






not able to find the structure of ubiquitin starting from an
extended chain, because ubiquitin folds only on the millisec-
ond timescale (17). In MELD, however, even though the re-
straints are sparse, this set is sufficient to provide a highly
funneled free-energy landscape (SI Appendix, Fig. S2) that
leads to rapid folding.

The Experimental Data Alone Do Not Uniquely Define the Structure.
Fig. 6 shows how the MELD restraint energy varies for the
ubiquitin dataset (other systems are qualitatively similar; SI
Appendix, Fig. S3). There is a broad cloud of structures within
5 Å that have MELD energies indistinguishable from the most
native-like structures. More remarkably, there are structures that
are 6–11 Å from native that also have very low MELD energies,
with a particularly dense cluster around 9 Å. These are structures
that are in good agreement with the experimental data but have
nonnative folds. In the absence of a physical model, the experi-
mental data cannot distinguish between these alternative struc-
tures, but MELD can by rigorously sampling from a well-defined
distribution.

Even a Few Restraints Can Be Highly Informative. To illuminate the
limits of maximum sparsity in MELD, we considered Protein G,
where we combined secondary structure predictions with four

restraints selected to help define the main β-sheet (SI Appendix,
Fig. S6). The calculation was started from a completely extended
conformation. Even this limited amount of sparse data enables
MELD to find accurate structures (Fig. 3). Although these four
restraints were hand-picked as a test of what is minimal, this
result indicates that a few well-placed, highly informative re-
straints may be sufficient, in general, for structure determination
with MELD.

Finding Structures Using Ambiguous Information from EPR. Inferring
protein structure from site-directed spin-label EPR experiments
is challenging because (i) there is inherent “fuzziness” in map-
ping the experimental signal into a distance between two spin-
label probes, (ii) the probes are attached to the protein by flexible
linkers, which introduces further uncertainty, and (iii) the dis-
tances measured are often large (20–40 Å) and contain less in-
formation than short (<10 Å) distances (28).
To obtain EPR restraints, we followed the two strategies

previously used in ROSETTA-EPR (5, 29). We augment that
distance information with secondary structure predictions
from PSIPRED. We simulated two different systems (αA-
Crystallin and Lysozyme) starting from completely extended
conformations using available EPR data (29, 30).
The results for αA-Crystallin are good (Fig. 3), with a best

overall structure of 1.3 Å and best cluster of 2.8 Å backbone rmsd
from native. Deviations occur in the long hairpin (residues
40–56 of the modeled sequence), which extends into space as a
monomer but forms a strand pair in the crystal lattice.
The results for T4-Lysozyme are not as good (Fig. 3). The best

rmsd of all models is 2.6 Å and the best cluster is 3.6 Å from
native. This is still enough to define the overall fold of the
protein correctly, but many details are wrong. To assess the
source of this error, we performed two additional calculations
starting from the native structure: one without restraints and one
with the full set of EPR and secondary structure restraints. In the
simulations without restraints, in 200 ns the rmsd rises rapidly to
>7 Å while the protein unfolds. In the simulations with re-
straints, the rmsd stabilizes at � 4 Å, similar to our result starting
from an extended chain. There are three possibilities: (i) We
simulated a truncated protein that is missing the N-terminal
β-domain and the loss of this domain could make the protein
unstable, (ii) there are systematic errors in the force field, or
(iii) our treatment of the experimental data has errors.
The results using X-PLOR are poor (Fig. 4), and none of the

generated models is within 6 Å of the native structure for either
protein. Using ROSETTA-EPR, Meiler and coworkers (5)
folded T4-Lysozyme to 1.8Å and αA-Crystallin to 4.0Å (29) Cα
rmsd from native. Overall, MELD significantly outperforms the
simple X-PLOR approach and has performance comparable to
that of ROSETTA-EPR, but with the important advantage of

Fig. 3. Summary of MELD results for the eight case studies in this paper.
Each panel shows the best (lowest backbone rmsd) structure (green) super-
posed on the native structure (gray) and reports the rmsd of the best
structure and three most populous clusters (C1–C3).

Fig. 4. MELD samples more accurate structures than X-PLOR-NIH for all test
cases in this study. Each bar represents the single best structure produced for
that target by each method.

6988 | www.pnas.org/cgi/doi/10.1073/pnas.1506788112 MacCallum et al.

D
ow

nl
oa

de
d 

by
 g

ue
st

 o
n 

M
ay

 1
8,

 2
02

1 



coming from a fully physical model capable of giving Boltzmann
populations.

Finding Structures Using Uncertain Information from Evolutionarily
Inferred Contacts. EvFold (31, 32) belongs to a new family of
methods (33, 34) that predict residue–residue contacts from co-
evolution in multiple sequence alignments.
Here, we wanted to see whether such probabilistic re-

straints, when applied using MELD, could accurately predict
protein structures. We took restraints from EvFold (31) for
four targets: thioredoxin, Ras, CheY, and calponin. For each
target, we combined the top Nres contacts predicted by EvFold
with secondary structure predictions from PSIPRED. For
these systems, rather than starting from an extended confor-
mation, we seeded each replica with one of the structures
produced by the EvFold pipeline, because that information is
readily available.§
For all systems, the best structures sampled by MELD are

more accurate than those from X-PLOR (Fig. 4). Except for
calponin, MELD samples best structures that are accurate (<2 Å)
and gives accurate (<2.8 Å) models in the three most populous
clusters (Fig. 3). SI Appendix, Table S2 shows that for all four
systems MELD produces better structures than EvFold’s
structure generation procedure, which is based on CNS [Crys-
tallography and NMR System (35)]. The most populous cluster
MELD identifies is more accurate than even the best confor-
mation (lowest rmsd) that EvFold samples, which might not be
identifiable by score or energy. The average improvement of the
most populous cluster from MELD over the lowest-energy struc-
ture from EvFold is 2.5 Å.

Enforcing Incorrect Restraints Reduces Accuracy. Incorporating
EvFold data into MELD requires specifying the fraction of ac-
tive contacts and the cutoff distance defining a contact (see SI
Appendix for details). In the present study, we chose 0.8 and 6 Å,
based on previous EvFold results (31). With these parameters,
the MELD energies of the native structures are high (SI Ap-
pendix, Fig. S3). Excluding calponin, these results are indicative
of a small number of modest (1–2 Å) restraint violations (SI
Appendix, Fig. S4). The energy of the native structure for these
systems could be reduced to near zero by a small reduction in the
active fraction to 0.65–0.70, or by a small increase in cutoff distance
to 7–8 Å. The structural quality for these systems is good,

suggesting that these parameters do not have substantial nega-
tive impact.
The results for calponin are not as good, where even the best

sampled structure is more than 4 Å from native. For this system,
the EvFold predictions are less accurate, resulting in higher
energies (SI Appendix, Fig. S4). To achieve a MELD energy near
zero, the active fraction would need to be reduced to 0.4–0.5, or
the cutoff distance increased to 10–11 Å. In this case, it seems
that the suboptimal parameters may have led to poor structures.
However, unrestrained simulations starting from native indicate
that there may also be systematic force-field errors. Although it
is possible that results could be improved by parameters tuning,
this is not our aim here.
One obvious current limitation of MELD is the need to specify

parameters such as the active fraction and the cutoff distance.
We are developing a more general approach that places priors
on these parameters and then treats them as parameters to
be inferred jointly with the structural distribution. Similar ap-
proaches have been successfully used with reliable datasets, for
example to infer correct parameters for converting NMR cross-
peak intensities into distances (9, 12).

Conclusions
The challenge in structural biology is to determine ever larger and
more complex structures. It requires making ever better use of
diverse, ambiguous, and confusing experimental data. At the same
time, the power of molecular simulations in this enterprise is in
filling in the fine-grained detail in space and time, and in going
beyond structures, to inform us also about populations, stabilities,
kinetics, motions, and mechanisms. Molecular simulations alone,
however, are challenged by simulation errors (in sampling and
force fields) that increase with the number of degrees of freedom.
In MELD, we combine the advantages of simulations and im-
perfect data. MELD draws Bayesian inferences from semireliable
data in the context of atomistic REMD computer simulations, to
give accurate protein structures.
In a way, MELD follows from an old line of thought that if we

knew the physical mechanisms for how proteins fold so fast, we
could invent fast ways to search their conformational spaces to

A

Input Data poor

B

Native MELD

Fig. 5. Structure determination of ubiquitin using MELD with sparse
solid-state NMR data and Talos+ secondary structure predictions. (A) The
input restraints overlaid on the crystal structure. Data-poor regions
longer than 10 residues are shown in orange. (B) Overlay of native and
MELD prediction showing the remarkable agreement in the prediction
of side-chain conformations.

Fig. 6. The available solid-state NMR data do not uniquely define the
structure of ubiquitin. Structures as far as 11 Å rmsd from native have MELD
energies that are comparable to native. These alternative structures may
even have different folds (upper panels) but are nevertheless in good agree-
ment with the available sparse experimental data.

§We would expect similar results if we started from an extended conformation, because
the EvFold pipeline relies on restrained MD using CNS (35), although we have not per-
formed these calculations.
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find native like states. From the early days, there has been in-
terest in parlaying knowledge of kinetic routes of protein folding
to an understanding of principles of protein structures (36, 37).
Since then, it has become clear that a unifying principle is that
folding energy landscapes are funnel-shaped (30, 38, 39). Here,
MELD establishes funnel-shaped potentials, driven by uncertain—
but nevertheless powerful—information from experiments or bio-
informatics. We find that these funnels greatly accelerate the iden-
tification of the native structure.

Materials and Methods
This section provides an overview. Full details can be found in SI Ap-
pendix. The MELD source code is freely available at https://github.com/
maccallumlab/meld.

Simulation Software and Parameters. All simulations were performed using a
modified version of OpenMM (20). Proteins were modeled using a version of
the ff12sb force field (15) that included a CMAP-like (40) correction to better
reproduce the balance between α and β secondary structures (parameters are
included in the github repository). Solvation was modeled using the OBCmodel
(16). X-PLOR was used as a baseline for comparison; a sample script can be
found in SI Appendix.

Turning Information into Restraints. Secondary structure predictions from
PSIPRED (23) were turned into restraints acting on overlapping 5-mer frag-
ments (SI Appendix). These restraints include both backbone torsion angle
and intrachain distance restraints, which we found critical for reproducing
secondary structure. We specified that 75% of these compound 5-mer
restraints be active. The residue–residue distance restraints were handled

differently depending on the source of the input data (see SI Appendix for
details). For the sparse and ambiguous cases, all of the distance restraints
were active. For the uncertain cases, 80% of restraints were active.

Hamiltonian and Temperature Replica Exchange. The number of replicas was
adjusted, based on the size of the system and available computational
resources, to between 24 and 48 replicas. Exchanges were performed every
20 ps or every 50 ps. For the non-EvFold systems, the temperature was
varied geometrically from 300 K at the bottom replica to 450 K at the middle
replica and held constant over the top half of the REMD ladder. Conversely,
the strength of imposed distance restraints was varied from zero at the
top of the ladder, to full strength at the middle replica, and held at full
strength over the bottom half of the REMD ladder. We found that this ar-
rangement improved the number of folding trajectories. The secondary
structure restraints were held at full strength throughout. For the EvFold
systems, we varied both the temperature and strength of restraints across
the full REMD ladder.

Clustering. Trajectories were clustered based on Cα coordinates, using aver-
age-linkage clustering with e= 4 Å (41). The centroids of the three most
populous clusters were chosen as representative structures.
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