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Directionality of signaling among brain regions provides essential
information about human cognition and disease states. Assessing
such effective connectivity (EC) across brain states using functional
magnetic resonance imaging (fMRI) alone has proven difficult,
however. We propose a novel measure of EC, termed metabolic
connectivity mapping (MCM), that integrates undirected functional
connectivity (FC) with local energy metabolism from fMRI and posi-
tron emission tomography (PET) data acquired simultaneously. This
method is based on the concept that most energy required for neu-
ronal communication is consumed postsynaptically, i.e., at the target
neurons. We investigated MCM and possible changes in EC within
the physiological range using “eyes open” versus “eyes closed” con-
ditions in healthy subjects. Independent of condition, MCM reliably
detected stable and bidirectional communication between early and
higher visual regions. Moreover, we found stable top-down signal-
ing from a frontoparietal network including frontal eye fields. In
contrast, we found additional top-down signaling from all major
clusters of the salience network to early visual cortex only in the
eyes open condition. MCM revealed consistent bidirectional and uni-
directional signaling across the entire cortex, along with prominent
changes in network interactions across two simple brain states. We
propose MCM as a novel approach for inferring EC from neuronal
energy metabolism that is ideally suited to study signaling hierar-
chies in the brain and their defects in brain disorders.

simultaneous PET/fMRI | energy metabolism | directional signaling |
effective connectivity | resting state

Complex cognition emerges by integrating upstream sensory
information with feedback signaling from higher cortical

regions (1–4). Networks related to sensory processing or cogni-
tion reliably occur in the human brain even at rest (5, 6). These
networks are identified by synchronous signal fluctuations, or func-
tional connectivity (FC), among brain regions when neuronal activity
is recorded by functional magnetic resonance imaging (fMRI). In
recent years, various FC patterns have emerged as reliable indicators
of different brain states, because they have been found to adapt to
recent behavior or cognition (7–12) and to be disrupted in patients
suffering from specific psychiatric disorders (13, 14). Further
knowledge about important aspects of cognition and diseases could
be gained from a better distinction between feedback and feedfor-
ward communication. Our understanding of the signaling hierarchy
in different brain states remains incomplete, however.
Although FC captures correlations among neuronal signals, only

effective connectivity (EC) describes the influence exerted by one
neuronal system over another (15). Recent approaches to model-
ing EC during different brain states appear promising (16, 17), but
face problems inherent to fMRI. First, EC is estimated directly
from the time-varying fluctuations or cross-spectra of the observed

fMRI signal, and thus is prone to confounds from different he-
modynamic responses across groups, particularly when studying
patient populations (15, 17). Second, analyses are usually restricted
to a limited number of brain regions, owing to the need for com-
plex computations. Here we propose a novel approach integrating
FC with simultaneously measured energy metabolism from posi-
tron emission tomography (PET) to derive a voxel-wise, whole-
brain mapping of EC in humans.
Energy consumption is an essential aspect of neuronal com-

munication. Consistently across species, the greatest amount of
energy metabolism is dedicated to signaling, with the remaining
part dedicated to housekeeping functions (18). Up to 75% of
signaling-related energy is consumed postsynaptically, i.e., at
the target neurons (19–22). Scaled to the systems level, we as-
sume that an increase in local metabolism reflects an increase
in afferent EC from source regions. We hypothesize that the
spatial profile of this relationship is expressed in terms of spatial
correlations between metabolic activity and long-range FC,
which we term metabolic connectivity mapping (MCM). We
simultaneously acquired fMRI and PET data for the glucose
analog 18F-fludeoxyglucose (FDG) during two different brain
states, as reported previously (10). In individual subject space, we
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performed spatial correlation analyses of voxel FC and FDG to
test whether the metabolic profile indicates the target area of
communication between functionally connected regions (Fig. 1).
Vision is the only sensation that can be interrupted volitionally

in a natural way. Opening the eyes is a fundamental behavior for
directing attention to the external world, i.e., changing from an
interoceptive state to an exteroceptive state (3, 23, 24). Current
knowledge of the signaling hierarchy in the extended visual sys-
tem has emerged from animal and tracer studies. These data
reveal reciprocal (bottom-up and top-down) connections along
the ventral and dorsal visual stream (25), including top-down
projections from frontal back to early visual cortices (3, 4, 26, 27).
To test this signaling hierarchy in humans, we scanned healthy
human subjects in two brain states, lying with either eyes closed
or eyes open in darkness, and calculated EC using our integrated
approach. Consistent with previously reported data, MCM revealed
persistent and bidirectional interactions between visual stream areas
during both the “eyes closed” and “eyes open” conditions, but
frontal top-down modulation of early visual areas only during the
eyes open condition.
In the present study, we used FDG to inform undirected FC

from fMRI with a directional measure of postsynaptic neuronal
activity. Our results indicate that the integrated measure of
MCM serves as a proxy for EC in brain states. Our approach
might be particularly useful for investigating other signaling hier-
archies in higher cognition or in brain disorders involving, e.g.,
hippocampal-cortical circuits in Alzheimer’s disease (28) or fronto-
midbrain interactions in major depression (29).

Results
We investigated the signaling hierarchy between an early visual
area and functional regions across the entire cortex during
conditions of eyes closed and eyes open in a three-step pro-
cedure. We first identified regions of interest (ROIs) in visual
and association cortices, then determined the FC pathways be-
tween the early visual ROIs and all other ROIs, and finally in-
tegrated voxel FC and FDG values to reveal the directionality of
signaling along these functional pathways via MCM.

Regions Belonging to Visual Stream and Prefrontal Association Networks.
Using independent component analysis (ICA) of fMRI data, we
parcellated the cortex into clusters sharing characteristic temporal
BOLD dynamics. Each cluster had to fulfill certain properties with
respect to size and stability of occurrence (Materials and Methods).
We then mapped these clusters onto recently defined networks from
a 1,000-subject dataset (Fig. 2, colored outline). Previous work
identified two networks (dark violet, green) as part of an extended
visual hierarchy and three networks covering prefrontal association
areas (30). According to this nomenclature, we identified five ROIs
along ventral and dorsal visual streams (Fig. 2, Left) and five ROIs in
frontal association networks (Fig. 2, Right). Table 1 lists all anatomic
structures covered by each ROI. We selected the calcarine sulcus
(CaS) as the early visual area for all subsequent analyses of FC and
MCM, because it fully covers the area of greatest metabolic increase
when subjects open their eyes (10) (Fig. 2, Middle, blue).

FC Pathways Between Regions. In a second step, we identified FC
pathways between the CaS and all other ROIs via pairwise tem-
poral correlations between individual cluster time-series (FCcl)
from the ICA. For each subject, we first calculated the FCcl
between the CaS and all ROIs of the visual stream and sub-
mitted these values to ANOVA with region [striate cortex (StC),
extrastriate cortex (ExC), inferior temporal gyrus (ITG), and su-
perior parietal lobe (SPL)] and condition (eyes closed/open) as
factors (Fig. 3A). We found a main effect for region (F1,21 = 3.41,
P = 0.02), but not for condition (F1,21 = 3.27, P = 0.075), and no
interaction of region and condition (F3,19 = 2.14, P = 0.1). One-
sample t tests, however, showed a positive FCcl between the CaS
and each of the visual stream ROIs across both conditions
(StC: t21 = 5.72, P = 1.1 × 10−5; ExC: t21 = 10.06, P = 1.7 × 10−9;

Fig. 1. MCM reveals EC in the human brain. (A) FC reveals undirected path-
ways of synchronous fMRI signal fluctuations between two regions, X and Y.
For each subject, FC is calculated as the temporal correlation, [r] between
the cluster time series. In our example, we identified FC pathways during
conditions of eyes closed and eyes open. (B) In a next step, we identified EC
(i.e., the directionality of signaling) in a given functional pathway. For each
region, we calculated the spatial correlation, [r], between voxel FC and FDG
values of simultaneously acquired fMRI and PET data. According to cellular
recordings (see text), the majority of signaling-related energy is consumed
postsynaptically, i.e., at the target region. Thus, MCM identifies afferent EC in
the signaling pathway between region X and region Y.

Fig. 2. Brain regions belonging to visual stream and prefrontal association
networks. Spatial maps (P < 0.05, corrected) are projected onto the inflated
cortical surface of a standard brain. Major networks of a recent 1,000-subject
analysis are illustrated in the middle panel (top, lateral surface; bottom, medial
surface) using different colors and serve as a reference for the assignment of
each of our ROIs to its closest match. Reprinted from ref. 30. Ventral/dorsal visual
stream ROIs include the CaS, StC, ExC, ITG, and SPL. Prefrontal association net-
work ROIs include the PFCa, INS, PFCdl, MCC, and PFCvm. Table 1 lists the ana-
tomic structures covered by each ROI. The CaS was chosen as the early visual
region for further analyses, because it fully covers the cluster of greatest increase
in metabolic activity during the eyes open condition from an earlier analysis (10).
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ITG: t21 = 6.62, P = 1.5 × 10−6; SPL: t21 = 8.12, P = 5.8 × 10−8).
Thus, persistent functional pathways between CaS and all regions
along the ventral and dorsal visual streams exist during both the
eyes closed and eyes open conditions.
Similarly, we tested whether functional pathways exist between

the CaS and any prefrontal association region. We calculated the
FCcl between the CaS and each frontal ROI and submitted these
measures to ANOVA with region [anterior prefrontal cortex
(PFCa), insular cortex (INS), dorsolateral prefrontal cortex (PFCdl),
middle cingulate cortex (MCC), and ventromedial prefrontal cortex
(PFCvm)] and condition (eyes closed/open) as factors. We found
main effects for region (F1,21 = 11.1, P = 1.7 × 10−7) and condition
(F1,21 = 19.14, P = 3.0 × 10−5), along with an interaction of region
and condition (F4,18 = 5.54, P = 0.0005). This means that the FCcl
between the CaS and prefrontal ROIs strongly differs for selected
regions between conditions. Post hoc two-sample t tests evaluating
the two-way interaction indicated that the FCcl between the CaS
and PFCa (t21 = 2.58, P = 0.02), INS (t21 = 4.17, P = 0.0005) and
MCC (t21 = 4.07, P = 0.0006) increased during the eyes open
condition (Fig. 3B); interestingly, these three frontal regions all
belong to the salience network (shown in purple). Note that only
salience regions INS and MCC showed increased FC when using a
stringent Bonferroni correction for possibly nine two-sample t tests
in this FC analysis. Thus, FCcl between early visual and salience
regions increases when subjects open their eyes. On the other hand,
we found no difference in or persistent FCcl with the PFCdl (P >
0.1) and PFCvm (P > 0.1), which belong to the central executive and
default mode networks, respectively. Taken together, our FCcl
analyses reveal persisting visual pathways across conditions and
additional salience pathways once subjects open their eyes.

MCM Reveals EC Between Regions. In a final step, we investigated
EC among these visual and salience pathways. Here MCM iden-
tifies whether an area receives signaling input, or afferent EC, by
integrating voxels’ FC and energy metabolism. For a given pathway,
e.g., between the CaS and StC, we first used a cluster time course of
the CaS to calculate FCvox for each voxel in the StC. The spatial
correlation analysis between FCvox and FDGvox then revealed
whether the StC receives afferent, or bottom-up, signaling (Fig. 4,
red bars). A similar analysis in the CaS tested for the inverse di-
rection, i.e., top-down signaling (Fig. 4, blue bars). Importantly, we
performed this integrated analysis on maximally unsmoothed data
by omitting spatial normalization or smoothing of both the fMRI
and FDG data. This allowed us to calculate the signaling hierarchy
in each subject individually. Illustrations of alignment between
coregistered EPI and PET images are provided in Fig. S1.
First, we examined the signaling hierarchy along the visual

stream pathways. We calculated MCM for all visual ROIs on both
eyes closed and eyes open datasets and submitted these measures
to ANOVA with region (StC, ExC, ITG, and SPL) and direction
(bottom-up/top-down) as factors. We found main effects of region
(F1,21 = 3.92, P = 0.01) and direction (F1,21 = 4.62, P = 0.033),

along with a two-way interaction between region and direction
(F3,19 = 5.21, P = 0.002), indicating that signaling direction differs
for only certain pathways. Post hoc t tests evaluating this two-way
interaction revealed unidirectional signaling for the SPL path-
way (t21 = 4.1, P = 0.0002; P = 0.001 Bonferroni-corrected for
seven two-sample t tests in MCM analysis), but not for any of
the other connections (P > 0.1). As shown in Fig. 4A, the SPL
pathway is driven by top-down signaling (blue bar), whereas
communication in all other visual stream pathways is charac-
terized by bidirectional EC.
Similarly, we investigated the EC along the salience pathways

during the eyes open condition. In individual subject spaces, we
calculated MCM and submitted these measures to ANOVA with
region (PFCa, INS, and MCC) and direction (bottom-up/top-
down) as factors. We found a main effect of direction (F1,21 =
41.53, P = 4.1 × 10−9), but no main effect of region (P > 0.1) or any
interaction effects (P > 0.2). Thus, there is consistent unidirectional
communication along the salience pathways. Post hoc t tests
revealed that all salience regions exert a top-down influence on the
CaS (PFCa: t21 = 4.78, P = 0.0001; INS: t21 = 3.26, P = 0.004; MCC:
t21 = 3.04, P = 0.007; all P < 0.05 Bonferroni-corrected) (Fig. 4B).
Taken together, these MCM values reveal a distinct signaling
hierarchy along visual stream and salience pathways. Indepen-
dent of condition, bidirectional communication occurs between
early and higher visual regions, but top-down signaling occurs
from a parietal region. Once subjects open their eyes, additional
top-down signaling from a salience network occurs.
Finally, in two control analyses, we evaluated the effects of voxel

and ROI size on the results of MCM. To diminish the effect of
spatial smoothing, which might artificially increase spatial correlations

Table 1. Brain regions and associated networks as illustrated in Fig. 2

Label Anatomy Network

CaS Calcarine sulcus Visual (dark violet)
StC Striate cortex, lingual gyrus, lateral occipital Visual (dark violet)
ExC Extrastriate cortex, inferior parietal Visual (dark violet)
ITG Fusiform gyrus, inferior temporal Visual (dark violet)
SPL Superior parietal/frontal eye fields Spatial attention (green)
PFCa Anterior prefrontal cortex Salience (purple)
INS Insular cortex, frontal operculum Salience (purple)
PFCdl Dorsolateral prefrontal cortex Central executive (yellow)
MCC Middle cingulate cortex Salience (purple)
PFCvm Ventromedial prefrontal cortex Default mode (red)

Fig. 3. FC pathways during the eyes closed and eyes open conditions. (A)
Stable FC is seen between the CaS (image to the right of the graph) and all other
visual regions (StC, ExC, ITG, and SPL) independent of condition (results of one-
sample t tests; see text). (B) FC between the CaS and all regions of the salience
network (purple) increases only during the eyes open condition (two-sample
t tests; PFCa: P < 0.05; INS: P < 0.0005; MCC: P < 0.005). The two other regions
(PFCdl and PFCvm) show no FC with the CaS (P > 0.1). Note that only salience
regions INS and MCC show increased FC when a stringent Bonferroni correction
is applied for possibly nine two-sample t tests in this FC analysis. Boxplots in-
dicate median, 25th–75th percentiles (box), and extreme data points (whiskers).
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between voxel values, we omitted spatial normalization and
smoothing during preprocessing. Nonetheless, spatial sampling
and the extent of ROI size in the target area might influence the
strength of MCM. Fig. S2 presents MCM data for varying ROI
and voxel sizes (Fig. S2A), both of which show very consistent
results. We found identical directionality with larger voxels (Fig.
S2B), as well as with smaller target ROIs down to one-quarter of
the original ROI size (Fig. S2C).

Discussion
Here we have established a new framework for identifying brain
state EC from simultaneously acquired fMRI and FDG-PET
data. We first characterized functional pathways among visual,
parietal, and frontal regions by calculating FC from fMRI data.
We then identified the direction of communication among these
pathways by integrating neuroenergetics data obtained from
FDG-PET. We found permanent and bidirectional communi-
cation between early and higher visual regions of the occipital
cortex and top-down signaling from parietal regions. Only during
the eyes open condition did additional top-down signaling from a
frontal salience network emerge. We have identified dynamically
changing signaling pathways during simple brain states in hu-
mans, offering a method to further investigate directed com-
munication in healthy and diseased brains.
In human brain imaging, the visual networks are among the

most consistent networks in FC analyses (30, 31). Our FC analysis
revealed functional pathways between the early visual CaS ROI and
all ROIs along the ventral and dorsal visual streams, including in-
ferior temporal and parietal regions. These functional pathways
were stable across conditions, suggesting interaction between these
regions beyond functional processing of visual input, possibly
reflecting underlying anatomic connections. In the monkey brain,
retrograde tracer studies have shown feedforward and feedback
pathways among striate, extrastriate, and parietal regions (4, 26, 27).
Structural imaging with diffusion tensor imaging in humans also has
identified a strong overlap between FC and anatomic pathways
(32). Our FC analysis supports the notion of functionally distinct,
yet highly connected, areas along the visual processing stream.
The frontal cortex includes a core set of networks—default

mode, central executive, and salience networks—that have been
assigned to higher cognitive functions and are prominently af-
fected in neuropsychiatric disorders (13, 33). We evaluated
functional pathways between the early visual cortex and all three
networks, but identified FC only with regions of the salience
network and then only during the eyes open condition. This
finding is interesting, because it is consistent with the behavioral
relevance ascribed to each network. Current knowledge assigns
self-related memory processing to the default mode network (34),

event-related and error-based processing to the central executive
network (35), and set maintenance or salience processing of internal
and external states to the salience network (36). For instance, FC in
the salience network correlates with prescan anxiety ratings in hu-
mans (37). The switch from eyes closed to eyes open might induce a
change in brain state reflected by salience FC and prepare the or-
ganism for event- or self-related processing in the central executive
and default mode networks once visual input is present.
We next integrated independent voxel measures of FC and

FDG to reveal EC along the visual stream and salience pathways.
For the visual pathways, we identified bidirectional communi-
cation among regions in the occipital cortex and top-down sig-
naling from fronto-parietal regions. Whereas early anatomic
studies suggested a bottom-up hierarchy along the visual streams,
recent work has stressed the importance of feedback signaling
onto early visual areas. The StC receives considerably more
feedback and lateral input than feedforward thalamic afferents
(27, 38). This is achieved by a dense network of cortico-cortical
connections (1), and feedback signaling occurs not only from
extrastriate cortices, but also from parietal cortices (39, 40). Direct
feedback connections onto V1 have even been shown for the frontal
eye fields (4) that we identified as the most frontal region within the
dorsal visual stream (SPL). Taken together, our results largely reflect
anatomic data from nonhuman primate studies of strong reciprocal
connections along the extended visual processing pathway. Our data
only indicate the directionality of communication between major
hubs of functional networks, however, and we cannot rule out the
possibility of intermediate brain regions below the spatial resolution
of fMRI that might mediate the influence on early visual areas.
Finally, we also found a top-down influence from all prefrontal

regions of the salience network. Again, this communication
might occur along downstream regions that we have missed with
current human imaging methods. Nonetheless, previous work
revealed top-down modulation of visual cortex activity by frontal
regions. In humans, inhibitory transcranial magnetic stimulation
of the inferior frontal cortex has been shown to decrease the
performance of early visual processing (41). Moreover, recent
studies in monkeys using novel tracer techniques have identified
previously unknown long-range connections between the pre-
frontal and early visual cortex (42). Our finding of top-down sig-
naling also might reflect a more general notion about the
underestimated influence of cortical feedback, particularly onto
the early visual cortex (3, 24). A recent study identified twice as
many feedback connections as feedforward connections for cortico-
cortical pathways, and also showed that feedback connections
tend to be more long-range, whereas feedforward pathways are
comparatively short-range (26).
Certain methodological factors must be taken into account

when interpreting our MCM data. First, our experimental setup
has several limitations. The instruction to keep eyes closed or
open is easy for subjects to follow, particularly with respect to
scanning; however, resting brain states obviously differ across
subjects and entail neuronal processes across many cognitive
domains that cannot be controlled for. We chose the resting state
on the basis of the extensive literature in this area, and because
of the self-evident difficulties in designing tasks that engage
sustained and consistent processing over extended time periods
(necessary to acquire PET data). A positive aspect, however, is
the fact that a basic set of networks emerged consistently in the
resting state across subjects (43). Our study design also had to
accommodate the fact that temporal resolution of PET is limited
to one saturated image of accumulated tracer after 30 min of
scanning. Although recent fMRI studies suggest temporal vari-
ability of FC (i.e., dynamic FC) within and between networks
(44), the MCM approach is based on FC expressed (possibly
intermittently) consistently over extended periods. This property
ensures that the time scale of coupling is commensurate with the
time scale of metabolic (PET) measurements. In other words,

Fig. 4. EC between regions using MCM. (A) Stable bidirectional (bottom-up/
top-down) signaling between the CaS and all other visual regions (StC, ExC,
ITG, and SPL) and top-down modulation from the SPL (P < 0.0005) independent
of condition. (B) All frontal regions of the salience network (purple) exert top-
down modulation of the CaS only during the eyes open condition (PFCa: P <
0.0005; INS: P < 0.005; MCC: P < 0.05). Boxplots indicate median, 25th–75th
percentiles (box), and extreme data points (whiskers).
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MCM pertains to the EC mediating consistent FC that may or
may not be fluctuating over time. It might be interesting to revisit
this issue by using the average of dynamic FC, as opposed to FC
per se. A final limitation of the present study is that interpre-
tation of MCM results might be confounded by varying levels of
arousal during the eyes closed and eyes open conditions. In other
words, frontal top-down signaling during eyes open might in-
dicate anticipatory signaling from salience regions, or frontal
uncoupling during eyes closed may occur simply because subjects
have lower levels of arousal.
Second, MCM relies on the assumption that voxel values of FC

and FDG spatially correlate with each other in connected regions.
Underlying vascular heterogeneity might induce false-positive or
-negative spatial correlations, however. In the resting state fMRI
literature, the influence of cerebral blood flow (CBF) and vessel
size on BOLD-FC is increasingly discussed (45), and recent studies
suggest strong BOLD-CBF coupling (46, 47). There is also evidence
that these CBF fluctuations indicate reactivity to neuronal activity
rather than to heterogeneous vascularity, however. Tak et al. (46)
also acquired data on large-vessel volume fraction and found that
BOLD-FC was inversely related to macrovascular volume fraction.
The stronger relationship with small- to medium-sized vessels
(closer to neuronal activity) was particularly prominent for major
FC hubs. In summary, spatial variation in neurovascular mecha-
nisms will lead to spatial inhomogeneities in measured BOLD
signals that will clearly affect spatial correlation over voxels. To a
certain extent, our use of FC (as opposed to BOLD signal per se)
mitigates this problem, in the sense that the correlation between the
BOLD signals in two regions does not change with their amplitude
(e.g., neurovascular sensitivity). This assumes that the signal-to-
noise ratio of BOLD time series is spatially invariant, however. If it
is not, then MCM may be prone to false-negative results.
As noted by our reviewers, the potentially confounding effects

of neurovascular heterogeneity cannot be invoked to explain the
condition-specific changes in EC that we observed. This means
that the assessment of changes in EC may be more robust to
vascular heterogeneity. On the other hand, the combination of
two modalities with similar voxel resolution also has distinct
advantages with respect to sensitivity. Integrating data acquired
simultaneously and independently from the same subject allowed
us to avoid spatial distortion of imaging data, which commonly
occurs before statistical analysis (48). We omitted spatial nor-
malization to a standard brain and also spatial smoothing as we
integrated the two datasets in individual subject space. More-
over, our control analyses showed that MCM was robust against
variations in voxel and ROI size. Thus, this approach might
prove sufficiently sensitive for even single-subject analyses.
Third, an ongoing discussion in the PET literature surrounds

the issue of how to interpret FDG signals. FDG uptake reflects
energy consumption and to a large part is related to neuronal
signaling (49); however, a critical question is whether neurons
themselves or astrocytes consume most of the energy provided by
glucose. Numerous studies have provided evidence for both cell
types, but a very recent study “identified neurons as the principle
locus of glucose uptake as visualized by functional brain imaging”
(50). According to that study, FDG-PET is an ideal surrogate for
energy consumption in neurons and specifically at synapses. Fur-
thermore, this idea supports the general assumption about the
neuronal basis of the BOLD signal. Earlier studies of simulta-
neous electrophysiology and fMRI have concluded that BOLD
signal fluctuations reflect synaptic activity rather than spiking ac-
tivity (51, 52). Using complementary methods like PET, we can
now confirm this assumption directly in humans.
Although we and others found a partial spatial overlap between

FDG and fMRI measures in previous studies (10, 53), MCM is a
novel approach using energy consumption as a proxy for directional
signaling. The question remains as to which aspects of EC (and
endogenous fluctuations) best predict metabolic activity as measured

by FDG. There are a number of competing hypotheses here. For
example, a decrease in regional self-inhibition may correspond to
increased excitability and an increase in metabolism (and spatial
correlation with FC). Conversely, metabolic increases may be
mediated directly by afferent EC from source regions. Finally,
the best predictor of metabolic activity may be the amplitude of
neuronal fluctuations mediated by changes in EC. In a future
study, we will apply stochastic and spectral dynamic causal mod-
eling (DCM) to the data described above (17). The parameters
(intrinsic and extrinsic connectivity) and the amplitude of inferred
neuronal fluctuations will be used to predict regional metabolism
(and its spatial correlation with FC) to identify the key determi-
nants that underlie MCM. The use of spectral DCM here may be
interesting, because this approach explicitly parameterizes the
spectral profile of endogenous neuronal fluctuations, aa well as
their implicit time constants. We hope to test the hypothesis that
the determinants of MCM rely not just on the amplitude of neu-
ronal fluctuations (mediated by EC), but also on the characteristic
time constants as modeled with power law scaling.

Materials and Methods
Our analysis was performed on 24 healthy subjects (16males, 8 females; average
age, 54.7 ± 9.9 y; all right-handed) participating in a simultaneous FDG-PET/
fMRI brain imaging study. All participants gave informed consent to procedures
approved by the Ethics Review Board of the Klinikum Rechts der Isar, Techni-
sche Universität München. Scanning was performed on an integrated Siemens
Biograph mMR scanner capable of simultaneously acquiring PET and MRI (3 T)
data using the vendor-supplied 12-channel phase-array head coil.

We simultaneously measured FDG-PET activity and BOLD-fMRI signals
during resting conditions of either eyes closed (CLOSED) or eyes open (OPEN)
during the initial 10 min immediately after bolus injection of FDG tracer. At
30 min postinjection, we recorded the saturated list mode PET dataset for
10 min. All scanning was performed in a dimmed environment obtained by
switching off all lights, including those in the scanner bore. Subjects were
instructed to keep their eyes closed/open, to relax, to not think of anything in
particular, and to not fall asleep. We assessed each subject’s level of arousal
and anxiety using the State Trait Anxiety Inventory before the start of the
scanning session (CLOSED/OPEN: 35.5 ± 6.9/30.8 ± 5.6; P = 0.18), and mea-
sured blood pressure and venous glucose level (<140 mg/dL in all subjects).

We applied two different preprocessing pipelines for the initial FC analysis
of fMRI data, and for the final integrated MCM analysis of fMRI and PET data
in single-subject space.

FC Analysis. We first identified ROIs according to a standard set of networks
that Yeo et al. (30) recently established in a 1,000-subject dataset. We fol-
lowed our previous processing pipeline for ICA of fMRI data (54). We applied
slice-time correction, realignment, normalization to a standard template,
and spatial smoothing using a Gaussian kernel with an FWHM of 6 mm. We
then subjected the concatenated data of all subjects to a group ICA using
GIFT (Medical Imaging Analysis Lab, The Mind Research Network) and
identified 70 spatially independent components (ICs) with corresponding
signal time series (31). Only the most stable ICs with a stability index > 0.9
were identified by iteratively running 30 ICAs using the ICASSO procedure
(55). We automatically selected ICs as relevant ROIs by running spatial re-
gression against the spatial maps of the seven-network decomposition from
Yeo et al. (30). Finally, we identified functional pathways of FC between an
early visual area (CaS) and all other visual stream ROIs (StC, ExC, and ITG, SPL)
and prefrontal association ROIs (PFCa, INS, PFCdl, MCC, and PFCvm). For each
subject separately, we calculated the temporal Pearson’s correlation be-
tween the cluster time series of the CaS and that of all other ROIs.

Multimodal MCM Analysis in Single-Subject Space. In this analysis, we inte-
grated voxel-wise measures of FC and FDG activity in single-subject spaces to
reveal EC among previously established FC pathways.We used the temporally
(slice time corrected) and spatially corrected EPI volumes of each subject, but
omitted normalization and smoothing procedures to achieve the least dis-
torted volumes.We then coregistered themean FDG-PET volume to themean
EPI volume, scaled PET data to normalized FDG activity by whole-brain FDG
uptake values, and resampled both datasets to common voxel dimensions of
2 × 2 x 2 mm3. We then submitted the fMRI and FDG-PET data to a two-step
procedure to calculate MCM (Fig. 1).

Based on the energy model of neuronal signaling, a positive spatial cor-
relation between the voxel profiles of FC (FCvox) and FDG activity (FDGvox)
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identifies a region as the input area of a pathway. FDGvox is derived from
FDG activity maps, and FCvox is calculated as the temporal correlation be-
tween each voxel time series within the (target) ROI and the cluster time
series of the connected (seed) region, i.e., FCvox in the StC with cluster time
series of the CaS. The spatial extent of each ROI was defined by the initial
ICA maps (z > 3) back-projected into individual space.

More detailed information is provided in SI Materials and Methods.
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Correction

NEUROSCIENCE
Correction for “Metabolic connectivity mapping reveals effective
connectivity in the resting human brain,” by Valentin Riedl, Lukas
Utz, Gabriel Castrillón, Timo Grimmer, Josef P. Rauschecker,
Markus Ploner, Karl J. Friston, Alexander Drzezga, and Christian
Sorg, which appeared in issue 2, January 12, 2016, of Proc Natl Acad
Sci USA (113:428–433; first published December 28, 2015; 10.1073/
pnas.1513752113).
The authors note that a reference was inadvertently omitted

from the published article. The complete reference appears be-
low. The following citations to ref. 10 should instead be to the
omitted ref. 62: on page 428, right column, first full paragraph,
line 14; on page 429, right column, first paragraph, line 16; on
page 432, left column, fourth full paragraph, line 2; and on page
429, in the legend for Fig. 2, line 11.

62. Riedl V, et al. (2014) Local activity determines functional connectivity in the resting
human brain: A simultaneous FDG-PET/fMRI study. J Neurosci 34(18):6260–6266.
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