










notable that our mapped N:P ratio results, to some degree, tran-
scended issues of substrate type in the lowlands, suggesting overall P
limitation in western lowland Amazonian forests. This finding,
however, does not preclude the possibility of fine-scale effects of
scarcity among other rock-derived nutrients (e.g., Ca, K, Mg) me-
diating forest function in lowland and montane ecosystems (48–50).

New Geography of LES Traits. The canopy foliar traits and inter-
actions we have mapped and assessed shed new light on LES
theory. Whereas the basic postulated inverse relationship be-
tween foliar N and LMA was mapped over significant portions of
the Amazon region, a weakening of the relationship was ob-
served at higher elevations as well as in multiple lowland forest
settings. Substrate type and elevation (temperature) proved to be
the strongest determinants of the N–LMA relationship, which
was further mediated by other climatic and geophysical factors.
This finding suggests that environmental filters generate more
diverse ecosystem-scale physiological trade-offs than can be

captured in a universal leaf N–LMA interaction. In our case, the
three-way interaction between N, P, and LMA observed through-
out the study region was more indicative of multinutrient limi-
tation of leaf construction cost and strategy, which has been
proposed in some LES literature (1, 51). Although we did not
remotely sense photosynthesis or its underpinning physiological
components (but see ref. 52), variable N–P–LMA interactions
likely reflect similarly variable nutrient-photosynthesis relation-
ships (53, 54). We emphasize again that other nutrients, such as
Ca, which cannot yet be measured well enough over large scales
with imaging spectroscopy, are known correlates with leaf con-
struction cost in tropical forests (21). A multinutrient LES ge-
ography will likely need be extended to these essential elements
in future mapping studies when they are more accurately de-
tectable via remote sensing.
Beyond LES theory, functional traits are generally thought to

be indicative of evolved plant adaptations to prevailing envi-
ronmental conditions (55). In humid tropical forests, plant
functional trait geography is also reflective of the assembly of
species adapted to particular abiotic settings. For example, ele-
vation and substrate sort both the composition (56) and func-
tioning (21) of the tree canopy in Andean–Amazon forests,
which in turn suggests that the hypothesis of neutral assembly
(57) does not hold up at broad ecological scales in regions like
the western Amazon. Why does this matter? Evolution and ad-
aptation of functional traits mediating plant growth and survival
under particular environmental conditions may generate limits
to acclimation or migration in the face of rapid climate change.
Others have similarly hypothesized the existence of such limits to
functional plasticity (58), but the geography of potential trait
adaptations have remained difficult to assess until now. Through
our approach, key canopy foliar traits can now be quantitatively
mapped, providing a functional biogeographic template against
which to assess change, or the lack of change, over time.
To our knowledge, our study is the first to quantify the di-

rection, strength, and geography of LES trait interactions at
biospheric scales. Creating this functional biogeography provides
an opportunity to improve our understanding of diverse controls
on primary productivity, decomposition, and other fundamental

Fig. 5. (A–C) Changes in mean and SE (vertical bars) of N, P, and LMA with
elevation for the entire Andes–Amazon study region. Elevation bands used
to compile the results are listed at the bottom of the figure.

Fig. 6. (A–C) Relationships between forest canopy foliar N, P, and LMA in
discrete elevation bands throughout the Andes–Amazon study region.
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biospheric processes. In tropical forest regions, for example, it is
generally said that P limits productivity on highly weathered
soils, such as those found in humid lowland settings (37, 59). In
submontane to montane tropical settings, relative nutrient limita-
tion may shift more to N or Ca (21, 26). Despite these basic
prognostications, the relative strength and adaptation of the forest
canopy to N, P, or cation supply remains poorly known at any
ecological scale. The ability to map and assess N:P ratio and similar
metrics provides a biogeophysically explicit basis upon which to
assess previous or plan future field studies to test the role of nutrient
limitation in mediating ecological processes. Similarly, these maps
can serve as new input to the next generation of ecosystem, dynamic
vegetation, and climate models, which are beginning to rely on LES
traits and their interrelationships to simulate vegetation responses
to environmental change (6, 60, 61). Future airborne, and perhaps
space-based, studies of LES traits will open new doors to un-
derstanding and modeling the functional assembly of the biosphere
and its responses to climate change.

Methods
Airborne Canopy Trait Sampling. We sampled the study region in 2012–2013
using the Carnegie Airborne Observatory (CAO) Airborne Taxonomic Map-
ping System (AToMS) (62). Prestratification of the region was carried out to
ensure a spatially robust acquisition of airborne samples relative to a surface
geology map (63), digital elevation model from the NASA Shuttle Radar
Topography Mission (SRTM), and a forest ecosystems map of Peru (64) (Fig. 1
and Fig. S1). These stratification maps were gridded into 100 × 100-km
sectors, and the CAO was flown to randomly sample an average 3% of each
classified stratum within each mapping sector (equating to about 30,000 ha
per 100 × 100-km sector). The airborne sampling totaled 2,045,379 ha.

CAO-AToMS instruments used for this study included a high-fidelity visible-
to-shortwave infrared (VSWIR) imaging spectrometer and a dual laser,
waveform LiDAR.We collected the data from an altitude of 2,000 m (±250m)
above ground level, an average flight speed of 60 m s−1, and a mapping
swath of ∼1,200 m. The VSWIR spectrometer measures spectral radiance in
427 channels spanning the 350- to 2,510-nm wavelength range in 5-nm in-
crements (full-width at half-maximum). The spectrometer has a 34° field-of-
view and an instantaneous field-of-view of 1 mrad. From 2,000 m above
ground level, the spectral data were collected at 2.0-m ground sampling dis-
tance, or pixel size, throughout each study landscape. The LiDAR has a beam
divergence of 0.5 mrad, and was operated at 200 kHz with 17° scan half-angle
from nadir, providing swath coverage similar to the spectrometer. The LiDAR
point density was four laser shots per m−2. The total number of spatially unique
spectral and LiDAR samples was 5.11 and 20.45 billion, respectively.

The LiDAR data were used to precisely geolocate the spectral data, and to
provide a means to mask out canopy gaps and shadows, land use, water, and

exposed soil in the spectral data. To achieve this end, the laser ranges were
combined with embedded high-resolution Global Positioning System-Inertial
Measurement Unit data to determine the 3D locations of laser returns, producing
a “cloud” of LiDAR data. The LiDAR data cloud consists of a very large number of
georeferenced point elevation estimates, where elevation is determined relative
to a reference ellipsoid. We used these points to interpolate a raster digital
terrain model (DTM) for the ground surface of each landscape, which was
achieved using a 10 × 10-m kernel, with the lowest elevation estimate in each
kernel assumed to be ground. Subsequent points were evaluated by fitting a
horizontal plane to each of the ground seed points. If the closest unclassified
point was <5.5° and <1.5-m higher in elevation, it was classified as ground. The
digital surface model (DSM) was based on interpolations of all first-return points.
Measurement of the vertical difference between the DTM and DSM yielded a
digital canopy model of vegetation height above ground.

The method for mapping of canopy foliar chemical traits and LMA was
developed and validated by Asner et al. (16). The method provides auto-
mated processing of imaging spectrometer datasets over large geographic
areas, while minimizing localized effects of varying sun-sensor-canopy ge-
ometry, inter- and intracrown shading, forest gaps, land use, and terrain-
related artifacts. A data-fusion approach, facilitated by the collection of
boresight-aligned spectral and LiDAR measurements, underpins the method,
as reported by Asner et al. (65). The approach removes pixels unsuitable for
sunlit canopy spectroscopic measurement, including noncanopy surfaces,
shaded canopy pixels, and pixels with low foliar content. To achieve this, the
LiDAR was used to measure the height of the vegetation within each
spectral pixel, and to model intercanopy shade between pixels. Only vege-
tation taller than 2 m in height was analyzed for canopy foliar traits. To
ensure that spectral pixels have sufficient foliar content, a minimum Normalized
Difference Vegetation Index threshold of 0.8 was also applied. Spectral pixels
that met these criteria were considered suitable for canopy trait analysis, and
those spectra were averaged at a mapping resolution of 1 ha.

Before conversion from spectra to canopy trait estimates, the spectral data
were radiometrically corrected from raw digital number values to radiance
(W sr−1/m−2) using a flat-field correction, radiometric calibration coefficients,
and spectral calibration data that had been collected in the laboratory be-
fore each flight campaign. The spectral data were precisely colocated to the
LiDAR data via a camera model that determines the 3D location and field-of-
view of each sensor element, and combines it with standardized timing in-
formation. A smoothed best estimate of trajectory, the LiDAR DTM, and the
camera model were then used to produce an image geometry model and
observational data containing information on solar and viewing geometry
for each image pixel. These inputs were used to atmospherically correct the
radiance imagery using the ACORN-5 model (Imspec LLC). To improve
aerosol corrections in ACORN-5, we iteratively ran the model with different
visibilities until the reflectance at 420 nm (which is relatively constant for
vegetated pixels) was 1%. Reflectance imagery was corrected for cross-track
brightness gradients using a bidirectional reflectance distribution function
modeling approach described by Colgan et al. (66). The imaging spectrom-
eter data were then orthorectified to the LiDAR digital canopy model.

Following thepreparationof the filtered1-ha resolution spectra,we convolved
thedata to 10-nmbandwidth and applied a brightness-normalization adjustment
(67). This reduced the contribution of varying leaf area index to chemometric
determinations of foliar traits from remotely sensed data (68). The resulting
spectra were trimmed at the far ends (400 nm, 2,500 nm) of the measured
wavelength range, as well as in regions dominated by atmospheric water vapor
(1350–1480, 1780–2032 nm) that blocks a spectral reflectance signal. We used
partial least-squares regression (69) to convert the 1-ha resolution spectral data
to foliar N, P, and LMA estimates using the method validated by Asner et al. (16).
The spectral dependence of N, P, and LMA is shown in Fig. S2. The partial least-
squares regression approach is beneficial because it uses the continuous spec-
trum as a single measurement rather than in a band-by-band type of analysis
(70, 71). Across 79 1-ha field plots in Peru, Asner et al. (16, 17) showed that LMA
could be retrieved with an uncertainty (root mean squared error or RMSE) of
11.8 gm−2 across a LMA range of 76–180mg g−1. The average uncertainty of leaf
N and P mapping was 0.30% and 0.02%, respectively (N range = 1.28–4.33%;
P range = 0.06–0.36% by mass).

Modeling.We used the Random Forest Machine Learning algorithm (RFML) (72)
to model the spatial relationship between 1-ha resolution LES traits derived
from airborne sampling and a suite of spatially extensive geophysical datasets
(Fig. 1). RFML fits multiple decision trees to input data (e.g., spatially coincident
environmental datasets) using a random subset of the input variables for each
tree constructed for a given response variable (e.g., airborne LES samples). The
modal value of the calculated decision trees is used to create an “ensemble”
tree that is used for prediction. RFML is nonparametric, relatively insensitive to

Fig. 7. Changes in the regression coefficient between forest canopy foliar N
and LMA (from Fig. 6A) with increasing elevation.
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data skew, and robust to a high number of variable inputs (73). This approach
has been used extensively to scale remotely sensed samples of forest structure
and biomass to regional and biome levels (e.g., refs. 74 and 75).

The environmental variables used in the RFMLmodels for each canopy trait
were taken from coaligned predictor spatial datasets (Fig. S3). We included a
geology map of Peru (63). We also used topographic variables derived from
NASA SRTM data at 90-m resolution: ground elevation, slope, and aspect. A
REM was also developed by calculating the height of the ground above the
nearest water body (75), thus providing a spatial proxy for vegetation-
related water resources. We also included MAP data derived from 12 y of
NASA Tropical Rainfall Measurement Mission observations, as well as long-
term (2000–2010) cloudiness data derived from the NASA Moderate Reso-
lution Imaging Spectroradiometer (MODIS). Cloudiness is based on the
number of times a MODIS pixel was identified as being affected by clouds in
the quality assurance flags of the 8-d reflectance product (76). We de-
veloped multiple potential incoming solar insolation models using SRTM
elevation data in the SAGA GIS Potential Insolation module (77). These in-
solation layers (units of kilowatt h/m2) were created by modeling total in-
solation (direct and diffuse) for the days of the equinoxes and solstices
(March 21, June 21, September 21, and December 21). We used Landsat
imagery with the CLASlite forest mapping system to define forest cover

throughout the region (78). Environmental data maps were resampled to
1-ha resolution, coaligned, and combined into a stack of predictor variables
covering Andean and Amazonian forests of Peru.

Model Verification. Seventy-nine 1-ha field plots (see ref. 16) were used to check
that the modeled canopy traits were in agreement with those estimated directly
from airborne imaging spectroscopy (Fig. S4). Results indicate that N, P, and LMA
area were modeled with relatively high precision and accuracy, as estimated via
R2 values and RMSE, relative to spectrometer-based estimates (N: R2 = 0.64,
RMSE = 0.12%; P: R2 = 0.67, RMSE = 0.01%; LMA: R2 = 0.92, RMSE = 3.5 g m−2).
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