Stonefish toxin defines an ancient branch of the perforin-like superfamily

Andrew M. Ellisdona,b, Cyril F. Reboulb,c, Santosh Panjikarb,c, Kitmun Huynh3, Christine A. Oelliga, Kelly L. Winterad,d, Michelle A. Dunstoneab,e, Wayne C. Hodgsonddd, Jamie Seymourf, Peter K. Dearden6, Rodney K. Twetenh, James C. Whisstockab,1,2, and Sheena McGowanb,1,2

*Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia; aBiomedicine Discovery Institute and Department of Pharmacology, Monash University, Melbourne, VIC, 3800, Australia; Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia; Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4870, Australia; 3Department of Biochemistry and Genetics Otago, University of Otago, Dunedin, 9054 Aotearoa-New Zealand; and 4Department of Microbiology and Immunology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104

Edited by Brenda A. Schulman, St. Jude Children’s Research Hospital, Memphis, TN, and approved November 3, 2015 (received for review April 19, 2015)

The lethal factor in stonefish venom is stonustoxin (SNTX), a heterodimeric cytolytic protein that induces cardiovascular collapse in humans and native predators. Here, using X-ray crystallography, we make the unexpected finding that SNTX is a pore-forming member of an ancient branch of the Membrane Attack Complex-Perforin/Cholesterol-Dependent Cytolysin (MACPF/CDC) superfamily. SNTX comprises two homologous subunits (α and β), each of which contains an N-terminal pore-forming MACPF/CDC domain, a central focal adhesion-targeting domain, a thioredoxin domain, and a C-terminal tripartite motif family-like PRY SPIa and the RYanodine Receptor immune recognition domain. Crucially, the structure reveals that the two MACPF domains are in complex with one another and arranged into a stable early pre-pore-like assembly. These data provide long sought after near-atomic resolution insights into how MACPF/CDC proteins assemble into pre-pores on the surface of membranes. Furthermore, our analyses reveal that SNTX-like MACPF/CDCs are distributed throughout eukaryotic life and play a broader, possibly immune-related function outside venom.

pore | stonefish | toxin | perforin | cytolsin

H uman envenoming by the tropical stonefish (Synanceia horrida and related species) results in extreme pain, edema, hypotension, respiratory distress, and on rare occasions, death (1). The lethal factor in stonefish venom is an ~150-kDa protein termed stonustoxin (SNTX), an unusual example of a vertebrate cytolytic protein complex (2). SNTX is a soluble heterodimeric assembly of two closely related proteins termed SNTX-α and SNTX-β that share sequence identity of ~50% (3). With the exception of a C-terminal PRY SPIa and the RYanodine Receptor (PRYSPI) domain in each protein (4), SNTX shares no obvious sequence similarity to any structurally or functionally characterized molecule. SNTX induces species-specific hemolytic activity (2) by an apparent pore-forming mechanism (5). It induces platelet aggregation (6), and like the closely related Trachynilysin (from Synanceia trachynis), SNTX exhibits activity suggesting that it may function as a neurotoxin (7, 8).

Because eukaryote pore-forming toxins are relatively rare, we reasoned that SNTX might represent a novel example of a vertebrate pore-forming protein. Previous studies had shown that it was possible to purify and crystallize SNTX (9); however, no structure has been reported to date. Accordingly, to address the structural basis for SNTX activity, we determined its X-ray crystal structure.

Results and Discussion

SNTX is a Heterodimer of Two Distinct Membrane Attack Complex-Perforin/Cholesterol-Dependent Cytolysin-Like Proteins. We purified SNTX from crude venom and determined its crystal structure to 3.1 Å using anomalous scattering methods (Tables S1 and S2). SNTX-α and -β form an obligate dimer with an extensive parallel interface along their entire 115-Å length (2,908 Å² buried surface area) (Fig. 1A–D and Fig. S1). Fold recognition searches reveal that each SNTX protein comprises four domains (Fig. 1 B and C) (10). Despite a lack of obvious sequence similarity, the N-terminal domain (residues 1–265) (shown in green in Fig. 1B) is homologous to the Membrane Attack Complex-Perforin/Cholesterol-Dependent Cytolysin (MACPF/CDC) pore-forming domain (Fig. S2). The N-terminal MACPF/CDC domain leads into a focal adhesion-targeting (FAT) domain (266–385) (shown in dark blue in Fig. 1B), with highest structural similarity to the human focal adhesion kinase 1 FAT domain (rmsd of 2.7 Å over 98 aligned residues) (11). FAT domains are found in a wide range of proteins and typically perform a scaffolding role (for example, in the assembly of signaling complexes) (12). In SNTX, the FAT domain makes numerous c-in contacts with the MACPF/CDC domain and the thioredoxin (THX) domain (386–517) (shown in gray in Fig. 1B and Fig. S2) as well as extensive in trans interactions at the SNTX-α/β interface (Fig. S1).

The THX domain comprises a five-stranded β-sheet and shares greatest structural similarity with Saccharomyces cerevisiae mitochondrial THX3 (rmsd of 2.1 Å over 72 aligned residues) (13). THX domains are typically involved in redox regulation;

Significance

Here, we present the structure of the pore-forming toxin stonustoxin (SNTX), the lethal factor present in stonefish venom. Our work shows that SNTX comprises two homologous subunits (α and β), each of which belong to the perforin superfamily of pore-forming immune effectors. In SNTX, the α- and β-Membrane Attack Complex-Perforin/Cholesterol-Dependent Cytolysin (MACPF/CDC) domains interact and form a pre-pore-like complex. These data provide, to our knowledge, the first high-resolution insights into how MACPF/CDCs interact with one another during pore formation.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Data deposition: Crystallography, atomic coordinates, and structure factors have been deposited in the Protein Data Bank, www.pdb.org (PDB ID code 4WVM).

1J.C.W. and S.M. contributed equally to this work.

2To whom correspondence may be addressed. Email: James.Whisstock@monash.edu or sheena.mcgowan@monash.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1507622112/-/DCSupplemental.
however, the SNTX THX domain lacks the canonical catalytic residues (Fig. S2). We, therefore, suggest that, in SNTX, the THX domain may play a purely structural role.

Finally, the PRYSPRY domains (518–703) (shown in blue in Fig. 1B) of each subunit interact in the heterodimer and are located distal to the MACPF/CDC domain. The PRYSPRY...
domains share greatest structural similarity to the tripartite motif family (TRIM) 21 PRYSPRY domain (rmsd of 1.5 Å over 155 aligned residues) that participates in immune recognition of intracellular bacteria and viruses (14, 15).

The presence of a MACPF/CDC domain in SNTX immediately suggested a mechanism of stonefish venom toxicity (Fig. 2 A and B). MACPF/CDC proteins typically form large, ring-shaped supramolecular oligomeric pore complexes in membranes. Accordingly, using transmission EM, we observed that SNTX forms large ring-shaped pores in rat erythrocyte membranes (Fig. 1E and Fig. S3). These images provide the first direct evidence, to our knowledge, of SNTX pore formation. The pores had an outer diameter of 257 ± 5.7 Å (mean ± SEM) and a lumen i.d. of 117 ± 4.5 Å. These data together establish SNTX as a bona fide pore-forming member of the MACPF/CDC superfamily.

CDCs were originally identified as pore-forming toxins found in pathogenic Gram-positive bacteria (16). Despite little primary sequence identity, subsequent structural studies revealed that MACPF proteins, such as the mammalian immune pore-forming proteins perforin and the terminal components of complement, were homologous to CDCs (17, 18). Database searches and phylogenetic studies reveal that MACPFs and CDCs can be found throughout life and represent two major branches of a pore-forming toxin superfamily that diverged from an ancient common ancestor (18). The core conserved MACPF/CDC fold is a four-stranded, highly twisted, antiparallel β-sheet against which pack two bundles of α-helices [transmembrane helix 1 (TMH1) and TMH2] (Fig. 1B). During pore formation, the MACPF/CDC domain self-associates to form an early prepro. Subsequently, the central β-sheet substantially untwists, and both TMH1 and TMH2 unwind to form the β-strands of the final β-barrel pore (Fig. S4) (19–23). However, our current molecular understanding of pore assembly is severely limited by a lack of any high-resolution structural examples of MACPF/CDC pores or assembly intermediates in a pore-compatible conformation.

Both SNTX Subunits Contain a Minimal MACPF/CDC Pore-Forming Domain Together with a PRRSPRY Domain That Likely Mediates Binding to the Cell Surface. Structural comparisons reveal that the two SNTX MACPF/CDC domains are substantially pared down compared with other structurally characterized family members and essentially, comprise the core pore-forming machinery (i.e., the four-stranded β-sheet together with TMH1 and TMH2) (Fig. 1B). These data also suggest that the SNTX MACPF/CDC domain more closely resembles the CDCs rather than MACPF proteins (Fig. S2). In contrast, structure-guided sequence alignments revealed that the highly conserved MACPF signature motif, which is absent in CDCs, is present in SNTX-like proteins (Fig. S2) (18). Together, these observations suggest that, although SNTX-like proteins represent an extremely early divergence from the MACPF branch of the superfamily, they still retain significant CDC-like characteristics.

MACPF/CDC proteins use different mechanisms to initially interact with the membrane. For example, in CDCs, membrane binding is mediated through an Ig-like “domain 4” (16, 24, 25), whereas perforin deploys a C-terminal lipid binding C2 domain (21). In SNTX, the pair of PRRSPRY domains is located in an analogous position to the Ig and C2 domains of CDCs and perforin, respectively. PRRSPRY domains mediate protein–protein and protein–lipid interactions, particularly in the context of pathogen recognition in TRIM immune proteins (26). Accordingly, it is anticipated that the PRRSPRY domain of both SNTX subunits would be responsible for initial interaction with the cell surface through either lipid- or protein-mediated interactions. Consistent with this idea, the canonical protein/lipid binding pocket of each PRRSPRY domain (27) is located at the solvent-exposed base of each SNTX molecule (Fig. 3A). By analogy with other MACPF/CDC proteins, such a binding mode would position the SNTX MACPF/CDC domains appropriately for pore assembly.

Phylogenetic Analysis Reveals That SNTX Represents an Ancient Third Branch of the MACPF/CDC Superfamily. We next explored the distribution of SNTX-like proteins throughout life. Sequence and phylogenetic studies reveal that SNTX-like proteins can be readily identified (over 50 proteins) in a wide range of venoms and nonvenomous fish, reptiles, birds, monotreme mammals, a water flea, a marine sponge, and certain fungi (Fig. 2C and Dataset S1).

Despite this broad distribution, SNTX-like proteins were not detected in some major groups, such as the Lophotrochozoa or nematodes. Together, this distribution suggests a deep evolutionary history for these genes, with considerable gene loss evident in multiple branches. The genomes of many ancient eukaryotes that contain SNTX-like genes also have readily identifiable MACPF-like proteins, such as Macrophage Perforin-like Encoded Gene-1 (28, 29). Therefore, SNTX-like proteins represent an extensive and ancient third branch of the MACPF/CDC superfamily.

Our phylogenetic analyses also imply that SNTX-α and -β were generated by gene duplication multiple times throughout the evolutionary history of Percomorpha fish (Fig. 2C). This finding contrasts with the single SNTX-like monomer encoded in the genomes of non-Percomorphic fish and other animals. It, thus, seems likely that SNTX-α and -β arose through gene duplication of this ancestral monomeric pore-forming SNTX-like protein.

Crystal Structure of the SNTX Heterodimer Presents a Soluble Exemplar of an MACPF/CDC Prepore-Like Complex. Extensive published experimental data reveal that a key step in prepore assembly is formation of a stable membrane-bound dimer (30). We suggest that the structure of the SNTX heterodimer represents a soluble and stable snapshot of this event. Consistent with this idea, the orientation of the two MACPF/CDC domains in the SNTX heterodimer resembles the arrangement of MACPF/CDC domains seen in low-resolution EM structures (>15 Å) of MACPF/CDC prepore assemblies (22, 23, 31). Furthermore, our phylogenetic data suggest that, after duplication, SNTX-α and -β initially functioned as monomers but then, coevolved to function as a stable dimer.

Farther down the sheet, the β4- and β5-strands splay apart from one another. The base of the splayed β-strands are linked by a long-range ion pair between K205 in SNTX-α strand-β4 and E55 in SNTX-β strand-β1 (Fig. 3D). This structure can, thus, be considered analogous to a partly closed zipper. Previously, for MACPF and CDCs, it has been suggested that polar interactions between the β4- and β5-strands in the prepore function to pull the strands together during formation of the full β-barrel pore (23). Finally, analysis of the general surface charge at the SNTX dimer interface reveals that the charge distribution of each face is largely complementary, with the a-subunit interface positively charged and the β-subunit interface negatively charged (Fig. S1). These data are consistent with suggestions that charge complementarity between perforin monomers may drive initial oligomerization events (33, 34).

Structural Analysis of the SNTX Dimer in the Context of a Full Prepore Model Provides Broad Mechanistic Insight into Prepore Assembly. Based on the EM structures of both MACPF proteins and CDCs, additional oligomerization events predictably require an
SNTX-α/β heterodimer to form a βα-interface with a partner SNTX molecule. Using the SymD algorithm (35) and CE-Symm (36), we determined that each SNTX subunit is related by 18° of internal rotational symmetry (i.e., the number of degrees of rotation that would be required to transpose one SNTX subunit so that it completely aligns to the second subunit) (Fig. S5). Full extrapolation of this symmetry allows us to build a model of a complete early prepore assembly (i.e., before β-sheet opening). With the symmetry axis positioned at the center of the prepore assembly, the final prepore consists of 20 SNTX subunits and thus, has 20-fold rotational symmetry (C20) (Fig. S5). Therefore, the prepore model is composed of 10 SNTX-α/β heterodimers that align along a horizontal plane (Fig. 3C). The model has an o.d. of 259 Å and a lumen i.d. of 112 Å (in close agreement with our EM images of SNTX pores) (Fig. 1E and Fig. S5).

The interface between SNTX-β and -α formed in the prepore model shares, as expected, many of the features already described for the SNTX-α/β heterodimer. For example, as seen in the heterodimeric structure, we predict that the molecules will assemble such that a continuous antiparallel β-sheet runs around the rim of the prepore (Fig. 3C and Fig. S5). Similarly, our model suggests that oligomerization of SNTX is driven by complementary charges on the interacting surfaces. Crucially, it is suggested that the polar interactions are maintained at the newly formed interface between SNTX-α strand-β1 and SNTX-β strand-β4. In this interface, however, we predict that charges are reversed, such that SNTX-β E206 on strand-β4 forms a likely long-range ion pair to SNTX-α K54 on strand-β1 (Fig. 3D).

Importantly, the prepore model reveals remarkably few steric clashes between SNTX heterodimers. Indeed, our data suggest that the only significant structural change that must take place to permit addition of further SNTX heterodimers is rearrangement of the interface between the β4-α6 loop in SNTX-β and the SNTX-α TMH2/α6 loop against which it abuts (Fig. S5).

Within the SNTX heterodimer, the SNTX-α β4-α6 loop locks into a hydrophobic surface pocket of SNTX-β that is formed by TMH2, helix-α6, and strand-β1 (Fig. S5C) (termed the β4-α6 binding site). During oligomerization, it is, therefore, anticipated that the SNTX-β β4-α6 loop of one SNTX protein must move to lock into the β4-α6 binding site of an incoming SNTX-α subunit present in the adjacent molecule (Fig. S5D). Crucially and consistent with this idea, mutagenesis of the equivalent β4-α6 loop structure in CDCs (the β5-region) showed that mobility in this region is essential for initial stable dimer formation as well as subsequent oligomerization events (30, 32). Similarly, EM data and mutagenesis data suggest that the equivalent region is also important for assembly of the fungal MACPF protein pleurotolysin (23). Taken together, our data on SNTX suggest that the region equivalent to the β4-α6 loop structure in MACP and CDCs represents a key and conserved feature that is critical for initial prepore assembly.

Conclusions

Many of the toxic physiological effects of stonefish (S. horrida and related species) envenomation can be attributed to SNTX or related proteins (i.e., Trachynilysin from S. trachynis). These symptoms include endothelium-dependent vasorelaxation, hemolytic activity, edema, increases in vascular permeability, myotoxic effects on the neuromuscular junction, and severe pain (1, 3). By revealing that SNTX and related proteins are pore-forming proteins of the MACPF/CDC superfamily, our data provide the structural and molecular context for the unique physiological effects of stonefish envenomation. Many members of the MACPF/CDC superfamily possess apparently promiscuous activity against a wide range of cell types. Indeed, we suggest that SNTX may be able to form pores in cells from a...
variety of target tissues, thus rationalizing the diversity of physiological consequences that arise from envenomation.

On envenomation, our data suggest that SNTX molecules would bind and assemble on target membranes to form membrane-penetrating pores. The formation of MACPF/CDC-like pores by SNTX would be central to the toxin’s hemolytic activity, and cell lysis could explain physiological effects, including edema, increased vascular permeability, and muscle damage. Moreover, electrophysiological studies of the related Trachylysin protein show a sustained increase in membrane conductance and continuous neurotransmitter release from large dense core vesicles (8, 37). Such events could also explain the endothelium-dependent vasorelaxation and the symptoms of severe pain that occur in response to stonefish envenomation. Taken together, these data are consistent with the irreversible formation of large ion-permeable transmembrane SNTX pores (38). Finally, we suggest that the recognition that SNTX-like proteins contain MACPF/CDC pore-forming domains provides a platform for future studies into the mechanism of other SNTX-like proteins found in the venoms of related fish species and other vertebrates.

Collectively, these sequence, structural, and phylogenetic analyses reveal that SNTX is representative of a third major branch of the MACPF/CDC superfamily. Consistent with an early divergence of each group, SNTX displays certain features that are more MACPF-like and others that are more reminiscent of the CDCs. Together and despite the substantial evolutionary distance between SNTX-like, CDC-like, and MACPF-like proteins, our data suggest that remarkable commonalities in mechanism likely exist across the three branches of the family.

Finally, because many SNTX-like proteins are found in nonvenomous organisms, is there a possible ancestral role of an SNTX-like protein? These data as well as the extensive distribution of SNTX-like proteins throughout life suggest that an ancestral role for SNTX is outside venom. Indeed, the presence in SNTX of a TRIM-like PYSRPR immune recognition domain, closely related to the fish intracellular TRIM group of antiviral proteins (39), suggests a possible immune role for an ancestral SNTX-like protein (40).

Materials and Methods

Ethics Statement. Animal procedures were approved by the James Cook University Animal Ethics Committee (Ethics Approval Number A1570) and comply with the Australian Code of Practice for the Care and Use of Animals for Scientific Purposes, and the Queensland Animal Care and Protection Act 2001.

Protein Purification. SNTX was purified from venom obtained from *S. horrida* by extraction from venom glands located on either side of 13 dorsal spines. Purification of SNTX from crude venom is described in *SI Materials and Methods*. SNTX was concentrated to 5–10 mg/mL for crystallography. The activity of the purified SNTX was confirmed by a doubling dilution hemolysis assay using 1% (vol/vol) rat erythrocytes as described previously (41). The titer was defined as the reciprocal of the last well that showed complete hemolyis (log2[hemolytic activity]) and shown to be 8.25 ± 0.4 (compared with crude venom: 5.8 ± 0.3).

Structural Biology Methods. SNTX crystals were grown as described previously (8) at 20 °C by hanging drop vapor diffusion in 4–4.4 M NaCl at a protein concentration of between 5 and 10 mg/mL. SNTX crystals in mother liquor were flash-cooled in liquid nitrogen before the collection of crystallographic data at the MX2 Beamline of the Australian Synchrotron. SNTX crystals were derivatized with xenon (42) and tantalum bromide as described in *SI Materials and Methods*. The data collection protocol is also described in *SI Materials and Methods*.

Each dataset was integrated using XDS and scaled using SCALA (43). The two sets of xenon-derivative data were merged together to improve redundancy. Anomalous signal from either of the derivatives was not sufficient to determine the structure. Analysis of the cross-R factor between the native and the two derivatives indicated that native crystals were nonisomorphous with respect to each of the derivatives. However, the cross-R factor between the derivatives was 18%, indicating somewhat isomorphous crystals. Experience has shown that performing SIRAS phases using the phase protocol of Auto-Rickshaw (44) by treating the tantalum bromide derivative dataset as a native and the xenon dataset as a derivative.

Heavy-atom site determination, phase calculation, solvent flattening, and partial model building were performed automatically by SHLEKD (45), BP3 (46), PIRATE (47), and BUCCANEER (48) within the Auto-Rickshaw software pipeline. The resulting electron density showed some interpretability for a small number of α-helices. Additional phase improvement was achieved using the MRSAS protocol of Auto-Rickshaw (49), and 40% of the model was built automatically. The model was then extended to ~70% of the total number of residues by manual building into the resulting electron density map using COOT (50).

At this stage, the resultant phases were transferred to the native dataset and extended to 3.10-A resolution using DMMULTI (51) by the multiple crystal average technique. The improved electron density map enabled building up to 80% of the model. Finally, the initial 30% of the model were carried out using BUSTER (52) with local rebuilding in COOT, resulting in a model with an R factor of 20.71% (Rfree of 23.64%) and good geometry (Tables S1 and S2). The structure had a final MolProbity (53) score of 1.91 (100th percentile). Structural analysis and modeling are described in *SI Materials and Methods*.

EM. Transmission EM images were obtained using a Hitachi Electron Microscope with an accelerating voltage of 80 kV. Purified SNTX was incubated with 1% rat erythrocytes in PBS at 20 °C for 20 min, after which samples were adsorbed onto a carbon-coated grid and stained with 1% (wt/vol) uranyl-acetate. Rat erythrocytes lysed in water were used as negative controls.

Phylogeny. SNTX-like MACPF/CDC domain protein sequences were aligned using CLC Genomics Workbench. Consensus phylogenetic relationships were calculated using MrBayes (54) and the WAG model of protein evolution (55), which was identified as the most appropriate model after testing with mixed models. Monte Carlo Markov chains were run for 1 million generations, and the initial 25% of trees were discarded as burn in. Phylogenograms were visualized using Dendroscope (56). Phylogenetic trees were generated for both the whole-protein sequences and the MACPF/CDC-like domains. There is little difference between the trees, suggesting that the phylogenetic relationship is driven by the MACPF/CDC motif alone and not the N-terminal sequence. This finding is also supported by the fact that attempts to align the proteins in the absence of the MACPF/CDC domain and produce a maximum parsimony phylogenetic tree failed using Mega6.

ACKNOWLEDGMENTS. We thank the Australian Synchrotron for beam access and technical assistance. We also thank TinaMarie Lieu and Claudia McCarthy for rat erythrocytes for cell lysis assays and transmission EM and Michelle L. Halls for critical review of the manuscript. We further thank the Monash platforms [Protein Crystallography Unit, eResearch (MASSIVE), and Biological Electron Microscopy] for technical support. C.F.R. is supported by Monash University FMNHS Bridging Postdoctoral Fellowship Award. This research was supported by an award from the National Health and Medical Research Council of Australia (NHMRC) Dora Lush Postgraduate Research Scholarship (to K.L.W.), NIH Grant R01 AI037657 (to R.K.T.), an ARC Federation Fellowship (to J.C.W.), and ARC Future Fellowship FT100100690 (to S.M.). Additionally, M.A.D. is an NHMRC Career Development Fellow, and J.C.W. is an NHMRC Senior Principal Research Fellow.

