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Humans choose actions based on both habit and planning. Habitual
control is computationally frugal but adapts slowly to novel circum-
stances, whereas planning is computationally expensive but can adapt
swiftly. Current research emphasizes the competition between habits
and plans for behavioral control, yet many complex tasks instead favor
their integration. We consider a hierarchical architecture that exploits
the computational efficiency of habitual control to select goals while
preserving the flexibility of planning to achieve those goals. We for-
malize this mechanism in a reinforcement learning setting, illustrate its
costs and benefits, and experimentally demonstrate its spontaneous
application in a sequential decision-making task.
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The distinction between habitual and planned action is funda-
mental to behavioral research (1–4). Habits enable computa-

tionally efficient decision making, but at the cost of behavioral
flexibility. They form as stimulus–response pairings are “stamped in”
following reward, as in Thorndike’s law of effect (3). Planning, in
contrast, enables more flexible and productive decision making. It is
accomplished by first searching over a causal model linking candidate
actions to their expected outcomes and then selecting actions based
on their anticipated rewards. Planning imposes a severe computa-
tional cost, however, as the size and complexity of a model grows.
Past research emphasizes the competition between habitual and

planned control of behavior (5, 6). Habitual control is favored when
an individual has extensive experience with a task and when the
optimal behavior policy is relatively consistent across time; mean-
while, planning is favored for novel tasks and when the optimal policy
is variable, provided that an agent represents an adequate model of
their task (7).
Methods of integrating habitual and planned control have re-

ceived less attention (8–10), yet real-world tasks often favor ele-
ments of each. Consider, for instance, a seasoned journalist who
reports on new events each day. At a high level of abstraction, her
reporting is structured around a repetitive series of goal-directed
actions: follow leads, interview sources, evade meddling editors,
etc. Because these actions are reliably valuable for any news event,
their selection is an excellent candidate for habitual control. The
concrete steps necessary to carry out any individual action will be
highly variable, however—optimal behavior when interviewing a
pop star may be suboptimal when interviewing the Pope. Thus, the
implementation of the abstract actions is an excellent candidate for
planning. This example illustrates the utility of nesting elements of
both habits and plans in a hierarchy of behavioral control (11–13).
Indeed, it is widely recognized that humans mentally organize

their behavior around hierarchically organized goals and subgoals
(3, 14, 15). In principle, hierarchical organization can be imple-
mented exclusively by habitual control (16), or exclusively by plan-
ning (13, 17). However, these homogenous mechanisms foreclose
the possibility of tailoring the means of control (habit vs. planning) to
the affordances of a particular level of behavioral abstraction. Our
aim is to show that humans solve this dilemma by exerting habitual
control over the process of goal selection, while using planning to
attain the goal once selected.
Traditionally, habits are modeled as a learned association be-

tween a perceptual stimulus and motor response. Our proposal
entails an extension of habit learning to the relation between

superordinate and subordinate goals: a superordinate goal can
serve as the internally represented stimulus triggering a cognitive
response of subordinate goal selection. Thus, for instance, the goal
of getting an interview with a key source might be stamped in due
to the history of reward associated with selecting this goal in past
news-reporting episodes.
Colloquially, this captures the idea of a “habit of thought”:

habitual control can contribute to the effective deployment of
cognitive routines that facilitate productive and flexible cognition.
This proposal is consonant with recent research emphasizing the
pervasive role of model-free control in related elements of higher-
level cognition (18, 19), including the gating of working memory
(20) and the construction of hierarchical task representations (21).
These models offer an appealing functional explanation for the
neuronal connections between striatum and frontal cortex (22).

A Reinforcement Learning Perspective
Our proposal can be formalized in the reinforcement learning
(RL) setting (23). RL models are widely used in cognitive re-
search because they capture several core features of learning and
choice, including in humans (1, 6, 24). We draw especially on two
features of RL: the implementation of habitual versus planned
action, and the implementation of hierarchical control.
The core principles of habitual and planned control are em-

bodied in two broad classes of RL algorithms. Model-based RL
maintains an explicit causal model of the world and uses it to choose
actions by assessing their likely consequences. Thus, it enables goal-
directed planning. In contrast, model-free RL does not maintain an
explicit causal model and therefore does not allow planning.
Rather, it assigns value to candidate actions based on their context-
dependent history of reward. The resulting cached policies (akin to
stimulus–response habits) are globally adaptive but may exhibit local
irrationality (24, 25). Elements of model-free RL, including
prediction-error updating and temporal difference learning, are
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implemented in the midbrain dopamine system (26–28). Hu-
man behavior also relies extensively on model-based planning
toward goals, which depends on diverse cortical and subcortical
regions (4, 24, 29–31).
Hierarchical control is often accomplished in RL by grouping

actions into “options” (12). An option is a sequence of actions (or
“policy”) bundled collectively for selection by a superordinate
controller. For example, tying a bow comprises many individual
actions, but these are bundled into a single motor routine. This
allows a valuable policy to be generalized across contexts (“policy
abstraction”). For instance, learning to tie a bow when putting on
one’s shoes can generalize to tying a bow while trussing a turkey.
In machine learning contexts, intraoption policies are sometimes
specified by the programmer; alternatively, they may be learned by
model-free methods (16) or by concatenation via repetition into a
chunked action sequence (9, 10). These approaches are well suited
to situations where the optimal intraoption policy remains con-
stant across episodes, as with tying a bow.
These approaches are poorly suited, however, to circumstances

where an intraoption structure is more variable, as when a jour-
nalist attempts to secure an interview for a breaking story. Instead,
such cases favor intraoption planning toward a goal. Compared
with nonhierarchical (“flat”) model-based planning, defining op-
tions over reliably valuable goals is computationally efficient be-
cause it summarizes the expected rewards of implementing the
goal, rather than deriving the expected reward from search over a
full model of the task (13). For instance, a journalist can retrieve
the cached value of pursuing interviews (learned from past expe-
rience), rather than deriving the value of these actions by search
over many full-length policies for news reporting. Below, we il-
lustrate these computational savings for a specific task.
In summary, modeling habitual goal selection in the rein-

forcement learning framework comprises three claims. First,
hierarchical control can be implemented by defining options over
goal states. Second, intraoption policies may be derived from
model-based planning toward those goals states. Finally, options
may be selected according to cached values derived from model-
free update. These features complement tasks where pursuit of a
subgoal is reliably valuable (favoring the computational efficacy
of model-free valuation of an option), but the means of achieving
the subgoal is highly variable (favoring the flexibility of model-
based planning within the option).
Our proposal can be contrasted with the recent suggestion that

humans may sometimes use goal-directed control in a manner su-
perordinate to habitual action (9, 10)—that is, in which a model-
based controller selects habituated action sequences. We seek evi-
dence of the opposite relationship; yet these models are not mutually
exclusive. To the contrary, they share the common assumption that
humans will flexibly adapt the use of habitual and goal-directed
control across levels of hierarchically organized behavior to suit
the demands of a particular task. In other words, both propose a
“heterarchy” of behavioral control.
The possibility of habitual control over goal selection comple-

ments several existing models in RL and psychology (11–13). Some
RL algorithms have implemented model-free control over hierar-
chical goal selection, and with promising results (12). This formal
approach to model-free control over model-based planning has not,
however, received a direct experimental test in humans. Meanwhile,
psychological models of hierarchical planning recognize the prob-
lem of goal selection and have implemented a number of solutions,
varying in scope and specificity. These include the use of hidden-
layer backpropagation networks (14), Pavlovian search heuristics
(32), procedural learning mechanisms (33), the chunking of action
sequences (9, 10), and other dedicated or domain-specific solutions
(3, 34). Here, we aim to explicitly link a formal model of habitual
control over goal selection to experimental data.

Experiment 1
Our task is adapted from a multistep choice paradigm used in prior
research (24). The original paradigm behaviorally dissociates the
influence of habitual (model-free) and goal-directed (model-based)
control on choice. It accomplishes this by exploiting low-probability
connections between behavior and reward. A mechanism using
model-free value update is sensitive to such rewards, stamping in the
participant’s prior choice. In contrast, model-based planning over a
known causal model of the task discounts the link between actions
and reward in such cases according to their low probability of oc-
currence. By observing participants’ choices, the influence of model-
free and model-based control can be dissociated. Several lines of
convergent evidence support the alignment of these mechanisms
with habitual and goal-directed control, including functional neuro-
imaging (24), transcranial magnetic stimulation (35), and manipu-
lations of cognitive load (5) and stress (36), among others (refs. 37
and 38; but see refs. 9 and 10).
We modified this task to index not only model-free value as-

signment to actions (as in the original task) but also model-free value
assignment to options defined by a goal (Fig. 1A). At stage 1 of each
trial, participants choose between two actions drawn from the set
[1, 2, 3, 4]. These choices trigger stochastic transitions to stage 2
states from the set [blue, red, green]. Finally, stage 2 states de-
terministically transition to three unique reward distributions. The
rewards change gradually over the course of the experiment. Thus,
participants are motivated to choose stage 1 actions that maximize
the likelihood of transitioning to the current reward-maximizing
stage 2 state. Participants received detailed instructions and practice
trials, including both explicit information about the stochastic

B

A

Fig. 1. (A) In experiment 1a, participants performed a two-stage Markov
decision task. They were presented with two possible stage 1 actions drawn
from a set of four. These transitioned with variable probabilities to a set of
stage 2 actions, which then transitioned deterministically to a set of drifting
reward distributions. (B) The logic of the experiment depends on a subset of
trials. For instance, participants might be presented with the choice set (1, 2)
in a setup trial. Upon selecting action 1, they experience a low-probability
transition to the green state followed by a large reward. A model-free in-
fluence on goal selection uniquely predicts an increase in the selection of
action 3 on the subsequent critical trial, because actions 1 and 3 share the
common goal state of blue.
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transitions between stage 1 and stage 2 and extended practice with
those transitions.
Our analysis depends on a subset of trials (Fig. 1B). For ex-

ample, a participant is presented with the choice set (1, 2) at
stage 1 and chooses action 1. Because 1 typically leads to the blue
state, we assume that this participant’s goal was to transition to
blue. On our “setup” trials, however, they experience a low-
probability transition to the green state, and then experience a
very large reward. A model-based system would discard this in-
formation because transitions to the green state are equally likely
from all stage 1 options. This renders forward planning toward
green irrelevant. In contrast, model-free value update would
increase the likelihood of selecting 1 on subsequent trials due to
the history of reward following that action (24). Our interest,
however, is in the model-free assignment of value to a goal—in
this case, the goal of transitioning to blue. If the experience of
reward increases the likelihood of selecting blue as a goal, then
participants should exhibit a greater likelihood of choosing 3 on
the subsequent “critical” trial (when paired with either 2 or 4).
Conversely, the experience of punishment should decrease the
likelihood of choosing 3. This influence of the reinforcement
history of choosing 1 on the subsequent choice of 3 cannot be
explained by model-free update of a value to the specific action
(choosing 1); rather, it may depend on the assignment of value to
their shared goal (getting to blue). In experiment 1, we establish
this effect, and in experiment 2 we rule out several alternative
explanations of it.

Experiment 1a. We assessed choice on critical trials by comparing
instances when the participant experienced reward versus punish-
ment on the preceding setup trial (i.e., following low-probability
transition to the green state). Consistent with our prediction, the
mean proportion of trials on which participants selected the shared-
goal action following positive reward (85%) was significantly greater
than the proportion following negative reward (69%) [t(216) = −11.1,
P < 0.0001]. Further analysis of these data, and for all subsequent
experiments, is presented in Supporting Information.

Experiment 1b. In experiment 1a, each round of play required
a single choice between two actions available at stage 1. This
structure does not illustrate the computational savings of model-
free value update of options defined over goals. Because each
“goal state” (red or blue) deterministically transitions to a single
reward distribution, planning toward the goal state is computa-
tionally equivalent to planning toward the reward distribution, and
is thus no more efficient.
To differentiate subgoals from reward, and to thereby illustrate

the computational savings of habitual goal selection, we extend
our task to include two sequential rounds of choice (Fig. 2). In this
task, when the participant arrives at a colored state in stage 2, they
face a choice between two actions. Each action delivers reward
from an independent distribution with a drifting mean. Exhaustive
model-based search of this decision tree from stage 1 requires the
agent to consider transitions and reward distributions for stage 2
actions available from both the blue state and the red state (i.e.,
actions i–iv). By instead selecting an option defined over a stage 2
goal state, planning over these transitions and rewards is trun-
cated; instead, the expected rewards are now summarized by the
value assigned to the option.
Meanwhile, the definition of options over stage 2 goal states

enjoys a performance advantage over a flat model-free represen-
tation. Specifically, an options-based approach enables the learned
value of a stage 2 goal to propagate across stage 1 actions that share
high-probability transitions to that goal. In other words, if selecting
1 is rewarding, that value propagates to selecting 3.
In Supporting Information, we present formal models implement-

ing pure model-based control, pure model-free control, and our
proposed hierarchical integration. We simulate the performance

of each model for experiment 1b. We find that pure model-based
control attains the highest level of performance (averaging $2.04
in bonus earnings), pure model-free control attains the lowest
level (averaging $1.72), and the integrated model attains in-
termediate performance (averaging $1.97). This occurs because
only pure model-based control appropriately discounts the history
of reward attained subsequent to the green state, whereas only
pure model-free control fails to generalize across stage 1 actions
based on their common transition probabilities.
We then tested a new population of participants on this task.

Consistent with our predictions, the mean proportion of trials on
which participants selected the shared-goal action following positive
reward (79%) was significantly greater than the proportion fol-
lowing negative reward (75%) [t(242) = −3.5, P < 0.005]. We also fit
our formal model to participants’ choices in experiment 1b and
found that our model was strongly preferred to a null model with
the model-free goal selection mechanism removed (exceedance
probability = 1). Details are presented in Supporting Information.

Experiment 1: Discussion. Experiments 1a and 1b provide evidence
consistent with habitual control of goal selection. In both experi-
ments, we observed a transfer of learned value across stage 1 actions
linked only by their common high-probability transition to a sub-
sequent state. This suggests that participants either engaged in
model-based planning over a nonhierarchical (flat) representation
the task, or else assigned value to options indexed by the common
goal of the subsequent state. However, flat model-based planning is
not consistent with the observed influence of reward obtained after
low-probability transitions to the green state. Because transitions to
this state are equally likely following any stage 1 action, they are
irrelevant to planned choice between those actions. Thus, we ten-
tatively conclude that participants adopted model-free hierarchical
control over options defined by goal states.
Two concerns limit our confidence in this inference, however.

First, it is possible that participants come to represent stage 1 ac-
tions with shared high-probability transitions as equivalent for
purposes of the task. In other words, they may treat selecting “1”
and selecting “3” as the very same action, performing model-free
value update on this unified representation. This would account for
our results without invoking hierarchical control. A superior ex-
perimental paradigm would ensure de novo construction of the
intraoption policy using model-based methods on all critical trials.
Second, it is possible that participants defined options not over the
intermediate goal of attaining a stage 2 option (e.g., “get to red”),
but instead over the goal of a terminal state at stage 3 (e.g., “get to
Riii”). This mechanism would still predict a transfer of reward values
across stage 1 actions sharing common high-probability transitions,
and it would still predict that option values would update based on
rewards obtained following low-probability transitions to the green
state. Although this alternative shares with our model the premise

Fig. 2. Experiment 1b extends the task introduced in experiment 1a to in-
clude a second round of choice. This dissociates putative subgoal states (in-
termediate colored states) from the terminal states associated with reward.
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that options are defined by goal states, and also that intraoption
control is accomplished by model-based methods, it is compatible
with either model-free or model-based value update of options. This
is because the highest level of control reduces to a simple bandit
task in which model-based and model-free methods behave equiv-
alently (see also refs. 9 and 10). We designed experiment 2 to target
both of these concerns.

Experiment 2
Experiment 2 involves a sequential decision-making task of similar
structure to experiment 1 (Fig. 3). However, in experiment 2, the
stage 1 “action” that participants must perform is a mathematical
operation. Specifically, in stage 1, participants were presented with a
set of three numbers, two of which could be summed to 16, and
another two of which could be summed to 21; for example, 7, 9, and
12. By selecting any two numbers that sum to 16, participants de-
terministically transitioned to one stage 2 state (“state 16”), whereas
by selecting any two numbers that sum to 21, they deterministically
transitioned to another stage 2 state (“state 21”).
We conceive of the abstract action “summation to 16” as an

option defined by a goal state. As with the news reporter for whom
interviews are always valuable, but must be pursued by variable
means, experiment 2 presents participants with a task in which
value is restricted to a small number of goals associated reliably
with reward (16, 21), but in which goals may be attained by a wide
array of actions (i.e., computing the sum of many different pairs
of integers).
We limit our analysis to just those trials on which participants

are presented with a novel set of numbers at stage 1. This provides
a strong safeguard against the possibility of “acquired equivalence”
between stage 1 actions. We assume that participants had not ac-
quired an associative equivalence between all possible pairs of in-
tegers that sum to 16, or to 21, before the presentation of any given
pair in our task.
In addition, experiment 2 alters the structure of the transitions

between stage 2 and stage 3 states in a way that allows us to
differentiate between options defined over each stage. Crucially,
there exists a stage 3 state (Rii) that can be deterministically
attained via either stage 2 state (16 or 21). An option defined over
this terminal reward state (Rii) and implementing model-based
control would equally favor both summation operations (16 or 21),
because both are sufficient to reach the goal. Only when options

are defined over the intermediary stage 2 states would reward
obtained at Rii systematically bias subsequent selection of a par-
ticular stage 1 action.

Experiment 2a. We analyzed data exclusively on critical trials
presenting novel sets of numbers at stage 1. Consistent with our
prediction, the mean proportion of trials on which participants
reselected the same sum goal following positive reward (76%)
was significantly greater than the proportion following negative
reward (56%) [t(30) = −2.5, P < 0.05].

Experiment 2b. As we have discussed, habitual goal selection af-
fords computational savings by caching a model-free value repre-
sentation of goal pursuit—an abstract action defined by a goal. A
variant of this proposal uses model-free update to assign value not
to the action of pursuing a goal state (i.e., the option “summing to
16”), but instead to the state itself (i.e., state 16). This distinction is
subtle but crucial. The latter model could explain the pattern of
results obtained in experiment 2a, but without invoking hierarchical
control. Rather, control would be implemented by a flat model-
based search over a decision tree truncated at stage 2 states, based
on values assigned to those states by model-free update.
Critically, this explanation could not apply to experiments 1a

and 1b, where value obtained after low-probability transitions to
the green state influences subsequent choice. Because transitions
to the green state are equally probable from each stage 1 choice,
value assigned to the green state cannot influence stage 1 choice.
Rather, such an influence implies that value was assigned to the
action of pursuing the state as a goal (even if the state is sub-
sequently not attained).
To distinguish between these possibilities in our new task, we

adapted the logic from experiment 1 and performed an additional
experiment (2b) that implemented low-probability transitions from
both summation operations to a third stage 2 state (Fig. 4). This
state, indexed “state 0,” presents three available actions that de-
terministically transition to each of the stage 3 states. Our analysis
of this task depends on setup trials where participants transition to
state 0 and subsequently choose action “ii,” which deterministically
transitions to a reward distribution available from all stage 2 states
(Rii). On the subsequent critical trial, participants are presented
with a novel set of three numbers at stage 1. We find that they are
more likely to repeat the summation goal that they previously se-
lected on the setup trial following reward for state ii (72.3%),
compared with punishment [54.6%, t(145) = −3.8, P < 0.001]. This
effect is consistent with model-free valuation of the previously se-
lected option (e.g., summing to 16), but not with valuation of the
previously visited stage 2 state (state 0), which is equally available
given any action at stage 1.
Why might participants sometimes use a hierarchical task rep-

resentation that assigns value to options defined by goals (i.e., to
goal-directed actions), rather than exclusively relying on a flat task
representation that assigns value to truncated branches of a decision
tree (i.e., to the corresponding states)? These approaches differ in
that the former first selects a goal based on a cached value repre-
sentation and then searches for a policy to attain it, whereas the
latter first searches over potential (truncated) policies, discovering
their values by planning. Past research shows that planning algo-
rithms that exploit preselected goals, such as backward reasoning,
can attain significant computational savings (39, 40). Savings may be
particularly large in real-world domains where the set of possible
actions from any given state is very large (e.g., the set of all con-
ceivable actions that a journalist could take when assigned
a new article).

Discussion
We find that goal selection in humans is partially determined by
model-free value representations derived from reward history.
These goals are subsequently used during model-based planning

Fig. 3. Experiment 2a used a similar structure to experiments 1a and 1b, but
with two key differences. First, stage 1 actions were determined by com-
puting the sum of two numbers selected from a total of three presented on
each trial. We analyze the subset of critical trials on which participants first
encounter a new set of numbers. Second, both stage 2 colored states con-
tained an action that produced a deterministic transition to a single stage 3
reward distribution (Riii). This feature dissociates the influence of options
defined over stage 2 goals from the influence of options defined over stage
3 goals.

13820 | www.pnas.org/cgi/doi/10.1073/pnas.1506367112 Cushman and Morris

www.pnas.org/cgi/doi/10.1073/pnas.1506367112


over an internally represented causal model of the task structure.
In our experiments, this mechanism appears suboptimal, because
participants could easily have performed an exhaustive search
over candidate goals and thereby attained a higher average rate
of reward. However, the same mechanism mitigates the com-
putational burden of full model-based evaluation for the kinds of
complex tasks that we routinely face in everyday life.
Although our proposal relies upon the conceptual distinction

between habitual (model-free) and planned (model-based) behav-
ioral control, it also demonstrates a mutual dependence between
them. This integration captures several empirical phenomena
that blend features of habits and goals. Contextual cues can
trigger goal pursuit outside of conscious awareness (41), consistent
with the operation of stimulus–response habits in the process of
goal selection. In cases of “utilization behavior” among individuals
with insult to prefrontal cortex, goal-directed behavior may be in-
trusive or inappropriately invoked based on contextual cues (42).
Among neurotypical individuals, “functional fixedness” describes
the tendency to consider a limited set of candidate means–end
relationships based on past experience with a tool (43). Finally, it is
observed in educational settings that the execution of controlled
cognitive processes improves with practice—in other words, that
learning complex tasks requires the incremental acquisition of
appropriate habits of thought (44, 45).
Habitual goal selection can reduce the computational demands

of behavioral control, but there is no free lunch: by relying on habit,
an agent forgoes the opportunity for optimal planning. This is
apparent in our task, where model-free goal selection reduced
participants’ payoff, compared with the reward full model-based
evaluation could attain. Thus, humans face the challenge of opti-
mally balancing the efficiency of model-free control against the
productivity of model-based control. Several promising avenues of
research explore how we accomplish this (7, 46–49).
Within the present framework, one approach to fine-tuning this

balance is to select and evaluate multiple candidate goals. The
model we implemented allows only a single goal to be retrieved and
adopted, but a simple extension of this model would retrieve mul-
tiple goals with a probability proportional to their model-free value.
Then, the value of policies subsequent to each candidate goal state
could be evaluated by model-based means (13). In this case, the
function of model-free value assignment would be to reduce the size
of the planning task, rather than to eliminate it.

The utility of habitual goal selection also depends, of course, on
the accuracy of the model-free value representation. An agent
with highly accurate representations sacrifices little by turning over
goal selection to model-free control, whereas an agent with inac-
curate representations sacrifices much. In our experiment, model-
free value representations are set by the history of reward. However,
obtaining sufficiently accurate representations exclusively by trial and
error is not feasible for many complex tasks.
Critically, past research shows that model-free value represen-

tations are established by several other means. For instance, value
representations can be cached during simulated experience derived
from a causal model (8). In addition, both observational learning
and direct instruction by social partners establish value represen-
tations (50–52). The possibility of cultural transmission of hierar-
chical goal structure by observational learning or instruction stands
out as a likely explanation for the efficiency and power of goal-
directed behavior in humans. Cached model-free value assignment
to goal selection may serve as an important repository for cultural
knowledge of this form. This implies a codependence between two
capacities that are remarkably developed in humans: cultural
transmission (53) and productive and flexible reasoning (54).

Methods
Participants. A total of 703 subjects were recruited on Amazon Mechanical
Turk to participate in Markov decision tasks. Each subject participated in only
one task. Subjects gave informed consent, and the study was approved by the
Harvard Committee on the Use of Human Subjects.

Subjects were excluded from analysis if they timed out on more than 50
trials, or if their final accumulated score was below zero. After applying our
exclusionary criteria, there were 217 subjects and 6,090 critical trials in ex-
periment 1a, 243 subjects and 6,184 critical trials in experiment 1b, 49 subjects
and 195 critical trials in experiment 2a, and 194 subjects and 714 critical trials
in experiment 2b.

Experiment Design. The designs of our experiments are summarized in Figs. 1–4.
The two stage 1 options for each trial were always chosen such that the options
led to different stage 2 states [i.e., (1, 3) were never paired in experiment 1].
All rewards distributions were initialized uniformly at random on a range
of −4 points to +5 points, and varied according to a bounded Gaussian
random walk for the remainder of the experiment. After each round, the
drift was sampled from a normal distribution with (μ = 0, σ = 2), rounded to
the nearest integer, and added to the current reward level. In cases where
drift selected a reward level outside the bounds of [−4, 5], the reward would
“rebound” by the amount of the excess. The rewards on setup trials (those
immediately preceding critical trials) were boosted to their extremes by
adding +2 or −2 points, depending on the reward distribution’s current sign.
If the boost selected a reward level outside the bounds, the reward remained
at the boundary amount.

After the experiment, participants received a bonus payment based on their
accumulated points. Eachpointwasworth 1 cent. Participantswere informedof
the value of points in the instructions. Each participant completed 75 practice
trials followedby 175 rewarded trials. The practice trialswere divided into three
sections of 25 practice trials each. Sections were designed to ease participants
into the task by introducing one task element at a time. On the rewarded trials,
subjects had only 4 s tomake their choice between the two numbers. If they did
not make a choice within 4 s, the trial would time out and the next trial would
begin. Practice trials had no time limit. Participants in experiments 1a and 1b
saw 26 critical trials each. The spacing of critical trials in experiments 1a and 1b
was chosen randomly, with the constraint that they had to be at least three
trials apart from each other.
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