Fluid mixing and the deep biosphere of a fossil Lost City-type hydrothermal system at the Iberia Margin

Frieder Klein1,a, Susan E. Humphrisb, Weifu Guob, Florence Schubotzc, Esther M. Schwarzenbachd, and William D. Orsia

1Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543; 2Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543; 3Department of Geosciences and Center for Marine Environmental Sciences, University of Bremen, 28334 Bremen, Germany; and 4Department of Geosciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061

Edited by David M. Karl, University of Hawaii, Honolulu, HI, and approved August 4, 2015 (received for review March 7, 2015)

Subseafloor mixing of reduced hydrothermal fluids with seawater is believed to provide the energy and substrates needed to support deep chemolithoautotrophic life in the hydrated oceanic mantle (i.e., serpentinite). However, geosphere-biosphere interactions in serpentinite-hosted subseafloor mixing zones remain poorly constrained. Here we examine fossil microbial communities and fluid mixing processes in the subseafloor of a Cretaceous Lost City-type hydrothermal system at the magma-poor passive Iberia Margin (Ocean Drilling Program Leg 149, Hole 897D). Brucite–calcite mineral assemblages precipitated from mixed fluids ca. 65 m below the Cretaceous paleo-seafloor at temperatures of 31.7 ± 4.3 °C within steep chemical gradients between weathered, carbonate-rich serpentinite brucite and serpentinite. Mixing of oxidized seawater and strongly reducing hydrothermal fluid at moderate temperatures created conditions capable of supporting microbial activity. Dense microbial colonies are fossilized in brucite–calcite veins that are strongly enriched in organic carbon (up to 0.5 wt. % of the total carbon) but depleted in δ13C (δ13COC = −19.4%). We detected a combination of bacterial diether lipid biomarkers, archaeol, and archaeal tetraethers analogous to those found in carbonate chimneys at the active Lost City hydrothermal field. The exposure of mantle rocks to seawater during the breakup of Pangaea fueled chemolithoautotrophic microbial communities at the Iberia Margin, possibly before the onset of seafloor spreading. Lost City-type serpentinitization systems have been discovered at midocean ridges, in forearc settings of subduction zones, and at continental margins. It appears that, wherever they occur, they can support microbial life, even in deep subseafloor environments.

Significance

We provide biogeochemical, micropaleontological, and petrological constraints on a subseafloor habitat at the passive Iberia Margin, where mixing of reduced hydrothermal serpentinitization fluids with oxic seawater provided the energy and substrates for metabolic reactions. This mixing zone was inhabited by bacteria and archaea and is comparable to the active Lost City hydrothermal field at the Mid-Atlantic Ridge. Our results highlight the potential of magma-poor passive margins to host Lost City-type hydrothermal systems that support microbial activity in subseafloor environments. Because equivalent systems have likely existed throughout most of Earth’s history in a wide range of oceanic environments, fluid mixing may have provided the substrates and energy to support a unique subseafloor community of microorganisms over geological timescales.

The authors declare no conflict of interest.

1To whom correspondence should be addressed. Email: fklein@whoi.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1504674112/-/DCSupplemental.

12036–12041 | PNAS | September 29, 2015 | vol. 112 | no. 39

www.pnas.org/cgi/doi/10.1073/pnas.1504674112

When serpentinite fluids (SF) mix with seawater (SW) (7), Ca2+ + OH− + HCO3− ↔ CaCO3 + H2O

NF SF SW

Mg2+ + 2OH− ↔ Mg(OH)2.

NF SW SF

Nascent Lost City chimneys are dominated by aragonite and brucite, whereas older structures are dominated by calcite. During aging, brucite undersaturated in seawater dissolves and aragonite recrystallizes to calcite (7).

Actively venting chimneys host a microbial community with a relatively high proportion of methanogenic archaea (the Lost City Methanosarcinales), methanotrophic bacteria, and sulfur-oxidizing bacteria, whereas typical sulfate-reducing bacteria are rare (8–10). Geochemical evidence for significant microbial sulfate reduction in basement lithologies and distinct microbial communities in Lost City vent fluids and chimneys suggest that subsurface communities may be different from those in chimney walls (8, 9, 11). The lack of modern seawater bicarbonate and low CO2/3He in Lost City fluids clearly indicate bicarbonate removal before venting, but it remains unclear if bicarbonate removal occurred by “dark” microbial carbon fixation in a serpentinitization-fueled deep biosphere, by carbonate precipitation, or both (12).

Other active and fossil seafloor hydrothermal systems similar to Lost City exist in a range of seafloor environments, including the Mid-Atlantic Ridge (13), New Caledonia (14), and the Mariana forearc (15, 16). Bathymodiolus mussels are, in some places, associated with these systems, suggesting that active serpentinitization is supporting not only microbial chemosynthetic ecosystems but also macrofaunal communities (16). However, biological processes in the subseafloor of these Lost City-type systems are poorly understood.

Serpentinization at Magma-Poor Continental Margins

The breakup of (super)continents exposes large volumes, on the order of thousands of cubic kilometers (17), of mantle peridotite to seawater, making magma-poor continental margins a prime
tentatively suggests that the exhumed mantle is that have brecciated the uppermost place due to seawater influx during rifting along numerous faults composed of altered mantle rocks (18). Serpentinization took carbonate veins (26). The boundary between these sections is at upper ophicalcite section (brecciated serpentinite cut by calcite inferred ages are consistent with the timing inferred from sediment the Sr isotopic curve for Cretaceous seawater reveals that the contemporaneous unit is interpreted as a series of mass flows (24), it remains that the exhumed mantle is 25–100% serpentinitized to ~4 km depth. A deeper section with seismic velocities of 7.3–7.9 km/s can be interpreted as partly (~25%) serpentinitized peridotite, with higher extents of serpentinization along deep-reaching fault planes (19). The Mohorovičić discontinuity of the southern Iberia Abyssal Plain is interpreted as a gradual transition from partly serpentinized peridotite to unaltered peridotite with a seismic velocity of 8 km/s (19). Laboratory experiments suggest that serpentinization of such large volumes lasted at least a few million years (20). The conjugate Newfoundland Margin likely exposed similar volumes of mantle peridotite to seawater (21), as did other magma-poor passive margins, such as the South Australian Margin and the West Greenland–Labrador conjugate margins (22).

Serpentinization Beneath the Iberia Abyssal Plain

During Ocean Drilling Program Leg 149, Hole 897D penetrated the OCT beneath the Southern Iberia Abyssal Plain to 837.2 m depth. The oldest sediment, cored at 693.8 m below the seafloor (mbsf), was deposited during the Lower Cretaceous when, or shortly before, seafloor spreading initiated the separation of North America and Iberia (23). The sediment–basement interface at this depth represents the approximate Lower Cretaceous (~Aptian) paleo-seafloor; however, because the lowermost sedimentary unit is interpreted as a series of mass flows (24), it remains unclear how thick the sediment cover was during serpentinization. A comparison of 87Sr/86Sr isotope ratios in calcite veins in serpentinite with the Sr isotopic curve for Cretaceous seawater reveals that the inferred ages are consistent with the timing inferred from sediment stratigraphy (25).

Basement lithologies of Hole 897D can be divided into an upper ophicalcite section (brecciated serpentinite cut by calcite veins) and a deeper serpentinite section that is largely devoid of carbonate veins (26). The boundary between these sections is at 65 m below the basement–sediment interface (26). Oxygen isotope thermometry reveals serpentinization temperatures of ca. 130–250 °C at Site 897 (27–29). Serpentinization went to completion in most recovered samples and produced serpentine (lizardite + chrysotile), brucite, minor chlorite, and traces of magnetite and other opaque minerals. Thermodynamic constraints and hydrothermal experiments suggest that serpentinization fluids associated with this assemblage are alkaline, depleted in dissolved inorganic carbon (ZCO2 = CO2, HCO3−, CO32−), SiO2, and Mg but enriched in dissolved Ca and H2 compared with seawater (30, 31). Accessory opaque minerals include valleriite, pentlandite, millerite, chalcopyrite, siegenite, polydymite, and pyrite, in addition to the relict Ni–Fe alloy awaruite and native Cu (26). Awaruite, armored by magnetite from dissolution, indicates strongly reducing conditions and low sulfur fugacities during the main stages of active serpentinization (26). Later, conditions became less reducing and sulfur fugacities increased, as indicated by sulfur-rich sulfides such as millerite and polydymite. Opaque minerals in ophicalcite, including pyrite, millerite (26), hematite, and goethite, record oxidizing conditions due to prolonged ingress of cold, oxidized seawater, which also led to precipitation of clay minerals and quartz at the expense of serpentine at temperatures ≤100 °C (32). The mineralogical differences between the upper ophicalcite section and the deeper serpentinite section provide evidence for strong chemical gradients in pH, /O2, ZCO2, and SO42− over a short interval between ~60 m and 70 m below the sediment–basement interface.

Fig. 1. Simplified geological map of the Iberia Margin showing the localities of drill sites from Ocean Drilling Program Legs 103, 149, and 173. Samples analyzed in this study are from Site 897. Interpretation of geological units is based on drilling results and geophysical surveys (18).

Fig. 2. (A) Thin section back-scattered electron (BSE) image showing the brecciated serpentinite host, mainly composed of serpentine (Srp) cemented by calcite (Cal) and brucite (Brc). (B) Thin section photomicrograph of brucite–carbonate altered serpentinite host in crossed polarized light. (C) Core photograph showing the brecciated and veined host. The pink mineral is stichtite (Stt), a hydrous Mg–Cr carbonate that formed at the expense of Cr spinel and brucite. The large vein is composed of brucite and calcite in approximately equal amounts, whereas brecciate/calcite ratios in smaller veins vary. (D and E) BSE images of calcite in a feathery texture together with large subhedral brucite crystals similar to chimney material from the Lost City hydrothermal field (7).
The present study examined this transition zone in detail to further illuminate geochemical processes and their potential to support microbial life.

Lost City-Type Brucite–Calcite Assemblages in Hole 897D

During systematic examination of drill core samples from Hole 897D, we discovered millimeter- to centimeter-sized brucite–calcite veins crosscutting the serpentinite host at angles of 40–50° (Fig. 2) at 758 mbsf (65 m below the basement–sediment interface), right at the boundary between ophicalcrite and serpentinite. Well-developed crystal habits of brucite and calcite point to precipitation from percolating solutions in open fractures, possibly during or after tectonic shearing of the serpentinite (Fig. 2). Analogous to Lost City chimneys, it seems possible that aragonite co-precipitated first with brucite, and subsequently recrystallized to calcite. However, the low Mg/Ca ratio of seawater during the Lower Cretaceous likely favored the direct formation of calcite (33). Neither brucite nor calcite shows any compositional or optical zonation, indicating that fluid compositions remained relatively constant during crystal growth. In many instances, dendritic calcite forms intergrowths with brucite (Fig. 2 D and E), similar to fragile brucite–carbonate intergrowths found in Lost City chimneys (7). Vein brucite associated with calcite is of virtually pure endmember composition (Table S1). Bulk chemical analysis of chimney samples suggests that brucite at Lost City is also Fe-poor (7), consistent with the metal-poor nature of Lost City fluids (3, 34). For comparison, brucite formed at the expense of olivine in serpentinized peridotite from the Iberia Margin is intergrown with serpentine and strongly enriched in Fe (35). Calcite associated with brucite is of near-endmember composition with only trace contents of Mg, Mn, and Fe (<0.05 wt%, Table S1; cf. ref. 7).

The serpentized host is heavily brecciated with individual clasts, mainly composed of serpentinite in mesh or glassy texture, being cemented by vein calcite and brucite (Fig. 2 A–C). Calcite and brucite deposition clearly postdated serpentization in this depth interval, suggesting that hydrothermal fluids were sourced in deeper basement levels.

Carbon Geochemistry of a Suboceanic Mixing Zone

The contact at 65 m below the sediment–basement interface between ophicalcrite and serpentinite marks a sharp transition in carbon geochemistry (Fig. 3) (23). Contents of total inorganic carbon (TIC) are high (1.2–9.6 wt%) above the contact, whereas the total carbon (TC) δ13C ranges between +1.2‰ and −4.3‰. Contents of total organic carbon (TOC) are low in this section. In contrast, below the contact, contents of TOC are up to 0.4 wt%, making up more than 80% of the TC, and δ13C TC is strongly depleted (29). The brucite–calcite veins analyzed in this study have TC (4.87 ± 0.19 wt%, δ13C TC = −1.6‰) and TIC (4.40 ± 0.06 wt%, δ13C TIC = −0.3 ± 0.06‰, δ18O TIC = −1.7 ± 0.19‰) contents and isotopic compositions consistent with ophicalcrite in the upper drill core section. In contrast, TOC is strongly enriched in these veins, with contents of 0.49 ± 0.01 wt%, which is even higher than TOC contents of serpentinite from the lower section (23). Although δ13C TOC was −19.4‰ is somewhat less depleted than in other samples from Hole 897D, it is almost identical to that of carbonaceous samples from fissures in the serpentinite bedrock at Lost City (36, 37).

It seems likely that organic carbon was introduced by seawater into the deeper sections of the basement; however, this would not explain the enrichment of organic carbon at the contact between ophicalcrite and serpentinite or in some places within the lower serpentinite section. Clumped isotope analysis of vein calcites intergrown with brucite yields Δ52 values of 0.670 ± 0.019‰ (n = 3, mean ± 1σ SE), suggesting they formed at 31.7 ± 4.3 °C from a fluid with δ18O values of 1.2 ± 0.9‰ [Vienna standard mean ocean water, VSMOW (38–40)]. This temperature range is consistent with previous estimates for carbonate precipitation temperatures at Hole 897D (21–31 °C) (29). Moreover, the calculated isotopic composition of the fluid is within the range of the measured isotopic composition of Lost City vent fluids [0.5–2‰ (3)].

In Situ Biomass Production

Thermodynamic predictions provide valuable constraints on possible metabolic (catabolic and anabolic) reactions in hydrothermal mixing zones. Amend et al. (41) calculated that hydrogen oxidation in peridotite-hosted hydrothermal systems yields the most catabolic energy at low to moderate temperatures (<45 °C) and seawater : hydrothermal fluid mixing ratios of >10. Other aerobic and anaerobic reactions, including methane oxidation, sulfate reduction, and methanogenesis, are exergonic under these conditions but, energetically, less favorable than hydrogen oxidation. Similar to catabolic reactions, anaerobic reactions are most favorable at high seawater : hydrothermal fluid mixing ratios and temperatures ≤32 °C in peridotite-hosted hydrothermal systems with energy yields of ~900 J per gram of dry cell mass (41). Assuming serpentinization fluids beneath the Iberia Abyssal Plain had a temperature of ~150–250 °C as indicated from oxygen isotope thermometry, and bottom seawater was ~2 °C, we calculate isenthalpic seawater : hydrothermal fluid mixing ratios of ~3–15 to yield carbonate precipitation temperatures of 20–40 °C. Hence, the energy landscape was likely favorable for a range of aerobic and anaerobic reactions across the mixing zone. We suggest that in situ production of microbial biomass fueled by fluid mixing represents the most plausible explanation for the measured enrichments in organic carbon (Fig. 3).

Microfossil Inclusions

Transmitted light and electron microscopy of freshly broken brucite–calcite veins (sample 897D-17R6, 0–5 cm) revealed abundant round to rod-shaped inclusions, ca. 2–200 μm in diameter (Fig. 4 A–D), that bear a striking resemblance to microbial microcolonies, i.e., micrometer-scale clusters of physically
adjacent microbial cells (42). Some inclusions show negative crystal shapes evidencing entrapment during crystal growth (Fig. 4C). Energy dispersive element mapping suggests that these inclusions are chiefly composed of carbonaceous matter (Fig. 4E).

Microfossil inclusions are found in brucite and calcite, but Raman spectra of such inclusions were exclusively collected in brucite because of its lower background and nominally carbon-free nature. Brucite yields strong bands at 279 cm$^{-1}$, 444 cm$^{-1}$, and 3,650 cm$^{-1}$ and a weak band at 725 cm$^{-1}$ (Fig. 4F), which is consistent with band assignments from reference spectra (43). The Raman spectra acquired from the microfossil inclusions contain prominent vibrational modes in the ~2,800–3,100 cm$^{-1}$ and ~1,000 and 1,650 cm$^{-1}$ ranges (Fig. 4F). These bands can be assigned to the C–H, –CH$_2$-, and –CH$_3$ functional groups in lipids and amino acid side chains of proteins and carbohydrates, and amide I bonds in proteins (44–46) (Table S2).

Microbial Signatures

Lipid biomarkers were extracted from homogenized and crushed brucite–calcite veins (sample 897D-17R6, 0–2 cm) and subjected to multiple reaction monitoring (MRM) experiments with HPLC triple quadrupole MS to screen the sample for fossilized forms of characteristic Lost City-type membrane lipid biomarkers as reported previously (47, 48). MRM experiments revealed the presence of a series of nonisoprenoidal dialkylglycerol diether (DEG) lipids of bacterial origin, with varying chain lengths from C30:0 to C34:0 representing different mixtures of C15 to C18 hydrocarbon chains (Fig. 5). The same compounds represent the predominant lipid type in Lost City hydrothermal vent chimneys in their intact form with sugars as head groups (47). *Deusflotomaculum* and *Clostridium*, candidate sulfate-reducing bacteria detected at Lost City, have been suggested as potential source organisms for these compounds (47). In addition to bacterial DEG lipids (amounting to 2,370 pg g$^{-1}$), quantifiable amounts of archaeol (13 pg g$^{-1}$) and acyclic glycerol dibiphytanyl glycerol tetraether lipids (GDGT-0, 13 pg g$^{-1}$) were detected in brucite–calcite veins from the Iberia Margin. The same lipids are present in Lost City chimneys and are attributed to methanogenic archaea, likely those belonging to the Methanosarcinales (47, 48). Methanosarcinales dominate microbial communities harbored

![Fig. 4. Examples of fossilized colonies of microorganisms in sample 897D-17R6, 0–2 cm. (A) BSE image of concretions of organic matter (Org) interpreted to be fossil microbial microcolonies in calcite (Cal) and sheets of brucite (Brc). (B) BSE image of concretions of organic matter interpreted to be fossil microbial microcolonies at a contact between a brucite–calcite vein and the serpentinite host. (C) BSE image of microcolonies in brucite. Negative crystal shapes of brucite are visible in some inclusions. Color-coded crosses and labels refer to Raman spectra shown in F. (D) Optical photomicrograph of same microcolonies as shown in C and E. (E) Element map of microcolonies, carbon (blue) and magnesium (red). (F) Raman spectra of brucite-hosted microcolonies illustrated in C–E. Raman spectra of the brucite host, and 1,2-Di-O-hexadecyl-rac-glycerol (C32:0-DEG, >99%) and 1,2-Di-O-phytanyl-sn-glycerol (archaeol, >99%) lipid standards are shown for comparison.](https://www.pnas.org/content/112/39/12039)

![Fig. 5. Representative HPLC-ESI-MS chromatograms of organic compounds detected in MRM experiments: (A) C32:0 nonisoprenoidal diether glycerol (DEG) lipid standard, having two C16 hydrocarbon side chains; (B–D) nonisoprenoidal bacterial DEG lipids with different side chains detected in sample 897D-17R6 0–2 cm. Multiple peaks are likely due to different mixtures of hydrocarbon side chains or methylations in the hydrocarbon chains. (E and F) Isoprenoidal archaeal ether lipids detected in sample 897D-17R6 0–2 cm (GDGT-0, acyclic glycerol dibiphytanyl glycerol tetraether). Bacterial lipids outnumber archaeal lipids as in mixed fluid environments at Lost City (cf. ref. 49).](https://www.pnas.org/content/112/39/12039)
Serpenitization and Subseaflow Microbial Activity

Seafloor serpenitization systems have existed throughout most of Earth’s history (51). Serpenitization is currently taking place in the shallow forearc of subduction zones, along ultralow-, slow-, and fast-spreading midocean ridges where oceanic mantle is exposed to water (52–55). Whether serpenitization is currently taking place along passive margins is unclear, but it certainly occurred in the geological past, as shown in the present study. Biological communities associated with hydrothermal systems exploit and likely follow the chemical energy they provide, independent of the geotectonic setting where serpenitization occurs. The environmental conditions in subseaflow serpenitization systems can be extremely challenging for microorganisms due to the high pH and limited availability of electron acceptors and nutrients (10). However, our study demonstrates what theoretical studies predicted earlier (41, 56, 57): Subseaflow mixing zones represent niches for chemolithoautotrophic life in the oceanic mantle.

Methods

Thin sections of samples from Ocean Drilling Program Leg 149 Hole 897D, core 17R6, were prepared at High Mesa Petrographics (Los Alamos, NM). Thin sections were examined with a Zeiss Axio Imager 2 petrographic microscope in transmitted and reflected light. Back-scattered electron images of thin sections and rock chips were collected for 5 s with three to five accumulations between 100 cm−1 and 200 cm−1. For organic substances, individual spectra were collected for 180 s between 100 cm−1 and 200 cm−1. An acid aliquot of the combined total lipid extracts and a procedure blank was analyzed using a Dionex Ultimate 3000RS ultra-high pressure liquid chromatography system connected with a TurboIon electrospray ion source to an ABSCIEX QTRAP4500 Triple Quadrupole Trap MS. Chromatographic separation of compounds was achieved with a Waters Acquity ultra performance liquid chromatography (UPLC) ethylene bridged hybrid (BEH) C18 column (51). Quantification occurred in the first transition via external calibration with the available standards, and all amounts were corrected with the procedure blank.

ACKNOWLEDGMENTS. Kai-Uwe Hinrichs, who acknowledges the Gottfried Wilhelm Leibniz Program of the Deutsche Forschungsgemeinschaft (HI 616–14–1), and Benjamin H. Pasey are thanked for the use of their laboratory facilities. We thank Hillary S. Lipp for help with HPLC/MS analyses and provision of the GDGT-0 standard, Benjamin Gill for help with carbon isotope analyses at Virginia Tech, and Horst Marshall for providing access to scanning electron and petrographic microscopes. We used samples collected during the Ocean Drilling Program (ODP). ODP was sponsored by the US National Science Foundation and participating countries under management of Joint Oceanographic Institutions, Inc. This work was supported by The Penzance Endowed Fund in Support of Assistant Scientists (F.K. and W.G.), the Deep Ocean Exploration Institute at the Woods Hole Oceanographic Institution (F.K. and W.D.O.), and the University of Bremen (F.S.). This is Center for Dark Energy Biosphere Investigations (C-DEBI) contribution 272.

