476 0 0.981 Normal 0.484 12,693 0 0.992 0.507 32,476 0 0.963 Abnormal 0.484 12,693 0 0.992 0.507 32,476 0 0.963 Abnormal 0.485 11,010 1.349 8.495 0.014 0.507 31,127 1.414 All 0.485 0.014	9	All	0.484	12,693	0 005	0.993	0.507	32,476	0 210	0.526
Normal 0.484 11,027 0.508 31,132 10 All 0.484 12,093 0 0.985 0.507 32,476 0 0.888 Abnormal 0.484 12,693 0 0.993 0.507 32,476 0 0.959 11 All 0.484 11,200 0.507 32,476 0 0.959 11 All 0.484 11,200 0.507 32,476 0 0.959 Abnormal 0.484 11,710 0.507 31,291 0.507 31,286 12 All 0.484 12,693 0 0.992 0.507 32,476 0 0.981 Abnormal 0.484 12,693 0 0.992 0.507 32,476 0 0.981 Abnormal 0.484 12,693 0 0.992 0.507 32,476 0 0.963 Abnormal 0.477 1,729 8.788 0.012 0.494 1,349 <td< td=""><td></td><td>Abnormai</td><td>0.485</td><td>11 027</td><td>9.885</td><td>0.007</td><td>0.468</td><td>1,344</td><td>0.210</td><td>0.474</td></td<>		Abnormai	0.485	11 027	9.885	0.007	0.468	1,344	0.210	0.474
10 All 0.434 12,693 0 0.935 0.307 32,476 0 0.088 Abnormal 0.484 11,200 0.508 31,286 0 0.507 32,476 0 0.959 11 All 0.484 12,693 0 0.993 0.507 32,476 0 0.959 Abnormal 0.484 12,693 0 0.992 0.507 32,476 0 0.981 Normal 0.484 11,130 0.507 31,291 0 0.981 0.507 31,2476 0 0.981 12 All 0.484 12,693 0 0.992 0.507 32,476 0 0.981 Abnormal 0.484 12,2693 0 0.992 0.507 32,476 0 0.9863 Abnormal 0.484 12,693 0 0.992 0.507 32,476 0 0.9633 13 All 0.484 12,693 0 0.992 0.507 32,476 0 0.986 14 All 0.484	10	NOrmai	0.404	12,027	0	0.095	0.506	21,122	0	0 000
Abironnal 0.434 1,493 0.402 0.617 0.473 1,190 4.151 0.012 11 All 0.484 12,693 0 0.993 0.507 32,476 0 0.959 Abnormal 0.483 1,563 9.983 0.007 0.485 1,185 6.281 0.041 Normal 0.484 11,130 0.507 31,291 0.017 31,291 0.981 12 All 0.484 12,693 0 0.992 0.507 32,476 0 0.981 Abnormal 0.484 12,693 0 0.992 0.507 32,476 0 0.963 Abnormal 0.484 12,693 0 0.992 0.507 32,476 0 0.963 Abnormal 0.485 10,064 0.508 31,026 0 0.986 0.507 32,476 0 0.986 14 All 0.485 10,964 0.507 32,476 0 0.990	10	All	0.404	1 /02	0 402	0.965	0.507	52,470 1 100	U // 121	0.000
International 0.484 12,693 0 0.993 0.507 32,476 0 0.959 Ali 0.484 12,693 0 0.993 0.507 32,476 0 0.959 Normal 0.484 11,130 0.507 31,291 0 0.992 0.507 32,476 0 0.981 Ali 0.484 12,693 0 0.992 0.507 32,476 0 0.981 Abnormal 0.484 14,700 9.653 0.008 0.489 890 7.837 0.019 Normal 0.484 12,693 0 0.992 0.507 32,476 0 0.963 Abnormal 0.479 1,683 9.681 0.008 0.486 1,450 6.537 0.037 Normal 0.485 11,010 0.508 31,026 0 0.986 0.507 32,476 0 0.986 14 All 0.485 10,964 0.507 31,127 0		Normal	0.404	1,495	0.402	0.015	0.475	21 206	4.151	0.012
Ah 0.484 12,953 0 0.393 0.407 12,470 0 0.353 Abnormal 0.483 1,563 9.983 0.007 0.485 1,185 6.281 0.041 Normal 0.484 11,130 0.507 31,291 0 0.981 12 All 0.484 1,470 9.653 0.008 0.489 890 7.837 0.019 Normal 0.484 11,223 0.507 31,586 0 0.963 13 All 0.484 12,693 0 0.992 0.507 32,476 0 0.963 14 All 0.485 11,010 0.508 31,026 0 0.986 0.077 32,476 0 0.986 Abnormal 0.477 1,729 8.788 0.012 0.494 1,349 8.495 0.014 Mormal 0.485 10,646 0.507 32,476 0 0.990 Abnormal 0.479 2,047 8.537 0.014 0.500 2,162 9,126 0.010 <t< td=""><td>11</td><td></td><td>0.464</td><td>12 602</td><td>0</td><td>0 003</td><td>0.508</td><td>22 /176</td><td>0</td><td>0 959</td></t<>	11		0.464	12 602	0	0 003	0.508	22 /176	0	0 959
Normal 0.484 11,130 0.507 31,291 0.041 12 All 0.484 12,693 0 0.992 0.507 32,476 0 0.981 Abnormal 0.484 11,223 0.507 31,291 0.019 0.981 13 All 0.484 11,223 0.507 31,246 0 0.963 13 All 0.484 12,693 0 0.992 0.507 32,476 0 0.963 Abnormal 0.479 1,683 9.681 0.008 0.486 1,450 6.537 0.037 14 All 0.485 11,010 0.507 32,476 0 0.986 Abnormal 0.477 1,729 8.788 0.012 0.494 1,349 8.495 0.014 Normal 0.485 10,964 0.507 32,476 0 0.990 All 0.485 10,666 0.507 32,476 0 0.990 <		Abnormal	0.404	1 563	0 083	0.007	0.307	1 185	6 281	0.041
12 All 0.484 12,693 0 0.992 0.507 32,476 0 0.981 13 Abnormal 0.484 11,223 0.507 31,586 0 0.963 13 All 0.484 12,693 0 0.992 0.507 32,476 0 0.963 13 All 0.484 12,693 0 0.992 0.507 32,476 0 0.963 Abnormal 0.479 1,683 9.681 0.008 0.486 1,450 6.537 0.037 Normal 0.485 11,010 0.508 31,026 0 0.988 0.507 32,476 0 0.986 14 All 0.485 10,964 0.507 31,127 0 0.986 15 All 0.485 10,646 0.507 32,476 0 0.990 Normal 0.485 10,646 0.507 32,476 0 0.990 16 All 0.485 10,646 0.507 32,476 0 0.969 Normal		Normal	0.484	11 130	5.505	0.007	0.405	31 291	0.201	0.041
Ahnormal 0.484 1,470 9.653 0.082 0.489 890 7.837 0.019 Normal 0.484 11,223 0.507 31,586 0 0.963 13 All 0.484 12,693 0 0.992 0.507 32,476 0 0.963 Abnormal 0.479 1,683 9.681 0.008 0.486 1,450 6.537 0.037 Normal 0.485 11,010 0.508 31,026 0 0.988 0.507 32,476 0 0.986 14 All 0.485 11,010 0.508 31,026 0 0.986 0.014 0.494 1,349 8.495 0.014 Normal 0.477 1,729 8.788 0.012 0.494 1,349 8.495 0.014 Normal 0.477 1,729 8.788 0.012 0.507 32,476 0 0.990 All 0.485 10,646 0.507 32,476 0 0.990 0.507 32,476 0 0.969 Abnormal <td< td=""><td>12</td><td></td><td>0.404</td><td>12 693</td><td>0</td><td>0 992</td><td>0.507</td><td>32 476</td><td>0</td><td>0 981</td></td<>	12		0.404	12 693	0	0 992	0.507	32 476	0	0 981
Normal 0.484 11,703 0.503 0.403 0.403 10,813 0.507 31,586 13 All 0.484 12,693 0 0.992 0.507 31,586 0 0.963 13 All 0.485 11,010 0.507 32,476 0 0.963 14 All 0.485 11,010 0.508 31,026 0 0.986 14 All 0.485 11,010 0.508 31,026 0 0.986 14 All 0.485 10,964 0.507 32,476 0 0.996 Abnormal 0.477 1,729 8.788 0.012 0.494 1,349 8.495 0.014 Normal 0.485 10,964 0.507 32,476 0 0.990 All 0.485 10,646 0.507 32,476 0 0.969 Abnormal 0.477 2,428 9.206 0.010 0.513 2,759 6.872	12	Abnormal	0.404	1 470	9 653	0.008	0.307	32,470 890	7 837	0.019
13 All 0.484 12,693 0 0.992 0.507 32,476 0 0.963 14 All 0.485 11,010 0.508 31,026 0 0.988 14 All 0.485 11,010 0.508 31,026 0 0.986 14 All 0.485 10,964 0.012 0.494 1,349 8.495 0.014 Normal 0.485 10,964 0.507 32,476 0 0.990 All 0.485 10,964 0.507 31,127 0.507 31,127 15 All 0.484 12,693 0 0.986 0.507 32,476 0 0.990 Abnormal 0.477 1,729 8.787 0.014 0.500 2,162 9.126 0.010 Normal 0.485 10,646 0.507 30,314 0.507 30,314 0.507 30,314 0.507 32,476 0 0.990 0.507 32,476 0 0.990 0.507 32,476 0 0.997 0.507 32,476		Normal	0.484	11,223	5.055	0.000	0.507	31,586	7.057	0.015
Abnormal 0.479 1,683 9.681 0.008 0.486 1,450 6.537 0.037 Normal 0.485 11,010 0.508 31,026 0 0.986 14 All 0.484 12,693 0 0.988 0.507 32,476 0 0.986 Abnormal 0.477 1,729 8.788 0.012 0.494 1,349 8.495 0.014 Normal 0.485 10,964 0.507 31,127 0 0.990 15 All 0.485 10,646 0.507 32,476 0 0.990 Abnormal 0.479 2,047 8.537 0.014 0.500 2,162 9.126 0.010 Normal 0.485 10,646 0.507 30,314 0 0.969 0.507 32,476 0 0.969 Abnormal 0.477 2,428 9.206 0.010 0.513 2,759 6.872 0.031 Normal 0.485 10,265 0.506 29,717 0 0.999 0.507 32,476 0	13	All	0.484	12,693	0	0.992	0.507	32,476	0	0.963
Normal 0.485 11,010 0.508 31,026 14 All 0.485 11,010 0.508 31,026 14 All 0.484 12,693 0 0.988 0.507 32,476 0 0.986 Abnormal 0.477 1,729 8.788 0.012 0.494 1,349 8.495 0.014 Normal 0.485 10,964 0.507 31,127 0 0.990 15 All 0.485 10,646 0.507 32,476 0 0.990 Normal 0.479 2,047 8.537 0.014 0.500 2,162 9.126 0.010 Normal 0.485 10,646 0.507 30,314 0.010 0.513 2,759 6.872 0.031 Normal 0.485 10,265 0.506 29,717 0 0.999 0.507 32,476 0 0.979 All 0.485 10,265 0.506 29,717 0.507 31,39		Abnormal	0.479	1.683	9.681	0.008	0.486	1.450	6.537	0.037
14 All 0.484 12,693 0 0.988 0.507 32,476 0 0.986 Abnormal 0.477 1,729 8.788 0.012 0.494 1,349 8.495 0.014 Normal 0.485 10,964 0.507 31,127 0 0.990 15 All 0.484 12,693 0 0.986 0.507 32,476 0 0.990 Abnormal 0.479 2,047 8.537 0.014 0.500 2,162 9.126 0.010 Normal 0.485 10,646 0.507 30,314 0.010 0.969 0.507 32,476 0 0.969 Abnormal 0.477 2,428 9.206 0.010 0.513 2,759 6.872 0.031 Normal 0.485 10,265 0.506 29,717 0 0.979 17 All 0.484 12,693 0 0.990 0.507 32,476 0 0.979 Abnormal 0.474 1,674 9.092 0.010 0.488 1,081 <t< td=""><td></td><td>Normal</td><td>0.485</td><td>11.010</td><td></td><td></td><td>0.508</td><td>31.026</td><td></td><td></td></t<>		Normal	0.485	11.010			0.508	31.026		
Abnormal 0.477 1,729 8.788 0.012 0.494 1,349 8.495 0.014 Normal 0.485 10,964 0 0.507 31,127 0 0.990 15 All 0.484 12,693 0 0.986 0.507 32,476 0 0.990 Abnormal 0.479 2,047 8.537 0.014 0.500 2,162 9.126 0.010 Normal 0.485 10,646 0.507 30,314 0.010 0.969 0.507 32,476 0 0.969 Abnormal 0.477 2,428 9.206 0.010 0.513 2,759 6.872 0.031 Normal 0.485 10,265 0 0.990 0.507 32,476 0 0.979 17 All 0.485 10,265 0 0.990 0.507 32,476 0 0.979 Abnormal 0.474 1,674 9.092 0.010 0.488 1,081 7.643	14	All	0.484	12,693	0	0.988	0.507	32,476	0	0.986
Normal 0.485 10,964 0.507 31,127 15 All 0.484 12,693 0 0.986 0.507 32,476 0 0.990 Abnormal 0.479 2,047 8.537 0.014 0.500 2,162 9.126 0.010 Normal 0.485 10,646 0.507 30,314 0 0.969 16 All 0.484 12,692 0 0.990 0.507 32,476 0 0.969 Abnormal 0.477 2,428 9.206 0.010 0.513 2,759 6.872 0.031 Normal 0.485 10,265 0.506 29,717 0 0.979 17 All 0.484 12,693 0 0.990 0.507 32,476 0 0.979 Abnormal 0.474 1,674 9.092 0.010 0.488 1,081 7.643 0.021 Normal 0.485 11,019 0.507 32,476 0		Abnormal	0.477	1.729	8.788	0.012	0.494	1.349	8.495	0.014
15 All 0.484 12,693 0 0.986 0.507 32,476 0 0.990 Abnormal 0.479 2,047 8.537 0.014 0.500 2,162 9.126 0.010 Normal 0.485 10,646 0.507 30,314 0 0.969 16 All 0.484 12,692 0 0.990 0.507 32,476 0 0.969 Abnormal 0.477 2,428 9.206 0.010 0.513 2,759 6.872 0.031 Normal 0.485 10,265 0.506 29,717 0 0.979 17 All 0.484 12,693 0 0.990 0.507 32,476 0 0.979 Abnormal 0.474 1,674 9.092 0.010 0.488 1,081 7.643 0.021 Normal 0.485 11,019 0.507 32,476 0 0.755 18 All 0.487 1,682 8.627 0.013 0.473 1,486 2.252 0.245 Normal <td></td> <td>Normal</td> <td>0.485</td> <td>10,964</td> <td></td> <td></td> <td>0.507</td> <td>31,127</td> <td></td> <td></td>		Normal	0.485	10,964			0.507	31,127		
Abnormal 0.479 2,047 8.537 0.014 0.500 2,162 9.126 0.010 Normal 0.485 10,646 0.507 30,314 0 0 0.969 16 All 0.484 12,692 0 0.990 0.507 32,476 0 0.969 Abnormal 0.477 2,428 9.206 0.010 0.513 2,759 6.872 0.031 Normal 0.485 10,265 0.506 29,717 0 0.979 17 All 0.484 12,693 0 0.990 0.507 32,476 0 0.979 Abnormal 0.474 1,674 9.092 0.010 0.488 1,081 7.643 0.021 Normal 0.485 11,019 0.507 32,476 0 0.755 18 All 0.487 1,682 8.627 0.013 0.473 1,486 2.252 0.245 Normal 0.483 11,011	15	All	0.484	12,693	0	0.986	0.507	32,476	0	0.990
Normal 0.485 10,646 0.507 30,314 16 All 0.484 12,692 0 0.990 0.507 32,476 0 0.969 Abnormal 0.477 2,428 9.206 0.010 0.513 2,759 6.872 0.031 Normal 0.485 10,265 0 0.990 0.507 32,476 0 0.979 17 All 0.485 10,265 0.506 29,717 0 0.979 17 All 0.484 12,693 0 0.990 0.507 32,476 0 0.979 Abnormal 0.474 1,674 9.092 0.010 0.488 1,081 7.643 0.021 Normal 0.485 11,019 0.507 31,395 0 0.987 0.507 32,476 0 0.755 18 All 0.484 12,693 0 0.987 0.507 32,476 0 0.755 Abnormal 0.4		Abnormal	0.479	2,047	8.537	0.014	0.500	2,162	9.126	0.010
16 All 0.484 12,692 0 0.990 0.507 32,476 0 0.969 Abnormal 0.477 2,428 9.206 0.010 0.513 2,759 6.872 0.031 Normal 0.485 10,265 0 0.990 0.507 32,476 0 0.979 17 All 0.484 12,693 0 0.990 0.507 32,476 0 0.979 Abnormal 0.474 1,674 9.092 0.010 0.488 1,081 7.643 0.021 Normal 0.485 11,019 0.507 32,476 0 0.755 31,395 18 All 0.484 12,693 0 0.987 0.507 32,476 0 0.755 Abnormal 0.484 12,693 0 0.987 0.507 32,476 0 0.755 18 All 0.484 12,693 0 0.987 0.507 32,476 0 0.755 Normal 0.487 1,682 8.627 0.013 0.473 <th< td=""><td></td><td>Normal</td><td>0.485</td><td>10,646</td><td></td><td></td><td>0.507</td><td>30,314</td><td></td><td></td></th<>		Normal	0.485	10,646			0.507	30,314		
Abnormal 0.477 2,428 9.206 0.010 0.513 2,759 6.872 0.031 Normal 0.485 10,265 0.506 29,717 1 0.485 10,265 0.010 0.507 32,476 0 0.979 17 All 0.484 12,693 0 0.990 0.507 32,476 0 0.979 Abnormal 0.474 1,674 9.092 0.010 0.488 1,081 7.643 0.021 Normal 0.485 11,019 0.507 31,395 0 0.987 0.507 32,476 0 0.755 18 All 0.484 12,693 0 0.987 0.507 32,476 0 0.755 Abnormal 0.487 1,682 8.627 0.013 0.473 1,486 2.252 0.245 Normal 0.483 11,011 0.508 30,990 0.508 30,990 0.508 30,990	16	All	0.484	12,692	0	0.990	0.507	32,476	0	0.969
Normal 0.485 10,265 0.506 29,717 17 All 0.484 12,693 0 0.990 0.507 32,476 0 0.979 Abnormal 0.474 1,674 9.092 0.010 0.488 1,081 7.643 0.021 Normal 0.485 11,019 0.507 31,395 0 0.755 18 All 0.484 12,693 0 0.987 0.507 32,476 0 0.755 All 0.484 12,693 0 0.987 0.507 32,476 0 0.755 Abnormal 0.487 1,682 8.627 0.013 0.473 1,486 2.252 0.245 Normal 0.483 11,011 0.508 30,990 0.508 30,990 0.508 30,990		Abnormal	0.477	2,428	9.206	0.010	0.513	2,759	6.872	0.031
17 All 0.484 12,693 0 0.990 0.507 32,476 0 0.979 Abnormal 0.474 1,674 9.092 0.010 0.488 1,081 7.643 0.021 Normal 0.485 11,019 0.507 31,395 0 0.755 18 All 0.484 12,693 0 0.987 0.507 32,476 0 0.755 Abnormal 0.487 1,682 8.627 0.013 0.473 1,486 2.252 0.245 Normal 0.483 11,011 0.508 30,990 0.508 30,990 0.508 0		Normal	0.485	10,265			0.506	29,717		
Abnormal 0.474 1,674 9.092 0.010 0.488 1,081 7.643 0.021 Normal 0.485 11,019 0.507 31,395 0 0.507 32,476 0 0.755 18 All 0.487 1,682 8.627 0.013 0.473 1,486 2.252 0.245 Normal 0.483 11,011 0.508 30,990 0.508 30,990 0.508 0.509 0.508 0.509 0.508 0.509 0.508 0.509 0.508 0.509 0.508 0.509 0.508 0.509 0.508 0.509 0.508 0.509 0.508 0.509 0.508 0.509 0.508 0.509 0.508 0.509 0.508 0.509 0.508 0.509 0.508 0.509 0.508 0.509 0.508 0.508 0.508 0.508 0.508 0.508 0.508 0.508 0.508 0.508 0.508 0.508 0.508 0.508 0.508 0.508	17	All	0.484	12,693	0	0.990	0.507	32,476	0	0.979
Normal 0.485 11,019 0.507 31,395 18 All 0.484 12,693 0 0.987 0.507 32,476 0 0.755 Abnormal 0.487 1,682 8.627 0.013 0.473 1,486 2.252 0.245 Normal 0.483 11,011 0.508 30,990 0.508 30,990		Abnormal	0.474	1,674	9.092	0.010	0.488	1,081	7.643	0.021
18 All 0.484 12,693 0 0.987 0.507 32,476 0 0.755 Abnormal 0.487 1,682 8.627 0.013 0.473 1,486 2.252 0.245 Normal 0.483 11,011 0.508 30,990		Normal	0.485	11,019			0.507	31,395		
Abnormal 0.487 1,682 8.627 0.013 0.473 1,486 2.252 0.245 Normal 0.483 11,011 0.508 30,990	18	All	0.484	12,693	0	0.987	0.507	32,476	0	0.755
Normal 0.483 11,011 0.508 30,990		Abnormal	0.487	1,682	8.627	0.013	0.473	1,486	2.252	0.245
		Normal	0.483	11,011			0.508	30,990		

Table S4. Cont.

		Blastomere			Blastocyst				
Chromosome	Embryos	CSR	N	ΔAIC	Akaike weight	CSR	N	ΔΑΙΟ	Akaike weight
19	All	0.484	12,693	0	0.993	0.507	32,476	0	0.993
	Abnormal	0.483	2,620	9.966	0.007	0.503	1,879	9.844	0.007
	Normal	0.484	10,073			0.507	30,597		
20	All	0.484	12,693	0	0.993	0.507	32,476	0	0.949
	Abnormal	0.487	1,787	9.854	0.007	0.484	1,426	5.846	0.051
	Normal	0.483	10,906			0.508	31,050		
21	All	0.484	12,693	0	0.993	0.507	32,476	0	0.983
	Abnormal	0.483	2,026	9.873	0.007	0.506	2,336	8.076	0.017
	Normal	0.484	10,667			0.507	30,140		
22	All	0.484	12,693	0	0.952	0.507	32,476	0	0.872
	Abnormal	0.469	2,184	5.976	0.048	0.488	2,914	3.837	0.128
	Normal	0.487	10,509			0.509	29,562		

	Blastomere					Blastocyst			
Chromosome	Embryos	CSR	Ν	ΔΑΙΟ	Akaike weight	CSR	N	ΔΑΙΟ	Akaike weight
Any	All	0.503	94,535	31.275	<0.001	0.507	32,476	0	0.898
	Abnormal	0.511	59,524	0	>0.999	0.511	15,974	4.356	0.102
	Normal	0.490	35,011			0.502	16,502		
XY	All	0.503	94,535	533.156	<0.001	0.507	32,476	570.744	<0.001
	Abnormal	0.589	16,282	0	>0.999	0.999	771	0	>0.999
	Normal	0.486	78,253			0.498	31,705		
1	All	—	_	—	—	0.507	32,476	0	0.991
	Abnormal	_	_	_	—	0.498	1,204	9.451	0.009
2	Normal	_	_		—	0.507	31,272	0	0.000
2	All	_	_		_	0.507	32,476	0	0.929
	Abriorital	_	_	_	_	0.479	1,200	5.140	0.071
2						0.508	37,210	0	0 982
5	Ahnormal	_	_		_	0.307	900	7 990	0.982
	Normal	_	_	_	_	0.405	31 576	7.550	0.010
4	All	_	_	_	_	0.507	32,476	0	0.985
	Abnormal	_	_	_	_	0.496	1.083	8.347	0.015
	Normal	_	_	_	_	0.507	31,393		
	All	_	_	_	_	0.507	32,476	0	0.992
	Abnormal	_	_	_	_	0.498	1,066	9.656	0.008
	Normal	_	_	_	_	0.507	31,410		
6	All	_	_	—	—	0.507	32476	0	0.966
	Abnormal	_	_	_	—	0.485	983	6.714	0.034
	Normal	—	—	—	—	0.507	31,493		
7	All	—	—	—	—	0.507	32,476	0	0.806
	Abnormal	—	—	—	—	0.473	1,202	2.849	0.194
_	Normal			_	_	0.508	31,274	_	
8	All	0.505	22,113	0	0.984	0.507	32,476	0	0.981
	Abnormal	0.503	4,119	8.274	0.016	0.485	1,149	7.859	0.019
0	Normai	0.506	17,994	0	0.047	0.507	31,327	0	0 526
9	All Abnormal	0.524	2,070 655	U 5 780	0.947	0.507	52,470 1 3//	0 210	0.526
	Normal	0.510	3 0 2 3	5.760	0.055	0.400	31 132	0.210	0.474
10		0.520	5,025	_	_	0.500	37 476	0	0 888
10	Abnormal	_	_	_	_	0.475	1,190	4,131	0.012
	Normal	_	_	_	_	0.508	31.286		01012
11	All	_	_	_	_	0.507	32.476	0	0.959
	Abnormal	_	_	_	_	0.485	1,185	6.281	0.041
	Normal	_	_	_	_	0.507	31,291		
12	All	_	_	_	_	0.507	32,476	0	0.981
	Abnormal	—	—	—	—	0.489	890	7.837	0.019
	Normal	—	—	—	—	0.507	31,586		
13	All	0.503	89,263	0	0.976	0.507	32,476	0	0.963
	Abnormal	0.505	23,598	12.075	0.024	0.486	1,450	6.537	0.037
	Normal	0.503	65,665			0.508	31,026	_	
14	All	0.503	18,378	0	0.992	0.507	32,476	0	0.986
	Abnormal	0.500	4,/2/	9.542	0.008	0.494	1,349	8.495	0.014
15	Normai	0.504	13,651	40 555	-0.001	0.507	31,127	0	0.000
15	All	0.500	78,437	42.555	<0.001	0.507	32,476	0 120	0.990
	Abnormal	0.518	24,120 54 217	0	>0.999	0.500	2,102	9.126	0.010
16		0.492	70 5 80	0	0.991	0.507	20,214	0	0.969
10	Ahnormal	0.504	24 097	7 213	0.001	0.507	2 759	6 872	0.031
	Normal	0.502	55,492	,.215	0.115	0.506	29,717	0.072	5.051
17	All	0.502	76,327	9.821	0,007	0.507	32,476	0	0.979
-	Abnormal	0.517	18,489	0	0.993	0.488	1,081	7.643	0.021
	Normal	0.498	57,838	-		0.507	31,395		
18	All	0.503	88,607	0	0.796	0.507	32,476	0	0.755
	Abnormal	0.510	23,587	2.717	0.204	0.473	1,486	2.252	0.245
	Normal	0.500	65,020			0.508	30,990		

Table S5. Mixed-effect analyses of the association between the overall state of the embryo (Any) or the state of individual chromosomes and the CSR) for blastomeres (FISH only) and blastocysts (aCGH)

Table S5. Cont.

PNAS PNAS

		Blastomere			Blastocyst				
Chromosome	Embryos	CSR	N	ΔΑΙΟ	Akaike weight	CSR	N	ΔΑΙΟ	Akaike weight
19	All	_	_	_	_	0.507	32,476	0	0.993
	Abnormal	—	_	—	—	0.503	1,879	9.844	0.007
	Normal	_	_	_	_	0.507	30,597		
20	All	0.502	17,866	0	0.969	0.507	32,476	0	0.949
	Abnormal	0.497	4,896	6.910	0.031	0.484	1,426	5.846	0.051
	Normal	0.504	12,970			0.508	31,050		
21	All	0.503	89,669	0	0.973	0.507	32,476	0	0.983
	Abnormal	0.510	25,434	7.151	0.027	0.506	2,336	8.076	0.017
	Normal	0.500	64,235			0.507	30,140		
22	All	0.504	80,548	0	0.992	0.507	32,476	0	0.872
	Abnormal	0.503	25,218	9.567	0.008	0.488	2,914	3.837	0.128
	Normal	0.504	55,330			0.509	29,562		

Table S6. Birth sex ratios for ART conceptions and for naturalconceptions in Australia and New Zealand between 1979and 2011

		ART		Natural				
Year	Sex ratio	Males	Females	Sex ratio	Males	Females		
1991	0.516*	3,554	3,329	0.516	128,738	120,972		
1992	0.528	702	628	0.514	134,317	126,961		
1993	0.529	807	719	0.515	133,289	125,480		
1994	0.515	1,029	968	0.515	133,525	125,583		
1995	0.498	1,216	1,226	0.514	132,492	125,031		
1996	0.514	1,416	1,340	0.515	130,967	123,279		
1997	0.523	1,993	1,815	0.514	129,614	122,708		
1998	0.521	2,174	1,999	0.513	128,928	122,340		
1999	0.516	2,443	2,287	0.513	129,714	122,913		
2000	0 5 1 2	2 600	2 5 7 1	0.514	129,407	122,502		
2001	0.512	2,099	2,371	0.514	130,647	123,581		
2002	0.511	3,543	3,386	0.513	127,263	120,788		
2003	0.506	3,836	3,739	0.515	128,375	120,867		
2004	0.509	4,022	3,887	0.515	128,307	120,918		
2005	0.512	4,745	4,515	0.513	134,047	127,035		
2006	0.507	5,091	4,942	0.516	139,208	130,733		
2007	0.510	5,580	5,362	0.514	144,397	136,630		
2008	0.513	5,952	5,661	0.514	145,444	137,641		
2009	0.521	6,814	6,256	0.514	145,786	137,705		
2010	0.521	6,263	5,756	0.511	145,807	139,401		
2011	0.521	6,446	5,936	0.514	147,489	139,638		
Total	0.515	70,325	66,322	0.514	2,827,761	2,672,706		

*For 1979–1991.

Year	Sex ratio	Males	Females
1985–1991	0.516	2,003	1,881
1992	0.535	549	477
1993	0.518	524	487
1994	0.527	457	410
1995	0.506	325	317
1996	0.544	357	299
1997	0.522	236	216
1998	0.512	148	141
1999	0.504	116	114
2000–2001	0.529	119	106
2002	_	—	
2003	_	_	
2004	0.567	17	13
2005	—	—	
2006	—	—	
2007	_	—	
2008	—	—	
2009	_	—	
2010	_	_	
2011	_	_	
Total	0.521	4,851	4,461

Table S7. Birth sex ratios of babies born via by GIFT in Australiaand New Zealand between 1985 and 2011

—, no data.

Table S8. PSR estimates from mammals

Species and study	Sex ratio	Males	Females	Sexing method
Cat; Graham (1954) (1)	0.450	9	11	NM
Cat; Austin and Amoroso (1957) (2)	0.483	14	15	NM
Hamster; Sundell (1962) (3)	0.643	63	35	NM
Hamster; Chow et al. (1996) (4)	0.531	51	45	NM
Mouse; Macdowell and Lord (1925, 1926) (5, 6)	0.501	416	415	NM
Mouse; Vickers (1967) (7)	0.500	49	49	NM
Pig; Crew (1925) (8)	0.576	592	436	NM
Pig; Parkes (1925) (9)	0.591	166	115	NM
Pig; Axelson (1968) (10)	0.542	13	11	NM
Rabbit; Melander (1962) (11)	0.509	28	27	NM
Rabbit; Fechheimer and Beatty (1974) (12)	0.486	211	223	NM
Roe Deer; Aitken (1974) (13)	0.514	18	17	NM
Sheep; Henning (1939) (14)	0.509	495	477	NM
Cat; Ciani et al. (2008) (15)	0.568	21	16	Μ
Cow; Utsumi and Iritani (1993) (16)	0.488	21	22	Μ
Cow; Hasler et al. (2002) (17)	0.492	1,950	2,014	Μ
Mouse; Bradbury et al. (1990) (18)	0.558	48	38	Μ
Mouse; Kunieda et al. (1992) (19)	0.479	34	37	Μ
Mouse; Byrne et al. (2006) (20)	0.514	247	234	Μ
Pig; Pomp et al. (1995) (21)	0.536	112	97	Μ
Sheep; Catt et al. (1997) (22)	0.592	45	31	Μ
Sheep; Gutiérrez-Adán et al. (1997) (23)	0.500	18	18	Μ
Sheep; Green et al. (2008) (24)	0.381	8	13	М

M, molecular; NM, nonmolecular.

1. Graham MA (1954) Detection of the sex of cat embryos from nuclear morphology in the embryonic membrane. Nature 173(4398):310-311.

2. Austin CR, Amoroso EC (1957) Sex chromatin in early cat embryos. Exp Cell Res 13(2):419-421.

3. Sundell G (1962) The sex ratio before uterine implantation in the golden hamster. J Embryol Exp Morphol 10(1):58-63.

- 4. Chow PH, Cheung MP, O WS (1996) Increased secondary sex ratios in golden hamster litters sired by males without coagulating glands and seminal vesicles. Reprod Fertil Dev 8(2):297–300.
- 5. MacDowell EC, Lord EM (1925) Data on the primary sex ratio in the mouse. Anat Rec 31(2):143-148.

6. MacDowell EC, Lord EM (1926) The relative viability of male and female mouse embryos. Am J Anat 37(1):127-140.

7. Vickers AD (1967) A direct measurement of the sex-ratio in mouse blastocysts. J Reprod Fertil 13(2):375-376.

8. Crew FAE (1925) Prenatal death in the pig and its effect upon the sex ratio. Proc R Soc Edinb 46(1):9-14.

9. Parkes AS (1925) Studies on the sex-ratio and related phenomena. (7) The foetal sex ratio in the pig. J Agric Sci 15(3):284-299.

10. Axelson M (1968) Sex chromatin in early pig embryos. Hereditas 60(3):347-354.

11. Melander Y (1962) Chromosomal behaviour during the origin of sex chromatin in the rabbit. Hereditas 48(4):645-661.

12. Fechheimer NS, Beatty RA (1974) Chromosomal abnormalities and sex ratio in rabbit blastocysts. J Reprod Fertil 37(2):331-341.

13. Aitken RJ (1974) Sex chromatin formation in the blastocyst of the roe deer (Capreolus Capreolus) during delayed implantation. J Reprod Fertil 40(1):235–239.

14. Henning WL (1939) Prenatal and postnatal sex ratio in sheep. J Agric Res 58(8):565-580.

15. Ciani F, et al. (2008) Sex determining of cat embryo and some feline species. Zygote 16(2):169–177.

16. Utsumi K, Iritani A (1993) Embryo sexing by male specific antibody and by PCR using male specific (SRY) primer. Mol Reprod Dev 36(2):238-241.

17. Hasler JF, Cardey E, Stokes JE, Bredbacka P (2002) Nonelectrophoretic PCR-sexing of bovine embryos in a commercial environment. Theriogenology 58(8):1457–1469.

18. Bradbury MW, Isola LM, Gordon JW (1990) Enzymatic amplification of a Y chromosome repeat in a single blastomere allows identification of the sex of preimplantation mouse embryos. Proc Natl Acad Sci USA 87(11):4053–4057.

19. Kunieda T, et al. (1992) Sexing of mouse preimplantation embryos by detection of Y chromosome-specific sequences using polymerase chain reaction. Biol Reprod 46(4):692–697.

Byrne MJ, Newmark JA, Warner CM (2006) Analysis of the sex ratio in preimplantation embryos from B6.K1 and B6.K2 Ped gene congenic mice. J Assist Reprod Genet 23(7-8):321–328.
 Pomp D, Good BA, Geisert RD, Corbin CJ, Conley AJ (1995) Sex identification in mammals with polymerase chain reaction and its use to examine sex effects on diameter of day-10 or -11 pig embryos. J Anim Sci 73(5):1408–1415.

22. Catt SL, O'Brien JK, Maxwell WMC, Evans G (1997) Effects of rate of development of in vitro-produced ovine embryos on sex ratio and in vivo survival after embryo transfer. Theriogenology 48(8):1369–1378.

23. Gutiérrez-Adán A, Cushwa WT, Anderson GB, Medrano JF (1997) Ovine-specific Y-chromosome RAPD-SCAR marker for embryo sexing. Anim Genet 28(2):135-138.

24. Green MP, et al. (2008) Nutritional skewing of conceptus sex in sheep: Effects of a maternal diet enriched in rumen-protected polyunsaturated fatty acids (PUFA). Reprod Biol Endocrinol 6:21.

Age, y	Sex ratio	Male	Female	Age, y	Sex ratio	Male	Female	Age, y	Sex ratio	Male	Female
0	0.507	919,000	892,000	35	0.499	919,828	923,875	70	0.430	546,846	725,128
1	0.506	945,000	924,000	36	0.499	917,682	920,743	71	0.426	521,292	702,415
2	0.505	964,000	946,000	37	0.499	915,175	917,354	72	0.420	489,586	675,115
3	0.504	972,000	955,000	38	0.500	913,475	914,880	73	0.415	464,833	655,005
4	0.504	974,000	959,000	39	0.500	911,200	912,647	74	0.408	434,255	631,109
5	0.504	972,000	957,000	40	0.501	912,568	910,642	75	0.400	405,468	608,280
6	0.504	965,000	949,000	41	0.501	912,038	909,471	76	0.392	386,492	599,081
7	0.504	956,000	940,000	42	0.501	910,391	907,147	77	0.384	362,430	582,115
8	0.505	949,000	931,000	43	0.502	910,601	904,809	78	0.382	356,824	578,417
9	0.505	944,000	925,000	44	0.502	909,509	902,868	79	0.373	321,181	538,944
10	0.506	944,000	923,000	45	0.501	910,867	906,472	80	0.361	262,589	465,269
11	0.507	946,000	921,000	46	0.501	906,441	903,237	81	0.350	231,064	429,714
12	0.506	951,000	927,000	47	0.501	898,724	896,378	82	0.346	208,777	395,048
13	0.505	960,000	941,000	48	0.500	887,369	886,839	83	0.336	192,055	378,789
14	0.502	964,000	955,000	49	0.500	874,468	875,479	84	0.326	172,718	356,564
15	0.501	959,000	957,000	50	0.499	863,972	866,456	85	0.317	150,549	323,731
16	0.498	945,000	951,000	51	0.498	865,284	871,306	86	0.308	129,315	290,007
17	0.497	931,000	944,000	52	0.498	854,858	861,998	87	0.299	110,707	259,976
18	0.488	899,000	944,000	53	0.497	831,596	840,521	88	0.289	90,412	222,118
19	0.487	892,000	941,000	54	0.497	816,115	827,159	89	0.275	81,234	214,677
20	0.492	912,000	943,000	55	0.495	810,175	825,897	90	0.262	61,358	172,487
21	0.492	912,000	943,000	56	0.494	799,549	820,515	91	0.251	50,066	149,463
22	0.491	909,000	944,000	57	0.492	793,459	820,901	92	0.240	40,219	127,244
23	0.494	931,000	954,000	58	0.492	803,724	829,370	93	0.228	31,483	106,462
24	0.496	949,000	963,000	59	0.486	766,040	809,007	94	0.219	24,115	86,082
25	0.496	941,000	955,000	60	0.483	736,335	789,493	95	0.209	17,463	66,114
26	0.496	929,000	944,000	61	0.479	708,734	769,803	96	0.198	12,925	52,319
27	0.496	929,000	943,000	62	0.476	686,775	755,702	97	0.191	9,385	39,726
28	0.497	939,000	950,000	63	0.472	669,899	749,115	98	0.184	6,576	29,139
29	0.497	939,000	951,000	64	0.467	656,218	747,776	99	0.189	4,616	19,840
30	0.497	929,367	939,650	65	0.462	641,224	745,983				
31	0.498	927,343	936,201	66	0.456	624,057	744,682				
32	0.498	924,892	932,409	67	0.450	606,110	740,306				
33	0.498	922,718	928,996	68	0.445	583,782	728,696				
34	0.499	921,325	926,446	69	0.440	557,079	709,467				

Table S9. Age-specific estimates of the sex ratio of the 1900 cohort in the United States