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Fig. 1. Noise and activity cause stochastic cycle selection. (A-C) Flux-time traces (B) for each edge of the complete graph on four vertices, K4. Edge orientations

are as in A. The subdiagrams in C (i-iv) exemplify the flow state in the corresponding regions of the trace. Parameters are 1=2.5, =25, and ="' =0.05. (D-F) As in

A-C, but for the generalized Petersen graph P3,1. The same switching behavior

results, but now with more cycle states. See also Movie S1. (G) Survival function

S(t)=P(T > t) of the transition waiting time T for an edge in Ky, at regularly spaced values of 4 in 2 <A <3 with =25 and =" =0.05. Log-scaled vertical; straight
lines imply an exponential distribution at large t. (Inset) S(t) at small t with log-scaled vertical, showing nonexponential behavior. (H) Slow and (/) fast edge
transition rates in K4, with parameters as in G. Circles are from fitting 7 to a mixture of two exponential distributions, and lines show best-fit theoretical rates
k « 4 exp(—pAH) with AH calculated for transitions between 3- and 4-cycles (S/ Energy Barriers). (J) Transition rate k= (T)~" for each set of equivalent edges in P31,
as per the key, as a function of 4, with y =25, = =0.05. Log-scaled vertical shows exponential dependence on 1.

shows k43 and ks34 for Ky at a range of values of 4, as determined by
maximum likelihood estimation on simulation data. Our nonqua-
dratic potential means these rates are not precisely determined
by Eq. 4, but it does suggest an Arrhenius-type dependence
ke x Aexp(—pAH,,). Computing the energy barriers (SI Energy
Barriers) and fitting the proportionality constant for each of k34
and k43 then gives excellent fits to the data, confirming our hy-
pothesis (Fig. 1 H and I).

The complete graph K, has as much symmetry as is possible on
four vertices. This is unusual; most graphs have multiple classes of
equivalent edges. Although Ps; (Fig. 1D) is vertex transitive, in
that any vertex can be permuted to any other by its automorphism
group Aut(P3 ) =D X Cy, it is not edge transitive. Instead, the
edges split into two equivalence classes (Fig. 1/, Inset), one con-
taining the two triangles and the other containing the three edges
between them. The waiting times then cluster into two distinct dis-
tributions according to these two classes. However, when more than
two inequivalent minima exist, as they do for P;;, the potential
transitions rapidly increase according to the combinatorics of the
mutual accessibility between these minima. On P3, there is poten-
tially one rate for each pairwise transition between 4-, 5-, and 6-
cycles, leading to a mixture of six or more exponentials for the waiting
time distribution that cannot be reliably statistically distinguished
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without large separations of time scales. Instead, we compute the
transition rate k = (T)~" for each set of equivalent edges. The rates
decay exponentially with A (Fig. 1J), consistent with transitions
obeying Eqg. 4. But why does one set of edges transition more slowly,
on average, than the other? We shall now explore this question for
both highly symmetric and totally asymmetric graphs.

Edge Girth Determines Rate Band Structure. Global symmetries and
local graph structure play distinct roles when determining the
transition rates. Fig. 24 shows the edge state transition rates for
the first eight generalized Petersen graphs P, (47), averaged
within edge equivalence classes (Fig. 2B), at a representative
choice of parameter values that we fix henceforth to focus on the
effects of network topology. Inspection of Fig. 24 reveals that
there are some graphs, such as Pg,, that exhibit distinct classes
obeying near-identical average rates, despite these edges’ differing
global symmetries. These turn out to be edges with similar sizes of
cycles running through them.

When u >> J, state transitions will conserve flux throughout and
so take the form of adding or subtracting a unit of flux around an
entire Eulerian subgraph I cI. The energy barrier to such a
transition increases with the number of edges /1 in I'". Indeed, sup-
pose the transition consists of flipping a fraction p of the edges in I’
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Fig. 2. Transition rates in highly symmetric graphs are determined by cycle structure. (A) Transition rate for edges in the first eight generalized Petersen graphs
with 2=2.5, u=25, and =" =0.05. The rate was determined for each edge, and then averaged within classes of equivalent edges. Symbols denote the rate for
each class, categorized by e-girth ge as in the key. The range of computed rates within each class is smaller than the symbols. (B) The graphs in A with their edge
equivalence classes when more than one exists. Edges colors denote g, as in A. Observe that identical e-girth does not imply equivalence of edges.

from ¢ =0 to ¢ ==+1, with the remaining edges necessarily flipping
from ¢ =1 to ¢ =0. The transition can then be approximated by a
one-dimensional reaction coordinate s running from 0 to 1, as follows.
Suppose that only edges in I’ change during the transition (which is
approximately true for Ky; SI Energy Barriers). Using the symmetry of
V, the energy H(s) at point s of the transition is given by H(s) =
Hy+pmV (s)+ (1-p)mV (1 —s) for Hy a constant dependent on
the states of the edges not in I"". The energy barrier is then
AH =max,H (s) — H(0). H is maximized precisely when pl/(s) +
(1-=p)V (1 —s) is maximized, which is independent of 2. Therefore,
for fixed p, AH is linear in m. This argument suggests that, because
the transition rate k «x exp(—fAH ), edges contained in small cycles
should have exponentially greater transition rates than those with
longer minimal cycles. Define the e-girth g, to be the minimum
length of all cycles containing edge e, so that the usual graph
girth is the minimum e-girth. Categorizing edge classes in Fig. 2
by g. confirms our hypothesis: the transition rates divide into
near-distinct ranges where larger g, yields rarer transitions, and
equivalence classes with similar rates have identical e-girths.

Asymmetric Networks. Even for graphs with no symmetry, the be-
havior of each edge can still be predicted by a simple local heuristic.
For our purposes, a graph with no symmetry is one possessing only
the identity automorphism, in which case we say it is asymmetric
(45). In this case, edges can have transition rates entirely distinct
from one another. Fig. 34 depicts the mean transition rates for the
edges of 20 asymmetric bridgeless cubic graphs on 21 edges (SI
Numerical Methods), exemplified in Movie S2. As in Fig. 2, cate-
gorizing edges by their e-girths (illustrated in Fig. 3B for the starred
graph; see Fig. S4 for all 20 graphs) splits the rates into near-distinct
bands, despite the total absence of symmetry. However, the bands
are not perfectly distinct, and high-girth edges, in particular, display
a range of transition rates both within and across graphs. A large
portion of this variation is accounted for by considering the sizes of
all cycles containing an edge. Although the full dependence is
highly complex, we can obtain a good transition rate estimate by
considering just two cycles. Let ¢; =g, and ¢, be the sizes of the two
smallest cycles through e. (It may be that ¢; =¢,.) Drawing on our
earlier argument for the transition rate of an m-cycle, suppose
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that flips of these two cycles occur independently with waiting
times 7; distributed exponentially at rates A; =yexp(—a¢;) for
constants «, y. The waiting time 7' =min{7}, 7>} for one of these
to occur is then exponentially distributed with rate A; + Ao.
Therefore, (T) = (A + Az) ™", and so the transition rate k= 1/(T) =
yG, where we have defined the girth-weighted rate

G =exp(—at;) +exp(—atz). [5]

Fitting k=yG to the data in Fig. 34 yields an exponent a=1.31.
This gives a strong match to the data (Fig. 3C): the different e-girth
categories now spread out along the fit line, showing that Eq. 5
yields an easily computed heuristic to estimate the transition rates
of edges in a given graph better than g, alone.

Discussion

Incompressible Limit. Thus far, we have been considering approxi-
mate incompressibility with ¢ > 2 but finite. We now pass to the
fully incompressible limit 4 — oo, which necessitates a change of flow
representation. In this limit, the dynamics of @ are constrained to
the null space ker D, and so ® must be decomposed using a basis of
ker D (SI Incompressible Limit). The most physically intuitive de-
composition uses a cycle basis comprising a nonorthogonal set of
unit flux cycles, so that each basis element corresponds to adding or
removing a unit of flux around a single cycle. Finite planar graphs, in
particular, possess a highly intuitive cycle basis. Fix a planar em-
bedding for I'. Let each {F, } be the component of anticlockwise flux
around each of the || — |V| + 1 nonexternal (finite) faces of I', and
define the flux about the external (infinite) face to be zero. The flux
on an edge is then simply the difference of the fluxes about its two
adjacent faces. In particular, let A = (4, ) be the matrix whose rows
are the cycle basis vectors, so that ¢, = FA . This implies Fy = Pyep,
for P=(AAT)™'A. The components F,, then obey

H
H v

dF,=—(PPT) oF,

2B dX oy, [6]

where H is the reduced energy H =AY eV (FaAee), and X, is a
vector of correlated Brownian noise with covariance matrix
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Fig. 3. Cycle structure determines edge transition rates in asymmetric graphs.
(A) Transition rate for each edge in 20 random asymmetric bridgeless cubic
graphs on 21 edges (S/ Numerical Methods). Markers denote e-girth ge as per
the key in C. Parameters are 1=2.5, y=25, and ' =0.05. (B) One of the
graphs in A, corresponding to the marked column (x). Edges are colored and
labeled according to ge. All 20 graphs are shown in Fig. S4. See also Movie S2.
(C) Transition rates k from A binned by girth-weighted rate G, using best-fit
value a=1.31, with markers denoting g. as per the key. Horizontal error bars
are range of marker position over 95% confidence interval in @, and vertical
error bars are +1 SD in k within each group. Solid line is best fit k=yG, and
dashed lines are 95% prediction intervals on k with « fixed.

PPT =(AAT)™". Now, A4, is nonzero only when edge e borders face
a, and is then +1 or —1 depending on the orientation of the edge
relative to the face. Therefore, A is all but one row of the incidence
matrix of the planar dual of I', where the missing row is that corre-
sponding to the external face, meaning L= AAT is the Laplacian on
vertices of the dual (its Kirchhoff matrix) with the row and column
corresponding to the external face deleted. Thus, the independent
edge noise turns into correlated noise with covariance L', which is
typically nonzero almost everywhere. In other words, flux conserva-
tion means that the noise on one edge is felt across the entire graph.

Example. Fig. 4 shows an integration of Eq. 6 for an embedding
of the graph P4, (Fig. 2), the cube, whose covariance matrix L s
nonzero everywhere (SI Incompressible Limit and Fig. S2). [In fact,
the dual of a polyhedral graph is unique (48).] Note that the F, need
not only fluctuate around states {—1,0,1}, as seen in Fig. 4 when a
state with Fs =+2 is attained. The constraint now is that the differ-
ence F, — Fj between adjacent faces a and # must be near {—1,0,1},
as this is the flux on the shared edge. Here, the central face Fs can
assume =2 if its neighbors are all +1. In general, a face of minimum
distance d to the external face, which is constrained to zero flux, can
be metastable at values up to +d if all its neighbors are at +(d —1).
A further example on a 15 x 15 hexagonal lattice is given in Fig. S5.

Low Temperature Limit and Ice-Type Models. Similar to how a lattice
¢* theory generalizes the Ising model (41), on a regular lattice, our
model in the incompressible limit gives a lattice field theory gen-
eralization of ice-type or loop models (42-44). Instead of there
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being a finite set of permitted flow configurations at each vertex, we
now have a continuous space of configurations. Taking the low
temperature limit 1 — co then recovers a discrete vertex model
with ¢; € {-1,0,1}, where allowed configurations must be maximally
flowing; thus, for example, a square lattice yields the six-vertex ice
model (42). For general T', the 1 — oo limit can be understood as a
form of random subgraph model (49), where the ground states are
flows on maximum Eulerian subgraphs that are selected uniformly
with a multiplicity of two for either orientation of every subcycle. On
a cubic graph, a subset of the ground states are the Hamiltonian
cycles (cycles covering every vertex exactly once), if they exist, be-
cause a maximally flowing state will have two out of every three
edges at every vertex flowing. The expected number of Hamiltonian
cycles on a cubic graph grows like |V|_1/2(4/3)‘W2 as |V| - oo (50),
meaning large cubic graphs possess a huge number of ground states.

Complex Networks. We have focused on small regular graphs, but
the dynamical principles presented here will still apply to active
flow on complex networks. The edges in a large random graph
typically exhibit a wide distribution of e-girths, where topologically
protected edges, whose e-girth is large enough to prevent them ever
changing state within a realistic observation window, coexist with
frequently switching edges of small e-girth. In fact, graphs drawn
from distributions modeling real-life network phenomena (13, 14)
seem to have far more small e-girth edges than their fixed degree or
uniformly random counterparts (SI Complex Networks and Fig. S3).
Furthermore, although large random graphs are almost always
asymmetric (45), many real-life complex networks have very large
automorphism groups (51), meaning that, as in Fig. 2, there will be
large sets of edges in such a network with identical transition rates.
Active flow on complex networks can therefore be expected to
display a rich phenomenology of local and global state transitions.

Conclusions

Our analysis shows that the state transition statistics of actively
driven quasi-incompressible flow networks can be understood
by combining reaction rate theory with graph-theoretic sym-
metry considerations. Furthermore, our results suggest that non-
equilibrium flow networks may offer new insights into ice-type
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Fig. 4. Incompressible flow on planar graphs can be represented using a face-
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models and vice versa. The framework developed here offers
ample opportunity for future generalizations from both a bio-
physical and a transport optimization perspective. For example,
an interesting open biological question concerns how plasmodial
organisms such as Physarum (3, 6, 7) adapt and optimize their
network structure in response to external stimuli, such as light or
nutrient sources or geometric constraints (52, 53). Our investigation
suggests that a combined experimental and mathematical analysis of
cycle structure may help explain the decentralized computation
strategies used by these organisms. More generally, it will be in-
teresting to explore whether similar symmetry-based statistical ap-
proaches can guide the topological optimization of other classes of
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nonequilibrium networks, including neuronal and man-made in-
formation flow networks that typically operate far from equilibrium.

Materials and Methods

Egs. 2 and 6 were integrated by the Euler-Maruyama method (54) with time
step 6t =5 x 10~3. Mathematica (Wolfram Research, Inc.) was used to generate
and analyze all graphs. For full details, see S/ Numerical Methods. All data are
available on request.
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