


Previously, we showed that, when a third (decoy) alternative
(D) alters the ranking of two existing alternatives, A and B, the
model successfully predicts a preference reversal, despite the fact
that the attribute values of A and B remain intact (Table S1) (14).
In the current report, we show that selective integration also ex-
plains intransitive choice behavior in humans. Using a psycho-
physical experimental approach, we show that intransitivity can be
provoked in most individuals by simple changes to the relative
ordering of the decision information, as predicted by selective in-
tegration. Critically, however, using a computational simulation
based on the sequential sampling framework, we demonstrate that
selective integration paradoxically maximizes the accuracy (and
subsequent economic outcomes) in the presence of “late” internal
noise arising during decision formation, beyond the sensory stage.
Importantly, we show that humans with higher estimated late noise
are more prone to integrate selectively. Together, these findings
offer a biologically viable, descriptively extended, and normatively
motivated explanation of economic irrationality.

Results
Selective Integration and Intransitivity. Under a popular computa-
tional framework, decisions between competing alternatives are
optimized via sequential sampling and integration (17, 18). In
choices between multiattribute economic alternatives, such as
holidays, this involves sampling attributes in turn (e.g., expense,
weather, culture), accumulating their respective values for each
alternative (e.g., Bali, Berlin), and comparing the resulting cumu-
lative decision values to select an action (19). We implement se-
lective integration by adding to this framework a “selective gating”
parameter, w, which reduces the gain of accumulation for the
weaker attribute value (e.g., weather in Berlin) on each sample
from 1 (lossless processing, which is optimal according to decision
theory) to 1 − w (Fig. 1A and Methods). [An equivalent imple-
mentation of selective integration would overweight the stronger
attribute value, leaving intact the weaker value. Although this
implementation is functionally analogous to the one depicted in
Fig. 1A, the two differ in terms of metabolic costs: discounting the
value of the local loser engenders a reduction in neural firing rate in
contrast to the more costly strategy of amplifying the value (and
associated firing rate) of the local winner. Because the experiments
presented here were not designed to dissociate these two imple-
mentations, we chose to adhere to the less costly one.] After gating
(where w > 0), the cumulative value of each alternative is not only a

function of its attribute values, as normative theory prescribes, but
also a function of the ordinal positions of these values within the
different attributes (e.g., Table S1).
To illustrate how violations of choice rationality in decisions

between two alternatives can arise from selective integration,
consider two equally valued alternatives (e.g., A and B in Fig. 1B)
that differ along three equally important attributes, which are
sampled in turn. For w > 0, the alternative with two (out of
three) winning attributes (A) will (on average) be chosen over an
alternative that wins by a larger margin on a single attribute (B),
because the input to the latter is more often dampened yielding a
lower cumulative value. Thus, when the same three values are
permuted circularly in three alternatives, the model predicts a
violation of “weak stochastic transitivity” (WST) (11, 20): A is
chosen more often over B, B over C, and C over A (Fig. 1B;
Table S2 for an illustration).
Violations of WST are not only incompatible with normative

theories but also with a large class of descriptive theories of
choice in which preference tendencies are perturbed by normally
distributed noise (16, 21). Thus, when empirically obtained, such
violations offer important theoretical constraints. Although WST
violations have been reported in humans (11), recent research
has shown that the vast majority of these putative violations were
not statistically significant when a more appropriate statistical
test is applied (20, 22). It is thus an empirical question whether
intransitivity, as predicted by our framework, will occur in human
observers. Before examining whether humans violate WST in
the direction predicted by our model, we first set out to examine
how well selective integration characterizes the way humans
accumulate evidence over time while forming preferences for
different alternatives.

Selective Integration in a Psychophysical Task. We gathered data
from human participants performing a psychophysical choice
task with real economic incentives for accurate choices (Fig. 2A;
Methods). In experiment 1, participants (n = 28) chose between
two alternatives each characterized by nine sequentially occur-
ring bars of different heights, presented in two simultaneous
streams (at a rate of 400 ms per frame) on the left and right of
the screen (Fig. 2A). Participants were instructed that the two
bars in each presentation frame correspond to two “attribute”
values as in the example of Fig. 1B. At the end of each trial, they
were asked to choose the stream with the larger average height,
receiving monetary reward proportional to their choice accuracy.
Using the notation A→B to indicate that “alternative A has more
winning attributes than B” [here, six vs. three winning attributes],
we constructed sequences of equal average value, such that
A→B, B→C, and C→A, as in the alternatives in Fig. 1B (“cyclic”
trials). Although participants performed the task accurately
(range of 62–92% correct on intermixed “standard” trials where
the attribute values were randomly generated from Gaussian
distributions), they exhibited a higher preference for the frequently
winning stream in the cyclic trials, as predicted by the model [Fig.
2B; P(Aj{A,B}) = 0.61, P(Bj{B, C}) = 0.63, P(Cj{A,C}) = 0.62,
and P < 0.001 for all comparisons to chance; significant frequent-
winner effect in 17 out of 28 participants; SI Results].
On a further intermixed set of “increment” trials, we increased

the average bar height in either the frequently winning (e.g., A
when A→B) or the frequently losing (e.g., B when A→B) streams,
breaking the tie without altering the relative proportion of win-
ning attributes (2:1 in favor of A). Participants were more likely
to choose the stream with the increment in both cases (Fig. 2C;
P < 0.001)—being sensitive to the average height difference and
not merely the difference in the number of winning attributes—
but accuracy was higher when the increment occurred in the
frequently winning than the frequently losing stream (P < 0.001).
These “frequent-winner” effects in cyclic and increment trials
were highly correlated across the cohort (r = 0.75, P < 0.001; Fig.
2D) and both correlated positively with participants’ estimated
w (r = 0.66 in cyclic; r = 0.68 in increment; P < 0.001 in both)
(model-fitting procedures and results in SI Methods and Fig. S1).

A B

Fig. 1. Selective integration and intransitivity. (A) Schematic of the selective
integration model. On each time step, the values of two different alterna-
tives on a single attribute are considered. Input samples (IA, IB), corre-
sponding to attribute values, feed to a bottleneck that discounts the gain of
the weakest sample (via selective gating, w) before relaying the inputs to
the accumulators (YA, YB). Noise can arise both at the input (σ) and accu-
mulation levels (ξ). (B) Choice probability for different values of w and for
σ = ξ = 2, for pairwise comparisons between three equally valued multi-
attribute alternatives (table). A→B: A wins in more samples than B. WST is
violated for w > 0 [i.e., P(Aj{A,B}) > 0.5, P(Bj{B,C}) > 0.5, P(Aj{A,C}) < 0.5, with
P(Xj{X,Y}) denoting the probability of choosing X over Y].
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A tendency to prefer the frequently winning stream could be
explained by normalization theories (Table S3) that attribute
some aspects of choice irrationality on efficient neural coding
schemas [i.e., divisive (23) or range-normalization (24) applied
on each pair of values before accumulation]. Similarly, a simpler
“majority of confirming dimensions” (MCD) rule that decides
based on the total number of local winners (25) could also ex-
plain the frequent-winner effect (Table S3). One unique sig-
nature of selective integration is that in choices between two
alternatives with equal mean value but different variances, it
predicts a higher preference for the high-variance alternative.
This “provariance” effect has been empirically verified elsewhere
(14) but was also observed in the current experiment. When the
two alternatives had different variances, accuracy was higher
when the high variance was assigned to the correct alternative
compared with trials where the correct alternative had low var-
iance [standard conditions 3 and 4 in SI Methods; accuracy dif-
ference between 3 and 4: mean ± SEM = 0.23 ± 0.03; P < 0.001].
As shown in Table S4, the provariance effect cannot be captured
by normalization theories or by MCD (Fig. S1B).
Finally, in two further experiments, we examined whether par-

ticipants adopted a w > 0 due to the lack of processing resources or
the scarcity of information, as theories of bounded rationality
would advocate (13). When we slowed the presentation rate to
1 Hz (experiment 2), we obtained a similar frequent-winner effect,
suggesting that selective gating does not just reflect a processing
bottleneck due to the rapid stimulus presentation (Fig. S2A). When
we increased the sequence length from few (6) to many (12)
samples (experiment 3), the frequent-winner effect increased in
the latter (Fig. S2B), indicating that the tendency to discount
losing values does not decrease when more information (samples)
is available, contrary to the predictions of heuristic models (26).

Systematic Violations of WST in Human Observers. As shown in Fig.
1B, selective integration violates the principle of WST. The
preference patterns in the cyclic trials in experiment 1 offer a
widely used proxy for the degree of intransitivity; the conclusion
that such patterns definitively violate WST can, however, be
challenged in statistical grounds (20). [Cyclic trials were cre-
ated using n different A, B, C triplets (Methods). Participants

encountered the three pairwise comparisons for each triplet only
once. We could count in how many triplets per participant
an intransitive circle was obtained. However, the statistical
interpretation of this metric of intransitivity, based on pattern
counting, is limited and controversial as explained elsewhere
(20). Thus the design of experiment 1 was not suitable for rig-
orous examination of WST violations.] We thus adjusted the
experimental design to rigorously assess WST violations within
individuals (experiment 4). Participants (N = 21) chose between
pairs of alternatives—each corresponding to a job candidate—
characterized by three sequentially presented pairs of bars
(Methods). Each pair of bars was presented within a colored
outline, with the color indicating an explicitly defined choice
dimension (Fig. S2C). The presentation order of the different
dimensions was randomized on each trial. The main departure
from experiment 1 was that, for each participant, three unique
cyclic trials (A vs. B, B vs. C, and A vs. C) were constructed based
on a single A–B–C triplet and presented several times, as in
multiattribute or risky choice studies of intransitivity (11, 20).
Accuracy in standard trials ranged from 85% to 98%, whereas

significant frequent-winner effects were detected in both cyclic
(Fig. S2D; P < 0.001 in all three comparisons of the frequent-
winning option to chance; frequent-winner effect significant in 15
out of 21 participants; SI Results) and increment trials (Fig. S2E;
P < 0.001). As in experiment 1, the two frequent-winner effects
were correlated to each other (r = 0.86; P < 0.001) and to the
selective gating parameter in the model (r = 0.89 in cyclic; r =
0.96 in increment; P < 0.001 in both). A significant provariance
effect was observed in standard trials (0.04 ± 0.01; P < 0.003),
ruling out MCD and normalization models. Finally, 11 out of 21
participants violated WST significantly (Table S5). The proba-
bility that all these 11 participants corresponded to a type I error
is extremely low (P = 1.1 × 10−9). A detailed presentation of
these individual-level analyses is given in SI Methods and SI
Results. [It has been recently argued that WST violations can
occur spuriously (20). As a remedy, a more stringent test, against
the so-called “triangle inequality,” has been prescribed. Three
participants were intransitive according to this test. However, this
test does not seem suitable for our study. First, the chances that the
reported WST violations occurred spuriously in our psychophysical
task are negligible (Fig. S3 and SI Results). Second, the test is
conservative in the sense that it would fail to detect real in-
transitivity effects that, although substantial, are below a cer-
tain magnitude due to the presence of experimental noise.]

Selective Integration and Decision Accuracy in the Face of Late Noise.
Why do humans discount locally weaker values, provoking in-
transitive choices (experiment 4) and other violations of eco-
nomic rationality (14)? We next compared the accuracy (and
consequent rewards) that is obtained under selective (w > 0) and
lossless integration (w = 0), simulating an experimental setting
in which the attribute values of the two alternatives are gener-
ated from two Gaussian distributions with the same variance
(σ) and different means (Fig. 3A). This setting is equivalent to
a two-alternative forced-choice paradigm (15, 17), where one-
dimensional quantities (e.g., perceptual signals or economic
values of magnitude IA, IB) are corrupted by noise, which arises
early, before their accumulation (27) (Fig. 1A, lower box). In ad-
dition to variability at the input level (which can be both due to
early internal noise and due to exogenous fluctuations in the stimuli
values), we assumed that noise could also arise late, at the level of
accumulation (i.e., decision noise ξ; Fig. 1A, upper box) (28).
When late noise is absent and early noise is present (Fig. 3B,

top blue line), integrating samples with equal gain (w = 0) is
optimal as postulated by statistical decision theory (15, 17, 28).
Most surprisingly, however, when late noise is also present,
maximum accuracy is achieved for w > 0, with the value of w that
maximizes accuracy increasing with late noise (Fig. 3B, black
circles). [The situation reverses and the optimal w regresses to-
ward 0 as the level of early noise increases. This happens be-
cause, when early noise is heightened, selective integration is

B C D

A

Fig. 2. Behavioral task and selective integration. (A) Trial schematic in experi-
ment 1. Participants (n = 28) viewed two streams of bars and had to choose
which stream was overall highest. (B) Mean choices in cyclic trials in experiment
1 (Fig. 1B) revealed a frequent-winner effect: A was chosen more often over B,
B over C, and C over A. (C) Accuracy in increment trials, where the samples of
either the frequently winning or the frequently losing stream were increased by
a constant (A+ vs. B and A vs. B+, respectively). The difference in accuracy be-
tween the A+ vs. B and the A vs. B+ trials also revealed a frequent-winner effect.
(D) The frequent-winner effect in cyclic ([P(Aj{A,B})+P(Bj{B, C})+P(Cj{A,C})]/3–0.5)
and increment trials [P(A+j{A+,B}) – P(B+j{A,B+})] correlated positively to each
other. Filled circles correspond to different participants. Grey curve is the
linear regression line. Error bars are 2 SEM. ***P < 0.001.
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more costly operating almost at random, given that the “fre-
quency of winning” becomes less predictive of the identity of the
correct alternative (Fig. S4A).] Why does selective integra-
tion confer an improvement in accuracy in the face of heightened
late noise? On average, discounting locally weaker attribute
values via selective gating exaggerates the accumulated differ-
ences between higher-valued (typically, frequently winning) and
lower-valued (typically, frequently losing) alternatives (Fig. 3C
for a simulated trial example). This policy occasionally inflates a
lower-valued alternative over its higher-valued rival (i.e., when
the former is the local winner more often), leading to a slight
cost in accuracy relative to lossless integration. When late noise
is present, however, the benefit of inflating the accumulated
differences offsets this cost.
In Fig. 3D, we illustrate this point by plotting the bivariate

end-state distributions of the two accumulators, under no late
noise (top panels) and high (bottom panels) late noise. Relative
to lossless integration (w = 0), selective integration (w = 0.5)
drives accumulator states away from the equality line (density
right to the line corresponds to percentage of choice errors),
yielding more robust preference states and thus higher perfor-
mance under late noise (bottom left/right panels, percent accu-
racies signaled on each panel). This robustness is comparable to
that observed in nonparametric statistics, where inferences de-
pend on the ranked data, whereas the mechanism is related to
the heightened signal-to-noise ratio in chains of neural pop-
ulations when the gain of individual neurons increases (29). Thus,
when noise arises at different stages of the processing hierarchy,
selective integration—although it ignores part of the input and
leads to violations of transitivity—can outperform the lossless in-
tegration algorithm (15, 17) by acting against late noise.

Selective Gating and Late Noise Relationship in Human Observers.
Finally, we interrogated the behavioral data to test whether se-
lective integration might be an adaptation specifically evolved to
counteract late noise during integration. If so, individuals with
higher late noise should have a higher selective gating parameter
as depicted in Fig. 3B. We fitted three variants of the selective
integration model that differed in their assumptions about the
source of internal noise: (i) a full model, having both early and
late noise; (ii) a model with early noise only; and (iii) a model
with late noise only (SI Methods). The early noise in the model
corresponded to extra internal noise applied at the input rep-
resentation stage, on top of the stimulus external variability. We
factored in the latter by fitting the models using the actual sto-
chastic input that participants saw in the experiments. In addi-
tion to noise and selective gating (w) parameters, all variants had
a leak parameter to capture the recency effect (14) that was
observed in all experiments (Fig. S1A).
In all experiments, model comparison favored the selective

integration variant that omitted early noise (variant iii) (Fig. S1
B–E). Furthermore, examining the noise parameters in the full
model (i) revealed that late noise was significantly higher than
early noise, with the latter having a negligible magnitude (Fig.
S1F). After verifying our fitting method with regards to param-
eter recovery (Fig. S4 B and C, and SI Methods), we found a
positive correlation between participants’ estimated late noise
and selective gating in all experiments (experiments 1–4: r = 0.63,
P < 0.001, r = 0.80; P < 0.001, r = 0.52; P < 0.006; r = 0.81; P <
0.001; Fig. 4A, scatterplot for all experiments). We ruled out the
possibility that this correlation occurred as an artifact of the
parameter estimation method, by reporting no relationship (r =
0.03; P = 0.502) between estimated late noise and w in simulated
datasets (Fig. 4B and SI Methods). This finding indicates that se-
lective gating has an adaptive role, being adjusted to each individ-
ual’s late noise levels, in the service of reward-maximizing decisions.

Discussion
Violations of the axioms of choice rationality have been ex-
haustively documented in the decision-making literature (2, 7,
9–11, 24). Numerous studies have found that the subjective value of
an economic prospect depends not only on its own attribute
values but also on the irrelevant context provided by competing
alternatives. Although this relative (rather than absolute) valu-
ation schema is incorporated in descriptive theories of choice
(3), and is reflected in neural signals recorded both from single
cells (30) and whole-brain areas (31), it currently lacks a plau-
sible normative explanation. Instead, violations of choice ratio-
nality appear to have negative repercussions, potentially leading
to a continuous drain on resources, for example to what eco-
nomic theory knows as a “money pump” (6).
Here, we argue that choice irrationality occurs because of

selective integration, a policy that explicitly discards some in-
formation about the rival choice alternatives but paradoxically
maximizes reward in the face of decision noise. Selective in-
tegration builds on an established framework for understanding
both perceptual (15, 17) and economic decisions (16, 32), in
which momentary decision values (e.g., sensory samples of a
noisy stimulus, or attributes values for an economic prospect) are
accumulated in parallel for two or more alternatives, corrupted
by noise that could arise either during encoding or during in-
formation integration (28). The additional assumption of the
model is that, where attributes compete locally, the winner can
be integrated with relatively higher gain. Thus, when contem-
plating the (excellent) weather in Bali, the (reasonable) weather
in rival Berlin appears poor by comparison, and does not drive a
positive evaluation of a Berlin holiday as much as it should.
Selective integration predicts that violations of transitivity will

occur when choice alternatives differ circularly in their number
of winning attributes. Here, we verified this prediction empiri-
cally, showing that humans performing a magnitude discrimina-
tion task make intransitive choices about alternatives with equal
cumulative value. Normalization or heuristic models could explain

A

B D

C

Fig. 3. Selective integration and decision accuracy. (A) The input distribu-
tions in a typical two-alternative forced-choice scenario. The SD of the dis-
tributions (σ) corresponds to early noise. (B) Decision accuracy in the model
for the scenario in A, as a function of w, for different levels of late noise
(ξ; curves) and after 12 accumulation steps (t). Black circles indicate the value
of w that maximizes accuracy for a given level of late noise. (C) Example
input (Top) and single-trial accumulator states (Bottom) for lossless (Left)
and selective integration (Right). The input parameters are as in A, and late
noise was absent. (D) Bivariate end-state (t = 12) accumulator distributions
for the choice problem in A, for lossless (Left) and selective integration
(Right). (Top) ξ = 0. (Bottom) ξ = 15. Density to the Left of dashed diagonal
corresponds to accuracy (in percentage). Higher density is depicted with red,
and lower density with blue.
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a tendency to choose a frequently winning alternative and hence
intransitive choices in our task, but they fail to explain other
aspects of the data such as why participants prefer high-variance
to low-variance alternatives. It has been recently shown that most
of the past instances of intransitivity could have been caused by
spurious factors and not necessarily by decision processes that vi-
olate economic rationality (20, 22). Our well-controlled psycho-
physical task together with computational modeling suggests that
the systematic intransitivity reported here is not caused by spurious
factors but by the tendency to integrate information selectively.
In sharp contrast to the mainstay in decision theory—which

considers reward-rate optimal the algorithm that accumulates all
available information without loss (17)—selective integration
maximizes accuracy (and subsequent rewards) in the face of
heightened late noise. The model achieves so by implicitly ex-
aggerating monetary differences (i.e., via weakening the losing
input), inflating the average accumulated difference between the
correct and incorrect alternative. Fitting the model to human
data revealed a strong positive correlation between late noise
and the tendency to integrate selectively. This correlation sug-
gests that observers use selective integration as a compensatory
mechanism to alleviate the potentially negative impact of ele-
vated accumulation noise. Violations of the axioms of choice
rationality emerge as a side effect of this policy and occur when
alternatives are structured in unusual ways [e.g., when the
number of winning attributes differ circularly or when dominated
decoys are introduced in the choice set (9)].
It is conceivable that explicit and equal increase of the gain of

processing for both inputs, if strong enough, could outperform
selective integration by cancelling out late noise. In our analyses,
however, we assumed that such direct and unbounded gain am-
plification is not plausible because organisms operate within
computational and metabolic constraints (33). Due to these con-
straints, even under conditions of increased vigilance behavioral
and neural variability perseveres (34), indicating that a portion of
internal noise is virtually irreducible. The way our model acts
against this (otherwise-irreducible) noise presents a paradox for
decision theory analogous to “less-is-more” effects in other do-
mains (35), whereby ignoring part of the available information
leads to better performance. Thus, in contrast to normalization
theories (23, 24), in which accuracy and metabolic efficiency trade
off against each other, selective integration increases choice accu-
racy while reducing the cost of information processing.
Our account of choice irrationality is not only normatively

motivated but also builds on well-established psychological and
neural principles. First, as in models of selective attention and
visual search (36), our explanation incorporates selective pro-
cessing. Although selective processing has been recently added
to an influential evidence accumulation model to explain the
increased accumulation rate for visually fixated alternatives (32),

our approach differs in that gain modulation is determined by
the value of the incoming information rather than merely by the
(random) locus of fixation. Second, our account is biologically
plausible, building upon two widely accepted neurobiological
facts: that decisions are realized in a hierarchy of cortical layers
and that processing at each layer is corrupted by independent
neuronal noise (29, 37). It is the distributed and noisy nature of
neural information processing that allows nonnormative choice
algorithms, such as selective integration, to practically outper-
form the normative benchmark.
Why humans make irrational choices has puzzled economists

and psychologists for decades. The findings described here
suggest that violations of choice rationality are a natural con-
sequence of selective gating—a processing bottleneck that
discounts locally weaker samples when evidence is accumulated
over time. We demonstrated that this bottleneck could protect
decisions from the pernicious influence of late noise—that
arising downstream from the input representation stage. Such
late noise may be an indispensable feature of neural compu-
tation, perhaps because it promotes learning and exploratory
behavior (38). Fitting selective integration to human choices, we
indeed showed that selective gating was stronger in those individ-
uals with higher late noise. This finding calls into question the long-
standing argument that humans are irrational because they lack the
computational resources to engage in effortful executive processes
and fall back instead on less costly, intuitive strategies or heuristics
(12). We suggest instead that apparently irrational choices may
stem from an evolutionary pressure for reward-maximizing deci-
sions, realized in a hierarchy of noisy cortical layers (29). This calls
for a broader theory of ecological rationality (39) that is bounded
by neurophysiological constraints.

Methods
Participants.Ninety-three participants (42 females; age range: 18–50; N1 = 28,
N2 = 17, N3 = 27, and N4 = 21 in experiments 1–4, respectively) were
recruited from Oxford University (experiments 1–3) and Warwick University
(experiment 4) participant pools and gave informed consent to take part. All
participants reported normal or corrected-to-normal vision and no history of
neurological or psychiatric impairment. The experimental procedures were
approved by the Oxford University Medical Sciences Division Ethics Com-
mittee (approval no. MSD/IDREC/C1/2009/1) and Warwick University Hu-
manities and Social Sciences Research Ethics Sub-Committee (approval no.
83/14-15:DR@W). Participants received £8/h for their participation and a
bonus of £15 that was subject to task performance.

Task. In all experiments, participants viewed two streams of bars of varying
height presented simultaneously left and right from a central fixation point.
Bar height was described as indicating the scores of two job candidates on
different dimensions. In all experiments, participants were instructed that all
dimensions are equally important. The dimensions were explicitly specified
(i.e., intelligence, motivation, experience of a job candidate) and explicitly
announced during stimuli presentation via changes in the color of a rect-
angular outline only in experiment 4 (SI Methods). After a fixed number of pairs
of bars presented at a fixed rate, participants were asked to choose which
stream (candidate), the left or the right, had on average higher bars (scores).
Participants received partial feedback in experiments 1 and 4, and full feedback
in experiments 2 and 3 (SI Methods) in 8 (experiments 1–3) or 18 (experiment 4)
blocks (each lasting less than 10 min). At the end of the experiment, partici-
pants viewed their average accuracy on the screen, and if it fell within the 85th
percentile of the cohort, they received a bonus of £15. A detailed description of
the visual stimuli and trial time course is provided in SI Methods.

Outline of Experimental Conditions. Experiment 1 consisted of nine conditions
that differed in the way the two sequences were constructed. We classify the
different conditions into cyclic (three conditions), increment (two conditions),
and standard (four conditions). Cyclic trials were constructed based on a set of
sequences that resembled the A–B–C alternatives in Fig. 1B. Cyclic trials were
divided in three conditions: (i) A vs. B, (ii) B vs. C, and (iii) A vs. C. There were n
unique Aj–Bj–Cj triplets (j = 1. . .n), with each triplet yielding one set of cyclic
(i–iii ) trials. Twelve participants performed a short version of the task with
cyclic trials being generated by n = 40 unique triplets, whereas 16 participants
performed a longer version with n = 60 (SI Methods). In each Aj–Bj–Cj triplet,
the three sequences had identical values, but their order was reshuffled as per

A B

Fig. 4. Relationship between selective gating and late noise. (A) Estimated
selective gating parameters for each individual (circles) in all four experi-
ments (n = 93) plotted against estimated late noise parameters. (B) Same as
A, but for simulated data (see Fig. S4 B and C and SI Methods). Gray curves
are linear regression lines. ***P < 0.001.
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the example in Fig. 1B (i.e., Bj was created via a right circular shift of Aj, whereas
Cj via a right circular shift of Bj ; see SI Methods). The two increment con-
ditions were created by modifying i above, by increasing by 6 pixels either
the height of all bars of Aj (A+ vs. B) or all bars of Bj (A vs. B+). Finally, in
standard trials, the two alternatives consisted of normally distributed values.
Two levels of mean and variance (high/low) were resampled with replacement,
yielding overall four conditions. Experiments 2 and 3 consisted only of in-
crement and standard trials (six conditions). Experiment 4 was similar to ex-
periment 1 and had all nine conditions. However, cyclic trials in experiment 4
were constructed from a unique (per participant) A–B–C triplet, with each
A–B–C sequence having the very same dimensional values in the whole ex-
periment. The dimensions in experiment 4 were explicitly specified and an-
nounced alongside the presentation of the bars. Details about the
experimental conditions, the sequences construction, and the number of
trials per condition in the four experiments are provided in SI Methods.

Selective Integration. Two accumulators (YA and YB) integrate the attribute
values (i.e., pixels representing the heights of the two bars) of the two se-
quences (A and B) according to the following difference equations:

YAðtÞ= ð1− λÞ ·YAðt − 1Þ+ IAðtÞ+ ξ · ζAðtÞ,
YBðtÞ= ð1− λÞ ·YBðt − 1Þ+ IBðtÞ+ ξ · ζBðtÞ. [1]

In the above, t denotes the current discrete time step, λ is integration leak,
ξ is late noise, and ζA,BðtÞ are random standard Gaussian samples in-
dependent of each other and across t. The leak parameter was introduced to
capture the recency-weighting profile (Fig. S1A) that was obtained in all
experiments (see also ref. 14).

The two accumulators are initialized at 0:

YAð0Þ=YBð0Þ=0.

The momentary inputs to the accumulators, IA, B(t), are defined as follows:

IAðtÞ= θðXAðtÞ−XBðtÞÞ ·XAðtÞ,
IBðtÞ= θðXBðtÞ−XAðtÞÞ ·XBðtÞ. [2]

The gain function θ is a step function defined as follows:

θðxÞ=
�
1,   if  x > 0
w,   if  x < 0

, [3]

with w in [0, 1] being the selective gating parameter. Finally, XA, B(t) cor-
respond to the incoming stimuli corrupted by internal (early) noise:

XAðtÞ= σ · ρAðtÞ+ sAðtÞ,
XBðtÞ= σ · ρBðtÞ+ sBðtÞ, [4]

where σ is the early noise parameter, ρA, B(t) are random standard Gaussian
samples independent of each other and across t, and sA, B(t) are the pre-
sented stimuli on time step t (bar heights, in pixels).

At the end of stimuli presentation (e.g., t = 9, in experiment 1), the model
chooses sequence A if YAðtÞ>YBðtÞ, sequence B if YBðtÞ>YAðtÞ, and ran-
domly between A and B if YAðtÞ=YBðtÞ. Overall, the full selective integration
model has four free parameters: leak (λ), early noise (σ), late noise (ξ), and se-
lective gating parameter (w). Noise parameters are expressed in pixels.

Model-fitting procedures andmodel parameters in the various simulations
reported in the main text are given in SI Methods.
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