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Core Concept: Ergodic theory plays a key role
in multiple fields
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Statistical mechanics is a powerful set of
mathematical tools that uses probability the-
ory to bridge the enormous gap between the
unknowable behaviors of individual atoms
and molecules and those of large aggregate sys-
tems of them—a volume of gas, for example.

Fundamental to statistical mechanics is
ergodic theory, which offers a mathematical
means to study the long-term average behavior
of complex systems, such as the behavior of
molecules in a gas or the interactions of vi-
brating atoms in a crystal. The landmark con-
cepts and methods of ergodic theory continue
to play an important role in statistical mechan-
ics, physics, mathematics, and other fields.

Ergodicity was first introduced by the
Austrian physicist Ludwig Boltzmann in the
1870s, following on the originator of statisti-
cal mechanics, physicist James Clark Max-
well. Boltzmann coined the word ergodic—
combining two Greek words: €pyov (ergon:
“work”) and 080g (odos: “path” or “way”)—
to describe his hypothesis. Although some
formulations of his hypothesis were not com-
pletely accurate, his ideas seeded an impor-
tant set of principles and tools.

Boltzmann, working with gases, suggested
that the spatial average values giving rise to
macroscopic features also arose as averages
over time of observable quantities that could
be calculated from microscopic states. He
realized that this might hold if a system passed
through all of the possible microscopic states.

This “strong” form of Boltzmann’s ergodic
hypothesis was, however, later seen to be too
strong in practice on topological and measure
theoretic grounds, says Nandor Siményi, pro-
fessor of mathematics at the University of
Alabama at Birmingham. “Ergodicity was
loosely defined. It was an assumption made
about the time-evolution of a dynamical sys-
tem that worked, but the idea that a system
goes through every state, that a system goes
through every point in the phase space, is
impossible; mathematically, it’s nonsense,”
he says. “It was, however, satisfactory for a
physical understanding of systems.”

The path toward greater theoretical rigor,
explains University of Warwick mathematics
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professor Tom Ward, reached a key milestone
in the early 1930s when American mathema-
tician George D. Birkhoff and Austrian-Hun-
garian (and later, American) mathematician
and physicist John von Neumann separately
reconsidered and reformulated Boltzmann’s er-
godic hypothesis, leading to the pointwise and
mean ergodic theories, respectively (see ref. 1).

These results consider a dynamical sys-
tem—whether an ideal gas or other complex
systems—in which some transformation func-
tion maps the phase state of the system into
its state one unit of time later. “Given a mea-
sure-preserving system, a probability space
that is acted on by the transformation in
a way that models physical conservation laws,
what properties might it have?” asks Ward,
who is managing editor of the journal Ergodic
Theory and Dynamical Systems. The measure
on a mathematical space assigns weights to
parts of the space.

“Measure theory provides a precise formu-
lation, saying that while a system doesn’t lit-
erally pass through every point in the phase
space, it may come arbitrarily close to every
point,” he explains. “That is, there’s no fa-
vored part of the space.” This formulation
gives rise to a notion of ergodicity weak
enough to hold for many systems and strong
enough to have significant consequences.

After decades of relative quiescence, efforts
to devise ergodicity models underwent a re-
vival in the 1960s, notably including work by
Yakov Sinai, a mathematician now at Prince-
ton University, Simdnyi says. In 1963, Sinai
introduced the idea of dynamical billiards, or
“Sinai Billiards,” in which an idealized “hard”
particle bounces around inside a square
boundary without loss of energy. Inside the
square is a circular wall, off of which the par-
ticle bounces. He proved that for most initial
trajectories of the ball, this system is ergodic—
that is, over infinite time, the time average of
an observed quantity will equal its average
over the space. For any part of the space,
the proportion of time the system spends
in that region will be proportional to its size.

“If the system spends 3% of the time in a
region of its phase space, that region is 3%

Austrian physicist Ludwig Boltzmann laid
the foundation for modern-day ergodic the-
ory. Image courtesy of Goethe University
Frankfurt.

of the total phase-space volume; they are
proportional in size,” Simdnyi says. It
was the first time that someone had rigor-
ously proved that a dynamical system that
seemed related to a real physical situation
was ergodic.

Ergodic theory continues to have wide
impact in statistical physics, number theory,
probability theory, functional analysis, and
other fields. One prominent example is the
Green-Tao theorem. In 2004, Ben Green of
the University of Oxford and Terrence Tao
of University of California, Los Angeles,
building on the work of American-Israeli
mathematician Hillel Furstenberg, fused
methods from analytic number theory and
ergodic theory to prove a “folklore” conjec-
ture dating back to the 1770s that the se-
quence of prime numbers contains arbi-
trarily long sequences of numbers in which
the difference between consecutive terms is
a constant (for example, 3, 5, 7 is such a se-
quence of length three). Tao went on to earn
the 2006 Fields Medal.
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