Structural characterization of the interaction of α-synuclein nascent chains with the ribosomal surface and trigger factor

Annika Deckerta,b, Christopher A. Waudbya,b, Tomasz Wlodarski,a,b, Anne S. Wentinka,b, Xiaolin Wanga,b, John P. Kirkpatricka,b, Jack F. S. Patona,b, Carlo Camilloni1, Predrag Kukicc, Christopher M. Dobsonc, Michele Vendruscoloc, Lisa D. Cabritaa,b,1, and John Christodouloua,b,1

Edited by Joseph D. Puglisi, Stanford University School of Medicine, Stanford, CA, and approved March 15, 2016 (received for review October 4, 2015)

The ribosome is increasingly becoming recognized as a key hub for integrating quality control processes associated with protein bio-synthesis and cotranslational folding (CTF). The molecular mechanisms by which these processes take place, however, remain largely unknown, in particular in the case of intrinsically disordered proteins (IDPs). To address this question, we studied at a residue-specific level the structure and dynamics of ribosome-nascent chain complexes (RNCs) of α-synuclein (αSyn), an IDP associated with Parkinson’s disease (PD). Using solution-state nuclear magnetic resonance (NMR) spectroscopy and coarse-grained molecular dynamics (MD) simulations, we find that, although the nascent chain (NC) has a highly disordered conformation, its N-terminal region shows resonance broadening consistent with interactions involving specific regions of the ribosome surface. We also investigated the effects of the ribosome-associated molecular chaperone trigger factor (TF) on αSyn structure and dynamics using resonance broadening to define a footprint of the TF–RNC interactions. We have used these data to construct structural models that suggest specific ways by which emerging NCs can interact with the biosynthesis and quality control machinery.

NMR spectroscopy | ribosome | nascent chain | α-synuclein | cotranslational folding

Within living systems, protein biosynthesis takes place at the peptidyl transferase center (PTC) of the ribosome, where peptide bond formation occurs at a rate of ~20 amino acids per s (1) to generate a nascent chain (NC) that subsequently emerges through the exit tunnel (2), an ~100-Å passage that can accommodate ca. 30 residues (3). On emerging from the tunnel, NCs can begin to explore their conformational landscapes, where about a third of cytosolic proteins in Escherichia coli are expected to acquire native-like structure cotranslationally (4, 5). Cotranslational folding (CTF) may, therefore, be a key process to assist NCs in adopting their native folds by minimizing the exposure of hydrophobic regions and reducing the risk of misfolding and aggregation (6, 7).

To ensure the production of correctly folded and functionally active proteins, further mechanisms have evolved to regulate folding pathways. Evidence indicates that the ribosome itself can modulate the folding process (8) by reducing the rate of tertiary contact formation and inhibit misfolding by stabilizing unfolded states (9). Fluorescence depolarization measurements have also shown that the dynamics of emerging NCs can be constrained (10), particularly those with a positive charge (11), owing to interactions with the negatively charged ribosome surface, which are said to create a protective environment within the crowded cell (12).

CTF processes within the cell can also be modulated by chaperones (13). In E. coli, the first chaperone encountered by an emerging NC is trigger factor (TF), which binds transiently to the ribosome via a docking site on protein L23 (14, 15), forming a cradle above the exit tunnel. It has been proposed that TF promotes CTF in several ways, including by shielding exposed hydrophobic stretches (16), inhibiting premature folding (17), and by unfolding preexisting structures and intermediate states (8). TF binds to nontranslating ribosomes with a Kd of ca. 1 μM (18), but this affinity can be significantly stronger in the presence of NCs [depending on their sequences (19) and lengths (20)]. TF comprises three distinct structural regions: an N-terminal ribosome-binding domain, a peptidyl-prolyl isomerase domain (PPD), and a centrally located, C-terminal substrate-binding domain (SBD). An NMR study of the interactions of free TF with the isolated, unfolded protein PhoA (21) identified four binding sites within TF, of which three are located within the SBD and one in the PPD. The regions of PhoA that interacted most strongly with these sites were found to be rich in hydrophobic and aromatic residues, in accord with the known substrate preferences of TF (19).

Although structural studies of CTF are still few, solution-state nuclear magnetic resonance (NMR) of translationally arrested NCs is emerging as a powerful means of reporting high-resolution details (22–25), despite the high molecular weight (2.5 MDa) of ribosome-nascent chain complexes (RNCs) (26), with their low working concentrations (~10 μM) and limited lifetimes. Furthermore, computational approaches based on molecular dynamics (MD) simulations have also been developed to investigate the nature and properties of CTF (27, 28) processes, although the large size of the ribosome and relatively slow rates of protein synthesis and folding still pose major challenges for all-atom simulations.

Significance

Protein biosynthesis is carried out by ribosomes, the macromolecular machines present in all kingdoms of life. Aided by molecular chaperones, nascent proteins can begin to fold while emerging from the ribosome. Achieving their native fold, and avoiding misfolding, is thereby crucial for the fate of all newly synthesized proteins. The molecular details of this fundamental process, however, are poorly understood. In this work we develop a combined NMR and molecular simulation approach to characterize the behavior during biosynthesis of α-synuclein (αSyn), an intrinsically disordered protein associated with Parkinson’s disease. The detailed interactions of αSyn with the ribosome surface and with trigger factor, a ribosome-associated chaperone, reveal the first steps of how a nascent chain emerges from the ribosome.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Freely available online through the PNAS open access option.

1To whom correspondence may be addressed. Email: l.cabrita@ucl.ac.uk or j.christodoulou@ucl.ac.uk.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1519124113/-/DCSupplemental.
calculations on appropriate time scales. To circumvent this problem, coarse-grained methods have been adopted to allow the inherent properties of a system to be preserved while using a reduced molecular representation to minimize the number of elements in the simulations (29).

Here we show that combined NMR and MD studies of RNCs of α-synuclein (αSyn), a protein whose aggregation is associated with Parkinson’s disease (PD), can provide insight into the conformations sampled by a disordered polypeptide chain during synthesis, complementing information emerging from studies of the CTF of globular proteins, as well as existing structural descriptions of αSyn that have been obtained for the protein in isolation (30) and within cells (31, 32).

Results

αSyn is Disordered on the Ribosome. αSyn RNCs, translationally arrested using the SecM motif (33), were generated in E. coli (Fig. 1A), and the samples were purified based on our previous method (34), with the removal of the N-terminal His(H6)-tag using tobacco etch virus (TEV) protease (Fig. S1A and B). The 1H-15N selective optimized flip-angle short transient heteronuclear multiple quantum coherence (SOFAST-HMQC) (35) spectra with nonuniform weighted sampling sensitivity enhancement (36) were acquired (Fig. 1B) alongside biochemical analyses (37) (Fig. 1F and Fig. S1C–F) and 15N-heteronuclear stimulated echo (XSTE) diffusion measurements (38) (Fig. S1G–J) to monitor the integrity of the RNC, which showed that the NC was attached and that the samples remained essentially completely stable for

The 1H-15N NMR correlation spectrum of the αSyn RNC (Fig. 1B) shows a narrow range (8.0–8.8 ppm) of amide proton chemical shifts (CS) characteristic of an intrinsically disordered protein (IDP) and overlays closely with a matching spectrum of isolated αSyn (Fig. S2B) in the presence of an equimolar concentration of 70S (Fig. 1C and D). CS differences were uniformly small (ΔδHN < 0.05 ppm, Fig. S3A), indicating that the NC samples a range of disordered state conformations similar to isolated αSyn, which allowed the transfer of cross-peak assignments to that of the RNC (Fig. 1B). Owing to line broadening and overlap in the RNC spectrum, 63 αSyn resonances, from M5–D135, were resolved sufficiently to enable their intensities to be analyzed. Critically, the observation of the D135 resonance (Fig. 1B and E), located just 28 residues from the PTC, indicates that the NC possesses extensive mobility near the opening of the exit tunnel.

Resonance Broadening Indicates Interactions of αSyn with the Ribosome Surface. In contrast to the minimal CS perturbations observed in the NC, large reductions in the intensities of NC resonances were observed relative to those of isolated αSyn (Fig. 1D and E). This effect provides a sensitive probe of the changes in NC dynamics associated with the gain in mobility of the polypeptide chain as it emerges from the exit tunnel, and with the loss of motility arising from interactions with the ribosome surface.

The intensities of cross-peaks in the RNC spectrum were reduced by >87% relative to isolated αSyn in the presence of ribosomes, with substantial variation across the sequence (Fig. 1E). The C-terminal resonances were highly broadened, but from residue D135–K85 resonances were generally observed to become narrower (and hence more intense), indicating that the NC mobility is increased as residues become more distant from the exit tunnel. However, from K85 to the N terminus this trend is reversed as resonances are progressively broadened, resulting in decreased intensities. These results indicate an increasing propensity of this region to interact with the ribosome surface, which seems to be correlated with a high density of positively charged residues. In contrast, the negatively charged C-terminal region remains observable, despite its increased proximity to the ribosome surface. In addition to these long-range trends, two clusters of residues, M5–S9 and V37–V40, were broadened beyond detection, whereas intensities in a third region centered around T92/G93 were attenuated to a lesser extent. These clusters seem to be associated with the aromatic residues F4, Y39, and F94, rather than generally with hydrophobicity because the most hydrophobic region of the sequence, N65–T75, is also the region of greatest intensity.

For comparison, we also examined changes in the intensity of isolated αSyn in the presence of ribosomes. Reductions in intensity of up to 60–70% were observed for N-terminal residues (M5, L8, and S9), without any perturbations to the C-terminal region (Fig. S2C). This broadening of N-terminal resonances is comparable to that observed in the αSyn RNC, suggesting that similar interactions occur with the ribosomal surface in both cases, although the effect is substantially weaker in the absence of the covalent tethering in the RNC. Further analyses of charged isolated αSyn variants suggested that the polypeptide–70S interactions are at least in part due to electrostatic interactions (Fig. S4).

To probe the dynamics of the NC in more detail, 1H linewidths were measured in spectra of the RNC and isolated αSyn (Fig. 2A and Fig. S3B). RNC resonances were found to have significantly broader linewidths (and hence larger R2 relaxation rates) than those in isolated αSyn, with an increase in R2 from 37 ± 7 s−1 (mean ± SD) for the isolated protein to 109 ± 38 s−1 in the RNC (Fig. 2B). To determine the significance of such values, we estimated the R2 values that might be expected for a NC immobilized by tight binding to the ribosome surface. The 1H–1H dipolar interactions were calculated using an ensemble model of the αSyn RNC (discussed in Structural modeling of the αSyn

Fig. 1. NMR characterization of the αSyn RNC. (A) Schematic of the αSyn RNC construct. (B) The 1H-15N SOFAST-HMQC spectrum of the αSyn RNC and resonance assignments; R indicates 70S background peaks. (C) Comparison of the 1H-15N SOFAST-HMQC spectra of isolated αSyn with and without 1 mol eq of ribosomes. (D) Comparison of the αSyn RNC spectrum in B with αSyn in the presence of 70S in C; RNC intensities amplified. (E) Cross-peak intensities in the αSyn RNC relative to isolated αSyn in the presence of ribosomes; the gray-shaded area depicts the approximate length of the exit tunnel. A Kyte and Doolittle hydropathy plot and an amino acid classification of the αSyn protein sequence in positively charged (blue), negatively charged (red), and aromatic (green) residues is also shown. (F) Anti-SecM Western blot to probe for RNC integrity, showing tRNA-bound (<40 kDa) and released αSyn NCs (<20 kDa).
RNC, taking the rotational correlation time of the ribosome to be 3.9 μs at 277 K (39), from which we estimate the amide proton relaxation rates of the bound state to be 16.1 ± 4.4 × 10⁻⁴ s⁻¹ (Fig. S3C). Using this estimate, and making the assumption that NC resonances are in fast exchange between free and ribosome-associated states, as is typically the case for weak interactions, the observed relaxation rates will be a population-weighted average of the free and bound states (24). Thus, using the observed linewidths of residues between V48 and A124 (Fig. 2B), the estimated population of this NC segment bound to the ribosome surface is 0.45 ± 0.24% (Fig. S3D). Although this number could be increased if the bound state were to be significantly mobile (Fig. 2C), this analysis nevertheless indicates that these interactions are of a weak and transient nature. It is likely that interactions with the ribosome surface for other segments of the NC, whose resonances are more severely broadened and so cannot be observed (Fig. 1E), could be considerably stronger.

NMR Analysis of TF–NC Interactions. To examine the impact of a ribosome-associated chaperone on the behavior of the αSyn NC, [H-¹³CH₃-LYV]-labeled TF was titrated into a ¹⁵N-labeled sample of the αSyn RNC. Although ribosome-bound αSyn has been shown to be a weak substrate for TF (40, 41), TF itself has a moderate affinity for nontranslating 70S ribosomes [K₅₇ ~ 1 μM (18)]. This combination of affinities was important in allowing saturation of the NC–TF interaction without the complication of strong NC binding causing substantial line broadening. We found that the addition of 1 mol eq of TF induced only small amide CS perturbations (Δδ₁₃C < 0.06 ppm; Fig. 3A and Fig. S5A), indicating that the NC samples a similar distribution of disordered conformations as it does in the absence of TF. We observed, however, large and nonuniform reductions in the intensities of the αSyn cross-peaks (Fig. 3B), which enabled the nature of the TF–NC interaction to be analyzed. The intensities of residues K21–G111 in the RNC spectrum were reduced to 30 ± 8% of those observed in the absence of TF, whereas resonances of residues D119–D135 in the C-terminal region were less strongly perturbed, with relative intensities reduced only to 88 ± 12% (Fig. 3B). No effects on the resonances of residues N-terminal to K21 could be determined, because these resonances are already broadened beyond detection in the absence of TF (Fig. 1E). The addition of TF concentrations higher than 1 mol eq caused no further intensity changes in the RNC spectrum, indicating that, although the TF–NC interaction may be weak, the TF–70S interaction itself had reached saturation (Fig. 3C).

Analysis of the ¹H¹³C spectrum of TF showed that methyl resonances experienced large reductions in intensity in the presence of ribosomes (approximately sixfold relative to isolated TF; Fig. S5D), but little additional broadening was observed in the presence of the αSyn NC (Fig. 3D), which is consistent with previous observations using fluorescence techniques that showed no increased recruitment of TF to ribosomes carrying an αSyn NC (41). For comparison, we examined changes in the spectrum of isolated αSyn in the presence of 1 mol eq of TF. At concentrations of 5 μM only small intensity changes (<5%) were observed, in residues located at the N terminus of αSyn. However, additional line broadening was evident at higher concentrations (100 μM), or in the presence of ribosomes (which promote the dissociation of the TF dimer) (Fig. S5C). Thus, although αSyn is indeed a weak TF substrate there is nevertheless some propensity to interact, and this may be promoted by the ribosome and, particularly, by the colocalization of TF and the NC during translation.

Structural Modeling of the αSyn RNC. Coarse-grained simulations of the αSyn RNC were used to develop a model with which to explore the structure and dynamics of the NC and to investigate potential sources of the NMR resonance broadenings observed. Here, we used the CamTube force field (42), in which the polypeptide chain is represented as a flexible tube as a means of describing its overall architecture. This approach increases the efficiency of sampling protein conformational space relative to all-atom simulations, making it particularly effective for the study of large and flexible systems such as RNCs. Starting structures for the simulations were constructed from cryo-EM models of SecM-stalled translating ribosomes, where the 17-residue arrest sequence was extended (43), and structural ensembles for the NC were then generated from a 2.4-μs trajectory (Fig. 4A and Movie S1). From this ensemble, we found that the first NC residue to be located in the exit vestibule was D135, 28 residues (78 Å) from the PTC. Critically, this point coincides with the experimental observation of NC resonances, and the subsequent increase in intensity from D135 toward the N terminus (Fig. 1E). To estimate the rotational mobility of each residue within the NC, the structural ensemble was used to calculate S² order parameters, where a value of 1 describes rigid residues and a value of 0 describes fully flexible residues. We found that the observed increase in NMR intensities from D135–E104 (Fig. 1E) was associated with a decrease by two orders of magnitude in the calculated amide S² values (Fig. 4C), as well as a large increase in mobility as described by the Ca root mean square fluctuations (RMSF) (Fig. 4D). However, both parameters also

Fig. 2. The ¹H linewidth analysis of the αSyn RNC. (A) The ¹H cross-sections through ¹H-¹³N SOFAST-HMQC spectra (S₉₁,113.15 ppm, Fig. 1B, dashed line) of isolated αSyn and the αSyn RNC fitted to a sum of Lorentzian functions (solid lines) to determine ¹H R₂ rates. (B) Distribution of R₂ values obtained from lineshape fitting of residues selected from V48–A124 for isolated αSyn (34 residues) and the αSyn RNC (31 residues). (C) Schematic depicting the exchange of the NC between its free and ribosome-associated states. The globally bound state consists of a population-weighted average of a locally flexible state, where residue i is highly dynamic but in close proximity to residues tethered nearby, and a locally rigid state with residue i being in direct contact with the ribosome surface. The relative proportions of these states are described by the generalized order parameter, S².

Fig. 3. NMR analysis of the interaction of TF with αSyn RNCs. (A) Comparison of ¹H-¹³N SOFAST-HMQC spectra of the αSyn RNC with and without 1 mol eq TF. (B) Relative cross-peak intensities of the αSyn RNC following addition of TF. A Kyte and Doolittle hydrophathy plot and an amino acid classification of the αSyn protein sequence in positively charged (blue), negatively charged (red), and aromatic (green) residues is shown. (C) Changes in the integrals of ¹⁵N- edited ¹H amide envelopes of the αSyn RNC and ¹⁵N-labeled 70S ribosomes with increasing TF. (D) Changes in the integrals of ¹³C-edited ¹H methyl envelopes with increasing TF, in the presence of αSyn RNC (6.5 μM 70S) and 70S ribosomes (5 μM 70S). Integrals have been normalized to a 10 μM sample of isolated TF scaled according to the 70S concentration (neglecting effects of the TF monomer/dimer equilibrium).
predict a continued gain in mobility for residues more distant from the PTC, whereas the NMR data showed reduced peak intensities for residues in the vicinity of T92/G93 and for the N-terminal region (M5–V40) (Fig. 1E). We thus conclude that the observed perturbations in NMR peak intensity are the likely consequence of a combination of electrostatic effects induced by positively charged residues in the N terminus and interactions with aromatic residues (F4/Y39/F94).

The simulations were repeated in the presence of ribosome-bound TF, using a starting structure based on an NMR model of TF in complex with the disordered state of PhoA (21) (Fig. 4B and Movie S2). We observed that the αSyn residues K21–G111, which experienced the strongest reduction in resonance intensities on TF binding (~70%) (Fig. 3B), were able to contact proposed substrate binding sites in TF previously identified in the absence of the ribosome (21). Conversely, we found that the C-terminal residues D119–D135, which were only marginally broadened (~12%) upon TF binding, were not able to contact sites within TF. Interestingly, reductions in Cα order parameters (97%) upon TF binding, were not able to contact sites within TF. Interestingly, reductions in Co RMSF values and S2 order parameters were observed in the presence of TF for residues between E126 and the N terminus (Fig. 4C and D). However, no TF-induced perturbations in NMR signal intensities were observed experimentally in the vicinity of E126 (Fig. 3B), suggesting that TF interactions do not occur within this region. The simulations of our modeling suggests that a restriction in mobility could be experienced from residues E126, the NMR data show that interactions of the NC and TF seem only to occur from residues G111, presumably when these can begin to reach and interact with the TF cradle (Fig. 4B).

Using the simulated RNC structures we identified ribosomal proteins accessible to the NC and also mapped the changes in NC accessibility of the ribosome surface that occur upon TF binding. Fig. 4E illustrates the accessibility of the ribosome surface for the NC, which was calculated as the distance of closest approach between the backbone atoms of the NC and atoms of the 70S surface. Regions close to the exit tunnel, which are within 10 Å of the NC (in red), include the ribosomal proteins L17, L22, and L32, which are important binding sites for protein biogenesis factors (44) such as peptide deformylase and methionine aminopeptidase, as well as L23, L24, L29, and L32, and RNA. Upon binding of TF, the NC formed additional contacts with the chaperone at the expense of other regions of the ribosome surface, which became sterically occluded (Fig. 4F). Fig. 4G illustrates the changes of the NC surface accessibility in the presence and absence of TF (compare Fig. 4E and F). Regions corresponding to the ribosomal proteins L3, L17, L19, L22, and L32 (blue) became inaccessible upon binding of TF, as well as residues 1–31. Residues 1–31 of αSyn and of isolated αSyn were found to change their dynamics and interactions in the presence of TF. In contrast, residues 0.1–0.05–0 are not shown. (C) Amide Cα order parameters determined from simulated ensembles with and without TF. (D) Co RMSF of the αSyn RNC calculated over increasing lengths of the simulation trajectory, with and without TF. (E) Ribosome surface colored according to the distance of closest approach of the simulated NCs and TF. The positions of the NC and TF surfaces colored as described in F. (G) Difference in ribosome surface accessibility (distance of closest approach) on TF binding. Blue regions become sterically restricted, whereas red regions represent parts of the ribosome surface that are more frequently contacted by the NC due to the sterically restricted imposed by TF on other parts of the ribosome surface. (H) Schematic diagram of ribosomal proteins in close proximity to the exit tunnel; ribosome orientation as in E–G.

Discussion

We have used high-resolution solution NMR and coarse-grained MD to characterize the structure, dynamics, and interactions of αSyn NCs during biosynthesis on the ribosome. The limited solubility of RNC samples together with the observed NMR line broadening resulted in very weak signal intensities, equivalent to just ~50–100 nM concentrations of isolated αSyn. Nevertheless, a combination of methodological advances, including longitudinal relaxation optimized experiments and nonuniform weighted sampling (35, 36), have enabled quantitative measurements to be made of CSs and cross-peak intensities for the majority of NC residues. Most importantly, a combination of biochemical and noninvasive spectroscopic assays were applied to ensure that all NMR signals analyzed in this study arise from intact, ribosome-bound NCs (Fig. 1F and Fig. S1D and F–J). This is in contrast to folded states, which correspond to deep minima in free energy landscapes, IDPs have relatively flat free energy landscapes (45) that are highly sensitive to external perturbations [e.g., from mutations (46), posttranslational modifications (47), or from the intracellular environment (48)]. The investigation of IDPs therefore allows a detailed exploration of the accessible conformational space for a polypeptide chain, without complications of folding. NMR CSs are typically sensitive probes of protein structure, yet we found that αSyn amide CS perturbations resulting from ribosomal attachment, or from the presence of TF, were extremely small (Figs. S3A and S5A and B). By contrast, the intensities of cross-peaks in spectra of the RNC were highly variable relative to isolated αSyn (Fig. 1D and E). The tethered motion of the NC inevitably affects NMR linewidths, given the thousand-fold difference in the effective rotational correlation times of the ribosome and of isolated αSyn. Residues will therefore generally gain independent mobility as they become more distant from the PTC and emerge from the exit tunnel. In this study, the residue closest in sequence to the PTC to be NMR-detectable was D135, from which point resonance intensities increased to a maximum at K58 (Fig. 1E). Our structural modeling indicated that the position of D135, 28 residues from the PTC, coincides with the emergence of the NC from the constricted tunnel into the exit port (Fig. 4A).
detection of these resonances therefore demonstrates the potential to structurally dissect the behavior of NCs that are close to, and potentially even within, the exit vestibule.

Further from the PTC, from residues K58-M5, our simulations indicate that the mobility of each residue continues to increase (Fig. 4C and D). We observed, however, that the intensities of NC resonances in this region were significantly less than those of residues closer to the PTC. In particular, clusters of resonances in the N-terminal region, encompassing M5–S9 and V37–V40, were broadened beyond detection as well as resonances around T92/G93, which showed a significant (~97%) attenuation in NMR signal (Fig. 1E), indicating the existence of interactions between the NC and the ribosome surface. Interestingly, the line broadening observed in the N-terminal region of the RNC was also observed for isolated αSyn in the presence of ribosomes (Fig. S2E), suggesting a similar mode of interaction, although substantially weaker in the absence of a covalent link to the ribosome (Fig. S4F). Such interactions have previously been observed for RNCs, by NMR for FLN5 (22, 25) and SH3 (24), by fluorescence methods for the IDP PIR (11), and by optical force spectroscopy for T4 lysozyme (9). In the latter two cases, interactions were driven at least partially by the high negative charge density of the ribosome surface, and modulations of the electrostatic environment by ionic strength (9) or differently charged variants of the NC (11) were shown to perturb the binding interaction. In the present study, the large number of residue-specific NC resonances provided us with the ability to unravel sequence determinants of these interactions, from the identification of αSyn residues interacting with the ribosome surface. We conclude that the net positive charge of the N-terminal region (resulting from the αSyn KTKEGV repeat motif) induces electrostatic interactions with the ribosome surface, which in isolation are reduced in the reverse-charged K60E αSyn variant, in which positive charges are eliminated, or increased in the more positively charged H5-tagged αSyn (Fig. S4). We also observed that interactions of the clusters around M5–S9, V37–V40, and T92–G93 are associated with aromatic residues near F4, Y39, and F49 (Fig. 1E).

As the interaction pattern does not appear to correlate with the known region of hydrophobicity within αSyn (Fig. 1E), this would indicate that there may be a specific affinity of the ribosome surface for aromatic residues. Interestingly, similar patterns of NMR line broadening have been observed for αSyn within bacterial (32) and mammalian cells (49), which suggests that there may be a common role for charged and aromatic residues in governing protein interactions both with the ribosome surface and with other cellular environments.

NMR intensity analysis provides a sensitive and high-resolution probe of ribosome interactions, but due to the interplay of 1H and 15N relaxation processes their quantitative interpretation in terms of NC dynamics is not currently possible. We therefore also measured 1H linewidths for 31 NC residues from V48–A124, to provide a quantitative estimate of ribosome binding (Fig. 2 and Fig. S3B–D). Relaxation rates for the bound state of the NC were evaluated using an ensemble model of the RNC in which the correlation time of the NC was set equal to that of the ribosome (Fig. S4). We also observed that interactions of the clusters around M5–S9, V37–V40, and T92–G93 are associated with aromatic residues near F4, Y39, and F49 (Fig. 1E).

As the interaction pattern does not appear to correlate with the known region of hydrophobicity within αSyn (Fig. 1E), this would indicate that there may be a specific affinity of the ribosome surface for aromatic residues. Interestingly, similar patterns of NMR line broadening have been observed for αSyn within bacterial (32) and mammalian cells (49), which suggests that there may be a common role for charged and aromatic residues in governing protein interactions both with the ribosome surface and with other cellular environments.

NMR intensity analysis provides a sensitive and high-resolution probe of ribosome interactions, but due to the interplay of 1H and 15N relaxation processes their quantitative interpretation in terms of NC dynamics is not currently possible. We therefore also measured 1H linewidths for 31 NC residues from V48–A124, to provide a quantitative estimate of ribosome binding (Fig. 2 and Fig. S3B–D). Relaxation rates for the bound state of the NC were evaluated using an ensemble model of the RNC in which the correlation time of the NC was set equal to that of the ribosome (Fig. S4). We also observed that interactions of the clusters around M5–S9, V37–V40, and T92–G93 are associated with aromatic residues near F4, Y39, and F49 (Fig. 1E).

As the interaction pattern does not appear to correlate with the known region of hydrophobicity within αSyn (Fig. 1E), this would indicate that there may be a specific affinity of the ribosome surface for aromatic residues. Interestingly, similar patterns of NMR line broadening have been observed for αSyn within bacterial (32) and mammalian cells (49), which suggests that there may be a common role for charged and aromatic residues in governing protein interactions both with the ribosome surface and with other cellular environments.

NMR intensity analysis provides a sensitive and high-resolution probe of ribosome interactions, but due to the interplay of 1H and 15N relaxation processes their quantitative interpretation in terms of NC dynamics is not currently possible. We therefore also measured 1H linewidths for 31 NC residues from V48–A124, to provide a quantitative estimate of ribosome binding (Fig. 2 and Fig. S3B–D). Relaxation rates for the bound state of the NC were evaluated using an ensemble model of the RNC in which the correlation time of the NC was set equal to that of the ribosome (Fig. S4). We also observed that interactions of the clusters around M5–S9, V37–V40, and T92–G93 are associated with aromatic residues near F4, Y39, and F49 (Fig. 1E).

As the interaction pattern does not appear to correlate with the known region of hydrophobicity within αSyn (Fig. 1E), this would indicate that there may be a specific affinity of the ribosome surface for aromatic residues. Interestingly, similar patterns of NMR line broadening have been observed for αSyn within bacterial (32) and mammalian cells (49), which suggests that there may be a common role for charged and aromatic residues in governing protein interactions both with the ribosome surface and with other cellular environments.

NMR intensity analysis provides a sensitive and high-resolution probe of ribosome interactions, but due to the interplay of 1H and 15N relaxation processes their quantitative interpretation in terms of NC dynamics is not currently possible. We therefore also measured 1H linewidths for 31 NC residues from V48–A124, to provide a quantitative estimate of ribosome binding (Fig. 2 and Fig. S3B–D). Relaxation rates for the bound state of the NC were evaluated using an ensemble model of the RNC in which the correlation time of the NC was set equal to that of the ribosome (Fig. S4). We also observed that interactions of the clusters around M5–S9, V37–V40, and T92–G93 are associated with aromatic residues near F4, Y39, and F49 (Fig. 1E).

As the interaction pattern does not appear to correlate with the known region of hydrophobicity within αSyn (Fig. 1E), this would indicate that there may be a specific affinity of the ribosome surface for aromatic residues. Interestingly, similar patterns of NMR line broadening have been observed for αSyn within bacterial (32) and mammalian cells (49), which suggests that there may be a common role for charged and aromatic residues in governing protein interactions both with the ribosome surface and with other cellular environments.

NMR intensity analysis provides a sensitive and high-resolution probe of ribosome interactions, but due to the interplay of 1H and 15N relaxation processes their quantitative interpretation in terms of NC dynamics is not currently possible. We therefore also measured 1H linewidths for 31 NC residues from V48–A124, to provide a quantitative estimate of ribosome binding (Fig. 2 and Fig. S3B–D). Relaxation rates for the bound state of the NC were evaluated using an ensemble model of the RNC in which the correlation time of the NC was set equal to that of the ribosome (Fig. S4). We also observed that interactions of the clusters around M5–S9, V37–V40, and T92–G93 are associated with aromatic residues near F4, Y39, and F49 (Fig. 1E).

As the interaction pattern does not appear to correlate with the known region of hydrophobicity within αSyn (Fig. 1E), this would indicate that there may be a specific affinity of the ribosome surface for aromatic residues. Interestingly, similar patterns of NMR line broadening have been observed for αSyn within bacterial (32) and mammalian cells (49), which suggests that there may be a common role for charged and aromatic residues in governing protein interactions both with the ribosome surface and with other cellular environments.

NMR intensity analysis provides a sensitive and high-resolution probe of ribosome interactions, but due to the interplay of 1H and 15N relaxation processes their quantitative interpretation in terms of NC dynamics is not currently possible. We therefore also measured 1H linewidths for 31 NC residues from V48–A124, to provide a quantitative estimate of ribosome binding (Fig. 2 and Fig. S3B–D). Relaxation rates for the bound state of the NC were evaluated using an ensemble model of the RNC in which the correlation time of the NC was set equal to that of the ribosome (Fig. S4). We also observed that interactions of the clusters around M5–S9, V37–V40, and T92–G93 are associated with aromatic residues near F4, Y39, and F49 (Fig. 1E).

As the interaction pattern does not appear to correlate with the known region of hydrophobicity within αSyn (Fig. 1E), this would indicate that there may be a specific affinity of the ribosome surface for aromatic residues. Interestingly, similar patterns of NMR line broadening have been observed for αSyn within bacterial (32) and mammalian cells (49), which suggests that there may be a common role for charged and aromatic residues in governing protein interactions both with the ribosome surface and with other cellular environments.

NMR intensity analysis provides a sensitive and high-resolution probe of ribosome interactions, but due to the interplay of 1H and 15N relaxation processes their quantitative interpretation in terms of NC dynamics is not currently possible. We therefore also measured 1H linewidths for 31 NC residues from V48–A124, to provide a quantitative estimate of ribosome binding (Fig. 2 and Fig. S3B–D). Relaxation rates for the bound state of the NC were evaluated using an ensemble model of the RNC in which the correlation time of the NC was set equal to that of the ribosome (Fig. S4). We also observed that interactions of the clusters around M5–S9, V37–V40, and T92–G93 are associated with aromatic residues near F4, Y39, and F49 (Fig. 1E).

As the interaction pattern does not appear to correlate with the known region of hydrophobicity within αSyn (Fig. 1E), this would indicate that there may be a specific affinity of the ribosome surface for aromatic residues. Interestingly, similar patterns of NMR line broadening have been observed for αSyn within bacterial (32) and mammalian cells (49), which suggests that there may be a common role for charged and aromatic residues in governing protein interactions both with the ribosome surface and with other cellular environments.
diffusion delay of 100 ms and bipolar trapezoidal gradient pulses (total length, 4 ms; shape factor, 0.9) with strengths of 0.028 and 0.532 Tm

Coarse-Grained MD Simulations of the αSyn RNC. An atomic model of a stooled NC on the ribosome was derived from cryoEM data (43) by molecular-dynamics flexible fitting (52). To produce an αRNC starting model, the original NC sequence in the model was replaced and extended to the sequence of the αSyn RNC using Swiss-PDB Viewer. TF bound to the ribosome was modeled based on the cryoEM data of the ribosome–TF–complex (50) and the structure of TF (14, 15). Simulations of the αSyn RNC were performed in Gromacs (53) using a version of the tube model (42), known as the CamTtube field used for a 2-μs trajectory. The NC mobility for each residue was calculated as the RMSF from the average position of the CA atoms within the trajectory and amide Sgeneralized order parameters were calculated from an ensemble of 8,000 all-atom structures.

ACKNOWLEDGMENTS. We thank B. Buka (Ruprecht-Karls-University) for the antibody results and Anthony Dunlap (Georgia Institute of Technology) and K. Schulten (University of Illinois) for providing the stooled ribosome starting structure. J.C. acknowledges the use of the Biomolecular NMR Facility, University College London, and thanks T. Frenkel and G. Kelly of the Medical Research Council Laboratory for the use of the medicinal NMR equipment at the Crick Institute, London for the use of the facility. J.C. and T.W. acknowledge the use of the Advanced Research Computing High End Resource (ARCHER) UK National supercomputing service (www.archer.ac.uk). L.D.C. is supported by the Wellcome Trust and by an Alpha-1 Foundation grant. T.W. is supported as a European Molecular Biology Organization Long-Term Fellow and is also supported by the Wellcome Trust. A.D. is supported by the Motor Neurone Disease Association. The work of C.M.D. and M.V. is supported by a Wellcome Trust Programme Grant (094252/Z/102/Z). F.C. is supported by Peking University. This work was supported by the Royal Society and by the London Mathematical Sciences Research Council New Investigators Award (BBG0156511/1 to J.C.) and a Wellcome Trust Investigator Award (097806/21/11Z to J.C.).

