Mutant cycle analysis with modified saxitoxins reveals specific interactions critical to attaining high-affinity inhibition of hNa\textsubscript{V}1.7

Rhiannon Thomas-Tran* and J. Du Bois,1

*Department of Chemistry, Stanford University, Stanford, CA 94305

Edited by Richard W. Aldrich, The University of Texas at Austin, Austin, TX, and approved April 4, 2016 (received for review March 1, 2016)

Improper function of voltage-gated sodium channels (Na\textsubscript{V}s), oblig-atory membrane proteins for bioelectrical signaling, has been linked to a number of human pathologies. Small-molecule agents that target Na\textsubscript{V}s hold considerable promise for treatment of chronic disease. Absent a comprehensive understanding of channel structure, the challenge of designing selective agents to modulate the activity of Na\textsubscript{V} subtypes is formidable. We have endeavored to gain insight into the 3D architecture of the outer vestibule of Na\textsubscript{V} through a systematic structure-activity relationship (SAR) study involving the bis-guanidinium toxin saxitoxin (STX), modified saxitoxins, and protein mutagenesis. Mutant cycle analysis has led to the identification of an acetylated variant of STX with unprecedented, low-nanomolar affinity for human Na\textsubscript{V}1.7 (hNa\textsubscript{V}1.7), a channel subtype that has been implicated in pain perception. A revised toxin-receptor binding model is presented, which is consistent with the large body of SAR data that we have obtained. This new model is expected to facilitate subsequent efforts to design isoform-selective Na\textsubscript{V} inhibitors.

Na\textsubscript{V} mutant cycle analysis

Modification of action potentials in electrically excitable cells is controlled by tight regulation of ion channel expression and distribution. Voltage-gated sodium ion channels (Na\textsubscript{V}s) constitute one such family of essential membrane proteins, encoded in 10 unique genes (Na\textsubscript{V}1.1–Na\textsubscript{V}1.9, Na\textsubscript{K}) and further processed through RNA splicing, editing, and posttranslational modifications. Sodium channels are comprised of a large (\sim\text{260 kDa}) pore-forming \(\alpha\)-subunit coexpressed with ancillary \(\beta\)-subunits. Misregulation and/or mutation of Na\textsubscript{V}s have been ascribed to a number of human diseases including neuropathic pain, epilepsy, and cardiac arrhythmias. A desire to understand the role of individual Na\textsubscript{V} subtypes in normal and aberrant signaling motivates the development of small-molecule probes for regulating the function of specific channel isoforms (1–4).

Nature has provided a collection of small-molecule toxins, including (+)-saxitoxin (STX, I) and (-)-tetrodotoxin (TTX), which bind to a subset of mammalian Na\textsubscript{V} isoforms with nanomolar affinity (5–7). Guanidinium toxins inhibit Na+ influx through Na\textsubscript{V}s by occluding the outer pore above the ion selectivity filter (site 1). This proposed mechanism for toxin block follows from a large body of electrophysiological and site-directed mutagenesis studies (Fig. 1A and refs. 8–10). The detailed view of toxin binding, however, is unsupported by structural biology, as no high-resolution structure of a eukaryotic Na\textsubscript{V} has been solved to date (11–16). Na\textsubscript{V} homology models, constructed based on X-ray analyses of prokaryotic Na\textsubscript{V} and K+ voltage-gated channels, do not sufficiently account for experimental structure-activity relationship (SAR) data (6, 17–20), and the molecular details underlying distinct differences in toxin potencies toward individual Na\textsubscript{V} subtypes remain undefined (5, 6, 21–23). The lack of structural information motivates a comprehensive, systematic study of toxin-protein interactions.

Double-mutant cycle analysis has proven an invaluable experimental method for assessing protein–protein, protein–peptide, and protein–small-molecule interactions in the absence of crystallographic data (Fig. 1B and Fig. S1 and refs. 9, 10, and 24–31). Herein, we describe mutant cycle analysis with Na\textsubscript{V}s using STX and synthetically modified forms thereof. Our results are suggestive of a toxin–Na\textsubscript{V} binding pose distinct from previously published views. Our studies have resulted in the identification of a natural variant of STX that is potent against the STX-resistant human Na\textsubscript{V}1.7 isoform (hNa\textsubscript{V}1.7). Structural insights gained from these studies provide a foundation for engineering guanidinium toxins with Na\textsubscript{V} isoform selectivity.

Results

Methylated STX Analogs. Double-mutant cycle analysis of the STX binding site necessitates both ligand and protein modification. A collection of isomeric toxins bearing a methyl substituent group was targeted to ensure that relative differences in solvation energies between these compounds would be minimal. Variances in ligand affinity could thus be attributed to steric factors governing toxin–Na\textsubscript{V} interactions (32, 33). Previous bis-guanidinium toxin–Na\textsubscript{V} mutant cycle analyses have been limited to naturally occurring derivatives (9, 10). Accordingly, five monomethylated analogs (2–5 and 8, Table 1), along with two dimethylated variants (6 and 9) and decarbamoyl-STX (dcSTX, 7) were prepared from L-serine methyl ester using routes adapted from our previously disclosed studies (34). Although naturally occurring STX derivatives with substitution at N7 or C13 appear in nature, to our knowledge no N9- or C10- natural product congeners have been identified (35–37).

Preliminary electrophysiological recordings to assess analog potencies were conducted with wild-type (WT) rat skeletal muscle \(\alpha\)-subunit (rNa\textsubscript{V}1.4) heterologously expressed in CHO

Significance

Chronic pain plagues at least 50 million Americans and has an estimated annual cost in excess of $200 billion. Consequently, there exists significant interest in developing effective, non-narcotic analgesics. Drugs that target individual voltage-gated sodium channel (Na\textsubscript{V}) subtypes have appreciable therapeutic potential as pain medicines. Our work uses small-molecule design and protein mutagenesis to gain insight into the molecular architecture of the ion conduction pore of Na\textsubscript{V}. These studies have revealed structural differences in the outer mouth of the channel that potentiate the binding of guanidinium toxins. Such findings are helping advance the preparation of isoform-selective Na\textsubscript{V} antagonists.

Author contributions: R.T.-T. and J.D.B. designed research; R.T.-T. performed research; R.T.-T. and J.D.B. analyzed data; and R.T.-T. and J.D.B. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

1To whom correspondence should be addressed. Email: jdubois@stanford.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1603486113/-/DCSupplemental.
cells (Table 1 and Fig. S2). Consistent with previous observations, N2I mono- and dimethylcarbamoylated derivatives 5 and 6 retain high affinity for rNaV1.4, with IC50 values of 1.9 ± 0.1 nM and 4.5 ± 0.2 nM, respectively (38–41). In contrast, the introduction of a single methyl group on the tricyclic bis-guanidine core of STX significantly reduces potency, between 74- and 300-fold for N7-Me STX, N7-Me STX, and N9-Me STX, respectively, whereas the potency of isobutyrate give 3.9 nM, respectively (7, 35). These data motivate further studies to interrogate the binding pose of guanidinium toxins in the outer vestibule of the conductance pore.

Mutant Cycle Analysis with Site 1 Mutants. To localize precise interactions responsible for high-affinity STX block of the channel, nine single-point NaV1.4 mutants were initially prepared and characterized (Fig. 2, SI Discussion, and Fig. S1). Alanine residues were systematically introduced into the pore-loop region, above the Na+ selectivity filter (i.e., DEKA loop), in all four domains (DI–DIV) of the channel. Given the large perturbations to STX binding previously reported when key carboxylate residues, E403 and E758, are neutralized, only aspartate mutations were introduced at these positions (8, 10). Single-point mutants generated measurable macroscopic currents (1–6 nA) and exhibited typical NaV gating kinetics when expressed in CHO cells. For each toxin-channel pair, concentration-response curves for IC50 values (35 ± 1.4 nM and 83 ± 3.9 nM, respectively), whereas the potency of isobutyrate 2
diminished (338 ± 0.1 kcal/mol; Fig. 3, Fig. S4, and Table S2). Position 1239 was left unperturbed, because substitution of this residue considerably destabilizes STX and STX derivative binding (all IC50 >1.9 μM with W1239A).

Within the series of single-point M1240 mutants, threonine, serine, and isoleucine residues had the most demonstrable influence on dcSTX 7 and C13-OAc STX 8 affinity (Fig. 34). For the former two amino acids, the magnitude of ∆ΔEΩ was markedly greater for acetylated toxin 8 than for decarbamoylated toxin 7 (M1240T, ∆ΔEΩ = 0.7 ± 0.1 kcal/mol versus 0.9 ± 0.1 kcal/mol; M1240S, ∆ΔEΩ = 1.4 ± 0.1 kcal/mol versus 0.6 ± 0.1 kcal/mol). Mutation of M1240 to an H-bond donor did not adversely influence the GQ of derivatives 7 and 8 to the same extent as STX, which displayed 29- and 63-fold reduced potency against Thr and Ser mutants, respectively (Fig. S4 and Table S2). For all other M1240 mutants, binding of compound 7 was destabilized relative to STX, as revealed by negative interaction energies (ΔΔEΩ = −0.8 to −0.2 kcal/mol; Table S2). Conversely, mutant cycle analysis with acetate ester derivative 8 gave coupling values ranging from −0.1 to 1.0 kcal/mol for all other M1240 single-point mutants. The increasing magnitude of ∆ΔEΩ for analog 8 follows the trend Asn < Ala < Val < Ile < Ser < Thr.

At position 1241, the most favorable DIII interactions were recorded for isoleucine, threonine, and asparagine mutants with compound 8 (ΔΔEΩ of 1.5 ± 0.1, 1.0 ± 0.1, and 0.9 ± 0.1 kcal/mol, respectively; Fig. 34). Replacement of D1241 with a neutral amino acid substitution of DIII p-loop residues M1240 and D1241 has been found to significantly influence guanidinium toxin potency (6, 8). In previous work from our laboratory, STX resistance in primate NaV1.7 was noted and ascribed to a natural variation of two pore-forming amino acids at positions 1240 and 1241. Given the modest coupling observed between C13-modified toxins 7 and 8 with DIII alanine mutants, as well as an interest in restoring bis-guanidinium toxin affinity to hNaV1.7, nine additional single-point 1240 and 1241 NaV1.4 mutants with amino acids of varying steric size and polarity were expressed (Fig. 3, Fig. S4, and Table S2). Position 1239 was left unperturbed, because substitution of this residue considerably destabilizes STX and STX derivative binding (all IC50 >1.9 μM with W1239A).

The relative affinities of N-methylcarbamate–modified toxins 5 and 6 against NaV mutants were similar to STX (ΔΔEΩ < 0.5 kcal/mol). Two toxin derivatives, dcSTX 7 and C13-OAc STX 8, displayed notable coupling interactions with DIII residues. In experiments with the former compound, W1239A and Y401A afforded the largest ∆ΔEΩ values (ΔΔEΩ of 0.9 ± 0.1 and 0.8 ± 0.1 kcal/mol, respectively), whereas ester 8 exhibited the most substantial coupling energies with W1239A and D1241A (ΔΔEΩ = 0.6 ± 0.1 and 0.6 ± 0.1 kcal/mol, respectively).
residue (Ala and Ile) resulted in an eight- and 22-fold decrease in STX IC₅₀ values, compared with a ninefold and 1.5-fold reduction in the affinity of ester 8. With the exception of the D1241I mutant, the relative potency of dSTX was not strongly influenced by 1241 substitution (ΔΔΩ = 0.6 kcal/mol) but significantly diminished (ΔΔΩ = −2.2 ± 0.1 kcal/mol) relative to C13-acetate derivative 8.

C13-Modified Toxins Are Potent Against 1240/1241 Double Mutants. Because both C13 derivatives 7 and 8 displayed ΔΔΩ values ≥1.0 kcal with NaV₁.4 M1240T and D1241I, additional binding studies were performed using the corresponding double-point mutant channel (Fig. 3B, Fig. S4, and Table S2). This construct is structurally analogous to the outer vestibule of primate NaV₁.7, which expresses Thr and Ile in DIV of the p-loop (6). Coupling energies for STX analogs 7 and 8, in addition to isobutyrate ester 9, against NaV₁.4 M1240T/D1241I are quite large, with values of 2.1 ± 0.1 kcal/mol, 4.2 ± 0.1 kcal/mol, and 2.0 ± 0.1, respectively (Tables S2 and S3). Notably, the affinity of C13-OAc STX 8 for this mutant NaV is threefold greater than for the WT channel (IC₅₀ = 26 ± 2.3 nM versus 83 ± 3.9 nM). Similar results, albeit with diminished absolute magnitudes for ΔΔΩ, were obtained from mutant cycle analysis with N21-dimethyl STX 6 (Fig. 3B, Fig. S4, and Table S2). Data gathered from experiments with two additional NaV₁.4 double mutants, M1240A/D1241A and M1240T/D1241A, and compounds 6–9 followed analogous trends (Fig. S4 and Tables S2 and S3).

To further define toxin–DIV interactions, additional mutant cycles with isobutyrate ester 9 were analyzed (Table S3). Binding energies for toxin derivatives 6 and 8 with rNaV₁.4 were used as starting values for these cycles to directly probe steric constraints within DIV. Coupling of the branched ester 9 to M1240T/D1241I was modest compared with dimethylcarbamate 6 (ΔΔΩ = 0.7 ± 0.1 kcal/mol) but significantly diminished (ΔΔΩ = −2.2 ± 0.1 kcal/mol) relative to C13-acetate derivative 8.

Previously reported docking models for STX have positioned C10 and C11 proximal to the pore loop of DIV (6, 17–20). Accordingly, C10-Me STX 4 was tested against NaV₁.4 M1240T/D1241I in addition to other DIV mutant constructs (Fig. 3B, Fig. S4, and Table S2). The largest ΔΔΩ of 0.8 kcal/mol was obtained for 4 against the 1240T/1241I double mutant, a value that is decidedly smaller than coupling energies calculated for 6, 7, and 8 (Fig. 3B).

C13-OAc STX 8 Retains High Affinity for hNaV₁.7. Given the potency of C13-OAc STX 8 for the NaV₁.4 M1240T/D1241I double mutant (IC₅₀ = 26 ± 2.3 nM), this compound was tested against human nociceptive NaV₁.7 (hNaV₁.7) stably expressed in HEK cells. An IC₅₀ of 19 ± 1.7 nM (Fig. 3C and D and Fig. S5) was measured, a value similar to that obtained from experiments...
with NaV1.4 M1240T/D1241I. By comparison with binding data recorded with other WT isoforms (rNaV1.2, rNaV1.4, and hNaV1.5), C13-OAc STX 8 is two- to 240-fold more selective for the 1.7 channel (Fig. S5).

Discussion
Small molecules that functionally “knock out” specific NaV isoforms hold promise as tools for exploring the role of individual channel subtypes in modulating compound action potentials. The development of such inhibitors through rational design, however, is challenged by the absence of crystallographic data for eukaryotic NaVαs. To obtain structural insights into the molecular determinants that govern high-affinity NaV block by bis-guanidinium toxins, mutant cycle analysis was performed with six, nonnatural methylated saxitoxin derivatives, as well as deSTX and C13-OAc STX, 18 single-point and 3 double-point NaV1.4 mutants. Significant coupling energies (>1 kcal/mol) were calculated for multiple toxin–mutant channel pairs (Figs. 2 and 3). These data have led to us to propose a new toxin–receptor docking model.

An initial screen of p-loop mutants (Fig. 2) with modified STX analogs showed evident coupling interactions between residues in DI (Y401A and E405D) and the C10-Me derivative 4. Additionally, compounds altered at C13, deSTX 7 and C13-OAc STX 8, displayed modest coupling with alanine mutants of DIII residues W1239, M1240, and D1241. These results, together with a previous report by our laboratory detailing STX–hNaV1.7 binding and the importance of DIII residues in defining guanidinium toxin affinity (6), prompted further study of compounds 7 and 8 against a number of M1240 and D1241 single-point mutants (Fig. 3A). In these experiments, significant interaction energies (≥1.4 kcal/mol) were computed for C13-OAc STX 8 with M1240T and M1240S and for both deSTX 7 and C13-OAcSTX 8 with D1241I (≥1.3 kcal/mol).

Differences in the polarity and steric size of C13-modified toxins 7 and 8 compared with STX, as well as within DIII mutant channels, provide rationale for the relative potencies of the three ligands. Low-nanomolar block of NaVα by STX requires a large, hydrophobic amino acid residue at position 1240 and an acidic residue at position 1241. Replacing M1240 with smaller, polar groups such as Thr and Ser substantially perturbs STX binding, decreasing respective IC50 values by 29-fold and 63-fold. Conversely, C13-OAc STX 8 binds with threefold increased potency to the M1240T mutant channel. In the case of position 1241, neutralization of the Asp residue to Ile, Asn, or Glu has a more profound influence on STX binding than on the acetate ester analog.

The striking results with deSTX 7 and C13-OAc STX 8 and DIII single-point mutants compelled us to perform subsequent investigations of M1240/D1241 double-point mutant channels (Fig. 3B). Ester 8 binds to rNaV1.4 M1240T/D1241I with high affinity, exhibiting threefold greater potency toward this double mutant than WT rNaV1.4. Compared with STX, acetate 8 is four times more potent against this same mutant channel. These observed differences in affinity are recapitulated against native hNaV1.7 (Fig. 3 C and D), which contains threonine and isoleucine at structurally equivalent positions to 1240 and 1241 in rNaV1.4. To the best of our knowledge, compound 8 represents the first example of an STX variant with low-nanomolar potency to hNaV1.7.

Previous homology models of the NaV pore with STX bound have posited three key electrostatic interactions between (i) the five-membered ring guanidinium and E755, (ii) the six-membered ring guanidinium and D1532, and (iii) the C12-hydrated ketone and E758 (6, 17–20). These contacts, defined by experimental comparison of STX and TTX affinity for site 1 mutants, enforce close packing between positions C10 and C11 on STX and DIII p-loop residues (Figs. 4 A and D). Mutant cycle analysis with C10- and C13-modified toxins, however, suggests an alternative pose in which C10 is proximal to DI and C13 is in contact with DIII (Fig. 4 B and C). In this docking model, the five-membered ring guanidinium group is proximal to E755; the hydrated ketone at C12 is proposed to hydrogen bond with D1532 and the six-membered ring guanidinium forms a salt bridge with E758. Thus, all three principal contacts between toxin and receptor are maintained.

Shape complementarity and hydrogen bonding between the C13-carbamate in STX and DIII D1241 favor close positioning of these groups. In this same orientation, binding of C13-OAc STX 8 to WT NaV1.4 is destabilized relative to STX owing to the less polar nature of the ester group (Fig. 4D and Dataset S1). Conversely, in the M1240T/D1241I mutant channel, the strength of the C13-carbamate interaction with DIII residues is mitigated (Fig. 4E). The ester derivative 8 displays higher affinity for this double mutant (threefold relative to rNaV1.4), presumably due to the increased hydrophobicity of the binding pocket and the presence of a hydrogen bond donor in Thr (Fig. 4F and Dataset S2). In this model, differences in binding affinity between the acetate 8 and isobutyrate 9 may be ascribed to the small volume cleft between DIII and DIV, which does not easily accommodate the sterically large, branched isopropyl group. On the other hand, the perturbation to binding caused by the planar N21-dimethylated carbamate (i.e., 6) is minimal.

More than one explanation may account for differences between our revised STX docking model and those previously published. In prior work, specific constraints imposed on bis-guanidinium contacts with carbonylate residues E755, E758, and D1532 limited the sampling of STX poses (6, 17–20). By relaxing these constraints, we have identified an alternative ligand binding model that accounts for our SAR data as well as previous results of this type (9, 10). It is possible, however, that STX and

Fig. 4. Docking of STX at site 1 of rNaV1.4 in the canonical (A) and proposed (B) orientations. The four domains are shown in cartoon representations and colored orange (DI), red (DII), gray (DIII), and teal (DIV). Images highlighting the differences between electrostatic potential surfaces of STX (C) and C13-OAc STX 8 (D) docked to the rNaV1.4 outer pore in the proposed orientation. Equivalent images showing STX (E) and C13-OAc STX 8 (F) in the binding pocket of the M1240T/D1241I double mutant. Depicted potential range is –20 (red) to +5 kT (blue). toxin structures generated using OMEGA version 2.5.1; docking performed with OEDocking version 3.0.1 (OpenEye Scientific Software, www.eyesopen.com).
STX analogs adopt more than one high-affinity binding arrangement within the mouth of the channel. In native rNaV1.4, the canonical STX binding model may indeed be preferred, but in certain mutant NaV or with specific STX derivatives the docking orientation suggested by our findings could be favored (42–44). The potential of bis-quinuclidinum toxins to occlude site 1 through disparate binding modes presents an unusual challenge for engineering subtype-selective inhibitors of NaV function around this chemotype.

Access to STX derivatives through chemical synthesis has facilitated a systematic investigation of toxin–receptor interactions that govern potent NaV block. Mutant cycle analysis has revealed unexpected nearest-neighbor contacts between modified toxins and DI and DIII p-loop amino acids that are not explained by existing models of STX lodged in the channel pore. These data have led us to propose an alternative bis-quinuclidinum toxin binding model, which could aid future efforts to design subtype-specific ligands. Our studies have also resulted in the identification of C13-OAc STX, a naturally occurring derivative of STX specific ligands. Our studies have also resulted in the identification of C13-OAc STX, a naturally occurring derivative of STX.

Materials and Methods

Toxin Synthesis. Toxins were prepared from L-serine methyl ester according to a previously reported route (34). All reagents used were obtained commercially unless otherwise noted. Final compounds were purified using semi preparative HPLC performed on a Varian ProStar model 210. Characterization information for modified toxins can be found in SI Materials and Methods.

Cell Culture and Electrophysiology. Electrophysiology experiments were conducted using CHO cells transiently expressing the α-subunit of rat NaV1.4 (rNaV1.4) or mutant thereof (45), human NaV1.5 (hNaV1.5), rat NaV1.2 (rNaV1.2), or HEK cells stably expressing the α-subunit of human NaV1.7 (hNaV1.7). Cell culture was performed as described previously (38). Additional information can be found in SI Materials and Methods.

Sodium currents were measured using the patch-clamp technique in the whole-cell configuration with an Axopatch-200b amplifier (Axon Instruments), as previously described by Moran et al. (46). Borosilicate glass micropipettes (Sutter Instruments) were fire-polished to a tip diameter yielding a resistance of 1.2–3.0 MΩ in the working solutions. For CHO cells, the micropipette was filled with 40 mM NaF, 1 mM EDTA, 20 mM Heps, and 125 mM CsCl. The external solution had the following composition: 160 mM NaCl, 2 mM CaCl2, and 20 mM Heps. For HEK cells, the micropipette was filled with 10 mM NaF, 10 mM NaCl, 11 mM EGTA, 10 mM Heps, and 130 mM CsF. The external solution had the following composition: 140 mM NaCl, 3 mM KCl, 1 mM CaCl2, 1 mM MgCl2, and 10 mM Heps. The pH of all solutions was adjusted to 7.4 with 50 wt % aqueous CsOH.

Access to STX derivatives through chemical synthesis has facilitated a systematic investigation of toxin–receptor interactions that govern potent NaV block. Mutant cycle analysis has revealed unexpected nearest-neighbor contacts between modified toxins and DI and DIII p-loop amino acids that are not explained by existing models of STX lodged in the channel pore. These data have led us to propose an alternative bis-quinuclidinum toxin binding model, which could aid future efforts to design subtype-specific ligands. Our studies have also resulted in the identification of C13-OAc STX, a naturally occurring derivative of STX specific ligands. Our studies have also resulted in the identification of C13-OAc STX, a naturally occurring derivative of STX.

