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Guiding behavior requires the brain to make predictions about the
future values of sensory inputs. Here, we show that efficient pre-
dictive computation starts at the earliest stages of the visual system.
We compute how much information groups of retinal ganglion cells
carry about the future state of their visual inputs and show that
nearly every cell in the retina participates in a group of cells for
which this predictive information is close to the physical limit set by
the statistical structure of the inputs themselves. Groups of cells in
the retina carry information about the future state of their own
activity, and we show that this information can be compressed
further and encoded by downstream predictor neurons that exhibit
feature selectivity that would support predictive computations.
Efficient representation of predictive information is a candidate
principle that can be applied at each stage of neural computation.

neural coding | retina | information theory

Almost all neural computations involve making predictions.
Whether we are trying to catch prey, avoid predators, or

simply move through a complex environment, the data we collect
through our senses can guide our actions only to the extent that
these data provide information about the future state of the world.
Although it is natural to focus on the prediction of rewards (1),
prediction is a much broader problem, ranging from the extrap-
olation of the trajectories of moving objects to the learning of
abstract rules that describe the unfolding pattern of events around
us (2–4). An essential aspect of the problem in all these forms is
that not all features of the past carry predictive power. Because
there are costs associated with representing and transmitting in-
formation, it is natural to suggest that sensory systems have opti-
mized coding strategies to keep only a limited number of bits of
information about the past, ensuring that these bits are maximally
informative about the future. This principle can be applied at
successive stages of signal processing, as the brain attempts to
predict future patterns of neural activity. We explore these ideas in
the context of the vertebrate retina, provide evidence for near-
optimal coding, and find that this performance cannot be ex-
plained by classical models of ganglion cell firing.

Coding for the Position of a Single Visual Object
The structure of the prediction problem depends on the struc-
ture of the world around us. In a world of completely random
stimuli, for example, prediction is impossible. Consider a simple
visual world such that, in the small patch of space represented by
the neurons from which we record, there is just one object (a
dark horizontal bar against a light background) moving along a
trajectory xt. We want to construct trajectories that are predict-
able, but not completely; the moving object has some inertia, so
that the velocities � t are correlated across time, but is also
“kicked” by unseen random forces. A mathematically tractable
example (Eqs.4 and 5 in Materials and Methods) is shown in Fig.
1A, along with the responses recorded from a population of
ganglion cells in the salamander retina.

If we look at neural responses in small windows of time, e.g.,
� � = 1=60�s, almost all ganglion cells generate either zero or one
action potential. Thus, the activity of a single neuron, labeled i, can
be represented by a binary variable� iðtÞ= 1 when the cell spikes at
time t and � iðtÞ= 0 when it is silent. The activity ofN neurons then

becomes a binary“word” wt � f � 1ðtÞ, �� 2ðtÞ, �� , �� NðtÞg. If we (or
the brain) observe the pattern of activitywt at time t, how much do
we know about the position of the moving object? Neurons are
responding to the presence of the object, and to its motion, but
there is some latency in this response, so thatwt will be maximally
informative about the position of the object at some time in the
past,xt�<t. On the other hand, we know that the brain is capable of
predicting the future position of moving objects and that these
ganglion cells provide all of the visual data on which such pre-
dictions are based, so it must be true thatwt also provides some
information about xt�>t.

We can make these ideas precise by estimating, in bits, the
information that the words wt provide about the position of the
object at time t� (5–8):

I ðWt; Xt�Þ=
X

wt, xt�

PWðwtÞPðxt� jwtÞlog2

�
Pðxt� jwtÞ
PX ðxt�Þ

�
, [1]

where PWðwÞdescribes the overall distribution of words gener-
ated by the neural population,PX ðxÞdescribes the distribution of
positions of the object across the entire experiment, andPðxt� jwtÞ
is the probability of finding the object at position x at time t�
given that we have observed the responsewt at time t. Results
are shown in Fig. 1B, where we put the information carried by
different numbers of neurons on the same scale by normalizing
to information per spike.

As expected, the retina is most informative about the position of
the object t Š t� = tlat � 80�ms in the past. At this point, the in-
formation carried by multiple retinal ganglion cells is, on average,
redundant, so that the information per spike declines as we ex-
amine the responses of larger groups of neurons. Although the
details of the experiments are different, the observation of coding
redundancy attlat is consistent with many previous results (9–17).
However, the information that neural responses carry about po-
sition extends far into the past,t� � t Š tlat, and more importantly
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Direct Measures of Predictive Information
The statement that the neural response w provides information
about a feature f in the stimulus means that there is a re-
producible relationship between these two variables (5–8). To
probe this reproducibility, we must present the same features
many times, and sample the distribution of responses PðwjfÞ. The
information that w provides about f is as follows:

IðW ; fÞ=
X
f

PðfÞ 
X
w

PðwjfÞlog2

�
PðwjfÞ
PWðwÞ

�
, [2]

where the features are drawn from the distribution PðfÞ, and the
overall distribution of responses is given by the following:

PWðwÞ=
X
f

PðfÞPðwjfÞ. [3]

In the case of interest here, the feature f is the future of the
stimulus. To measure the information that neural responses
carry about the future, we thus need to repeat the future. More
precisely, we need to generate stimulus trajectories that are dif-
ferent but converge onto the same future. Given that we can
write the distribution of trajectories P½xðtÞ�, we can draw multiple
independent trajectories that have a “common future,” as shown
schematically in Fig. 3A (20) (Materials and Methods).
If trajectories converge onto a common future at time t= 0, then

for t � 0 the neural responses will be independent of the future,
and we can see this in single cells as a probability of spiking that is
independent of time or of the identity of the future (Fig. 3B). As
we approach t= 0, the neurons respond to aspects of the stimulus
that are themselves predictive of the common future stimulus, and
hence the probability of spiking becomes modulated. Quantita-
tively, we can use Eq. 2 to estimate the information carried by
responses from N = 1,2,⋯, 7 neurons about the future, as shown in
Fig. 3C for a particular five-cell group. This group of cells captures
0.78  bits=spike of information about the past of the sensory stim-
ulus, or Ipast = 0.11  bits, computed by taking the stimulus feature, f,
to be the past. Fig. 2A tells us that this amount of information
about the past can lead to a maximum of Ifuture* ðIpastÞ= 0.097  bits
about the future. We can compute the predictive information in
this group of cells via Eq. 2 and compare it to this bound. In fact,

this group of cells achieves Ifuture=Ifuture* = 0.98± 0.39, so that it is
within error bars of being optimal. We can also generalize the
bound in Fig. 2, to ask what happens if we make predictions not of
the entire future, but only starting Δt ahead of the current time;
we see that the way in which predictive power decays as we
extrapolate further into the future follows the theoretical limit
set by the structure of the sensory inputs (Fig. 3C).
The results for the five-cell group in Fig. 3C, which has a

modest amount of information about the future, are not unusual.
For each of the 53 neurons in the population that we monitor, we
can find the group of cells, including this neuron, that has the
most future information. These groups also operate close to the
bound in the ðIpast, IfutureÞplane, as shown in Fig. 3D. Not all
groups that contain this neuron sit near the bound, but we do not
expect a random sampling of cells to have this property. For
example, two cells might sample different parts of visual space
that are not connected via a predictable stimulus trajectory. The
fact that every cell in this recording participated in some group
that sits near the bound is intriguing. This continues to be true as
we look at larger and larger groups of cells, until our finite
dataset no longer allows effective sampling of the relevant dis-
tributions. At least under these stimulus conditions, populations
of neurons in the retina thus provide near-optimal representa-
tions of predictive information, extracting from the visual input
precisely those bits that allow maximal predictive power.
Could near-optimal prediction result from known receptive

field properties of these cells? To test this, we have made con-
ventional linear/nonlinear (LN) models of the individual neurons
in our dataset (21, 22): image sequences are projected linearly
onto a template (spatiotemporal receptive field), and the prob-
ability of spiking is a nonlinear function of this projection. We fit
these models to the responses of each neuron to a long movie
with same statistics as in Fig. 3, and we adjust the nonlinearity to
match the mean spike probability and the information captured
about the past by single cells (details in Linear–Nonlinear Model).
We then analyzed the performance of the model populations in
exactly the same way that we analyzed the real populations.
Populations of LN neurons fall far below the bound on predictive
information, and this gap grows with the number of neurons (Fig.
S1), in marked contrast to the real data (Fig. 3D). Interestingly,
the models are not so far from the performance of an optimal
system that has access only to data from ∼100 ms in the past,

A

B

C D

Fig. 3. Direct measures of the predictive information in neural responses. (A) Many independent samples of the trajectory xt converge onto one of several
common futures, two of which are shown here (red and blue). The time of convergence is indicated by the vertical dashed line. (B) Mean spike rates of a single
neuron in response to the stimuli in A. Shaded regions are ±1 SEM. (C) Information about the common future for one group of five cells, as a function of the
time, Δt, until convergence. Solid line shows the bound on IfutureðΔtÞfor this group’s Ipast. (D) Information about the future vs. information about the past, for
many groups of different size, N with Δt = 1/60 s; group A as in C. Error bars include contributions from the variance across groups and the SD of the individual
information estimates. Solid line is the bound from Fig. 2A.
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comparable to the delay one might guess from Fig. 1B. Rather
than being a consequence of the receptive fields for individual
neurons, the near-optimal performance that we see in Fig. 3D
thus is evidence that conventional models are missing the ability
of the retina to overcome apparent delays in the encoding of
dynamic inputs.

Predicting the Future State of the Retina
It seems natural to phrase the problem of prediction in relation to
the visual stimulus, as in Fig. 3, but the brain has no direct access
to visual stimuli except that provided by the retina. Could the
brain learn, in an unsupervised fashion, to predict the future of
retinal outputs? More precisely, if we observe that a population of
retinal ganglion cells generates the word wt at time t, what can we
say about the word that will be generated at time t+Δt in the
future? The answer to this question is contained in the condi-
tional distribution of one word on the other, Pðwt+ΔtjwtÞ.
In Fig. 4A, we show an example of Pðwt+ΔtjwtÞfor N = 4 cells, as

the retina responds to naturalistic movies of underwater scenes
(see Materials and Methods for details). This conditional distri-
bution is very different from the prior distribution of words
(shown to the right), which means that there is significant mutual
information between wt and wt+Δt. In Fig. 4B, we show the dis-
tribution of this predictive information between words, for groups
of N = 2, N = 4, and N = 9 cells. We have normalized the in-
formation in each group by the mean number of spikes, and we
see that the typical bits per spike is growing as we look at larger
groups of cells. Thus, the total predictive information in the

patterns of activity generated by N cells grows much more rapidly
than linear in N: predictive information is encoded synergistically.
With these naturalistic stimuli, larger groups of cells carry

predictive information for hundreds of milliseconds, as shown in
Fig. 4C, and the maximum predictive information is above 1 bit/
spike on average across the thousands of groups that we sam-
pled. Smaller groups of cells do not carry long-term predictive
power, and for short-term predictions they carry roughly one-half
the information per spike that we see in larger groups.
The large amounts of predictive information that we see in

neural responses are tied to the structure of the sensory inputs
(Fig. 4D). Naturalistic movies generate the most powerful, and
most long-ranged, predictable events; the responses to random
checkerboard movies lose predictability within a few frames; and
motion of a single object (as in Fig. 1) gives intermediate results.
The internal dynamics of the retina could generate predictable
patterns of activity even in the absence of predictable structure in
the visual world, but this does not seem to happen. This raises the
possibility that trying to predict the future state of the retina from
its current state can lead us (or the brain) to focus on patterns of
activity that are especially informative about the visual world.
The predictive information carried by N neurons is more than

N times the information carried by single neurons, but even at
N = 9 it is less than 1 bit in total. Can a neuron receiving many
such ganglion cell inputs compress the description of the state of
the retina at time t, while preserving the information that this
state carries about what will happen at time t+Δt in the future?
That is, can we do for the retinal output what the retina itself

A B C D

Fig. 4. Mutual information between past and future neural responses. (A) Conditional distribution Pðwt+Δt jwtÞ, at time Δt = 1=60  s, for the group of four cells
with the maximum information (1.1 bits/spike), in response to a natural movie. The prior distribution of words, PðwÞ, is shown adjacent to the conditional.
Probabilities are plotted on a log scale; blank bins indicate zero samples. (B) Distributions of IðWt ;Wt+ΔtÞfor N=2, N= 4, and N= 9 cells, with Δt = 1=60  s.
(C) Information between words as a function of Δt. Inset shown information vs. N at Δt marked by arrows. (D) Information between words for groups of N= 9,
as a function Δt for different classes of stimuli: a natural movie, the moving bar from Fig. 1, and a random flickering checkerboard refreshed at 30 fps. Shaded
regions indicate ±1 SD across different groups of cells.

A B C D

Fig. 5. Predictor neurons. (A) Maximum efficiency Iðσout
t ;Wt+ΔtÞ=IðWt ;Wt+ΔtÞas a function of the output firing rate, for 150 four-cell groups. Average over all

groups is indicated by the dashed line; solid black line indicates perfect capture of all of the predictive information. (B) Efficiency of a perceptron rule relative
to the best possible rule, for the same groups as in A. (C) The information that σout provides about the visual stimulus grows with the predictive information
that it captures. Results shown are the means over all possible output rules, for 150 four-cell input groups; error bars indicate SDs across the groups.
(D) Average velocity triggered on a spike of the predictor neuron for one four-cell group; light gray lines show the triggered averages for the input spikes; the
predictor neuron selects for a long epoch of constant velocity. In A–C, Δt = 1/60 s; in D, Δt = 1/30 s.
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does for the visual input? In particular, if we can write down all
of the predictive information in one bit, then we can imagine that
there is a neuron inside the brain that takes the N cells as inputs,
and then a spike or silence at the output of this “predictor
neuron” ðσoutÞcaptures the available predictive information.
Compressing our description of input words down to 1 bit

means sorting the words wt into two groups wt � σout. If this
grouping is deterministic, then with N = 4 neurons there are 65,536
possible groupings, and so we can test all of the possibilities
(Stimulus Information in σout for One Group and Fig. S2.). It indeed
is possible to represent almost all of the predictive information
from four neurons in the spiking or silence of a single neuron, and
doing this does not require the predictor neuron to generate
spikes at anomalously high rates; this result generalizes across
many groups of cells (Fig. 5A). We also find that the optimal rules
can be well approximated by the predictor neuron thresholding an
instantaneous weighted sum of its inputs—a perceptron (Fig. 5B)—
suggesting that such predictor neurons are not only possible in
principle, but biologically realizable.
Predictor neurons are constructed without reference to the

stimulus—just as the brain would have to do—but by repeating the
same naturalistic movie many times, we can measure the in-
formation that the spiking of a predictor neuron carries about the
visual input, using standard methods (15, 23). As we see in Fig. 5C,
model neurons that extract more predictive information also
provide more information about the visual inputs. There is some
saturation in this relationship, perhaps because the most effective
predictor neurons are more efficient in selecting the relevant bits
of the past. Nonetheless, it is clear that, by solving the prediction
problem, the brain can “calibrate” the combinations of spiking and
silence in the ganglion cell population, grouping them in ways that
capture more information about the visual stimulus.
If we return to the simple world of a single bar moving on the

screen, as above, then we can see that the spikes in predictor
neurons are associated with interesting patterns of motion. One
example is in Fig. 5D, where we see that a spike corresponds to an
exceptionally long period of nearly constant velocity motion, fol-
lowed by a reversal. Other examples include periods of high speed,
independent of direction, or moments where the bar is located at a
particular position with very high precision (see Feature Selectivity
in Predictor Neurons and Fig. S3 for details). These results, which
need to be explored more fully, support the intuition that the visual
system computes motion not for its own sake, but because, in a
world with inertia, motion estimation provides an efficient way of
representing the future state of the world.

Discussion
Information theory defines the capacity of a signal to carry in-
formation (the entropy), but information itself is always information
about something; successful applications of information theoretic
ideas to biological systems are cases where it is clear which in-
formation is relevant. However, how can we use information theory
to think about neural coding and computation more generally? It is
difficult to guess how organisms will value information about par-
ticular features of the world, but value can be attached only to bits
that have the power to predict the organism’s future experience.
Estimating how much information neural responses carry about the
future of sensory stimuli, even in a simple world, we have found
evidence that the retina provides an efficient, and perhaps nearly
optimal, representation of predictive information (Fig. 3).
Efficient representation of predictive information is a principle

that can be applied at every layer of neural processing. As an
illustration, we consider the problem of a single neuron that tries
to predict the future of its inputs from other neurons, and encodes
its prediction in a single output bit—spiking or silence. This pro-
vides a way of analyzing the responses from a population of
neurons that makes no reference to anything but the responses
themselves, and in this sense provides a model for the kinds of

computations that the brain can do. Predictive information in the
patterns of activity is coded synergistically (Fig. 4), maximally ef-
ficient representations of this information involve spiking at rea-
sonable rates, without any further constraints, and the optimal
predictor neurons are efficient transmitters of information about
the sensory input, even though the rules for optimal prediction are
found without looking at the stimulus (Fig. 5). Thus, solving the
prediction problem would allow the brain to identify features of
the retina’s combinatorial code that are especially informative
about the visual world, without any external calibration.
The idea that neural coding of sensory information might be

efficient, or even optimal, in some information theoretic sense, is
not new. Individual neurons have a capacity to convey information
that depends on the time resolution with which spikes are ob-
served, and one idea is that this capacity should be used efficiently
(24, 25), in part by adapting coding strategies to the distribution of
the inputs (26–28). Another idea is that the neighboring cells in
the retina should not waste their capacity by transmitting re-
dundant signals, and minimizing this redundancy may drive the
emergence of spatially differentiating receptive fields (29, 30).
Similarly, temporal filtering may serve to minimize redundancy in
time (31), and this is sometimes called “predictive coding” (32).
Reducing redundancy requires removing any predictable compo-
nents of the input, keeping only the deviations from expectation.
In contrast, immediate access to predictive information requires
an encoding of those features of the past that provide the basis for
optimal prediction. The retina actively responds to predictable
features of the visual stimulus (33) and, in the case of smooth
motion, can anticipate an object’s location in a manner that cor-
rects for its own processing delay (34, 35). Our current results
suggest that, even for irregular motion, the retina can efficiently
extract the features of the stimulus that allow it to encode all
available predictive information. Efficient coding of predictive
information is therefore a very different principle from most of
those articulated previously, and one that illustrates the surprising
computational powers of local neural circuits, like the retina.
Although there has been much interest in the brain’s ability

to predict particular things, our approach emphasizes that pre-
diction is a general problem, which can be stated in a unified
mathematical structure across many contexts, from the extrap-
olation of trajectories to the learning of rules (20). Our results
on the efficient representation of predictive information in the
retina thus may hint at a much more general principle.

Materials and Methods
Multielectrode Recordings. Data were recorded from larval tiger salamander
retina using the dense 252-electrode arrays with 30-μm spacing, as described in
ref. 36. A piece of retina was freshly dissected and pressed onto the multi-
electrode array. While the tissue was perfused with Ringer’s solution, images
from a computer monitor were projected onto the photoreceptor layer via an
objective lens. Voltages were recorded from the 252 electrodes at 10 kHz
throughout the experiments, which lasted 4–6 h. Spikes were sorted conser-
vatively (36), yielding populations of 49 or 53 identified cells from two ex-
periments, from which groups of different sizes were drawn for analysis.

Stimulus Generation and Presentation. Movies were presented to the retina
from 360× 600-pixel display, with 8 bits of grayscale. Frames were refreshed
at 60 fps for naturalistic and moving bar stimuli, and at 30 fps for randomly
flickering checkerboards. The monitor pixels were square and had a size of
3.81 μm on the retina. The moving bar (Fig. 1) was 11 pixels wide and black
(level 0 on the grayscale) against a background of gray (level 128). The
naturalistic movie was a 19-s clip of fish swimming in a tank during feeding
on an algae pellet, with swaying plants in the background, and was re-
peated a total of 102 times. All movies were normalized to the same mean
light intensity.

Motion Trajectories. The moving-bar stimulus was generated by a stochastic
process that is equivalent to the Brownian motion of a particle bound by
a spring to the center of the display: the position and velocity of the bar at
each time t were updated according to the following:
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xt+Δτ = xt + υtΔτ, [4]

υt+Δτ =½1 −ΓΔτ�υt − ω2xtΔτ+ ξt
ffiffiffiffiffiffiffiffiffi
DΔτ

p
, [5]

where ξt is a Gaussian random variable with zero mean and unit variance,
chosen independently at each time step. The natural frequency ω = 2π × (1.5 s−1)
rad/s, and the damping Γ= 20  s−1; with ζ =Γ=2ω= 1.06, the dynamics are
slightly overdamped. The time step Δτ= 1=60  s matches the refresh time of the
display, and we chose D= 2.7× 106   pixel2=s3 to generate a reasonable dynamic
range of positions. Positions at each time were rounded to integer values, and
we checked that this discretization had no significant effect on any of the sta-
tistical properties of the sequence, including the predictive information.

Common Futures. To create trajectories in which several independent pasts
converge onto a common future, we first generated a single very long tra-
jectory, comprised of 107 time steps. From this long trajectory, we searched
for segments with a length of 52 time steps such that the last two positions
in the segment were common across multiple segments, and we joined each
of these “pasts” on to the same future, generated with the common end-
points as initial conditions; matching two successive points is sufficient given
the Markovian structure of Eqs. 4 and 5. Thirty such distinct futures with 100
associated pasts were displayed in pseudorandom order. Both the past and
the future segments of the movie were each 50Δτ in duration.

Estimating Information. For all mutual information measures, we followed ref.
37: data were subsampled via a bootstrap technique for different fractions f
of the data, with 50 bootstrap samples taken at each fraction. For each
sample, we identify frequencies with probabilities, and plug into the defi-
nition of mutual information to generate estimates IsampleðfÞ. Plots of
IsampleðfÞ vs. 1=f were extrapolated quadratically to infinite sample size
ð1=f � 0Þ, and the intercept I∞ is our estimate of the true information; errors
were estimated as the SD of IsampleðfÞat f = 0.5, divided by

ffiffiffi
2

p
. Information

estimates also were made for randomly shuffled data, which should yield
zero information. If the information from shuffled data differed from zero
by more than the estimated error, or by more than absolute cutoff of
0.02  bits=spike, we concluded that we did not have sufficient data to gen-
erate a reliable estimate. In estimating information about bar position (Fig. 1),

we compressed the description of position into K = 37 equally populated bins
and checked that the information was on a plateau vs. K, meaning that we
had enough adaptive bins to capture all of the entropy in the original position
variable. When we compute the information that neural responses carry about
the past stimulus, we follow refs. 15 and 23, making use of the repeated
“futures” in the common future experiment.

Information Bottleneck. Information about the future of the stimulus is
bounded by the optimal compression of the past, for each given compression
amount. Formally, we want to solve the “bottleneck problem” (18):

min
pðzjxpastÞ

  L = I
�
Xpast; Z

�
− βIðZ;XfutureÞ, [6]

where we map pasts xpast ∈Xpast into some compressed representation z∈ Z,
using a probabilistic mapping pðzjxpastÞ. The parameter β sets the trade-off
between compression [reducing the information that we keep about the
past, IðXpast; ZÞ] and prediction [increasing the information that we keep
about the future, IðZ;XfutureÞ]. Once we find the optimal mapping, we can
plot IðZ;XfutureÞvs. IðXpast;ZÞfor the one parameter family of optimal solu-
tions obtained by varying β. In general, this is a hard problem. Here, we are
interested in trajectories such that position and velocity (together) are both
Gaussian and Markovian, from Eq. 4. The Markovian structure means that
optimal predictions can always be based on information contained at the
most recent point in the past, and that prediction of the entire future is
equivalent to prediction one time step ahead. Thus, we can take xpast ≡ ðxt , vtÞ
and xfuture ≡ ðxt+Δτ , υt+ΔτÞ. The fact that all of the relevant distributions are
Gaussian means that there is an analytic solution to the bottleneck problem
(38), which we used here. Further details are provided in Bound Calculation.
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