Widespread collapse of the Ross Ice Shelf during the late Holocene

Yusuke Yokoyama,a,b,c,1 John B. Andersond, Masakos Yamaneac, Lauren M. Simkinse, Yusuke Miyairif, Takahiro Yamazakip,b, Mamito Koizumib,h, Hisami Sugac, Kazuya Kusaharad, Lindsay Prothrod, Hiroyasu Hasumia, John R. Southond, and Naohiko Okhoud

Edited by Mark H. Thiemens, University of California at San Diego, La Jolla, CA, and approved January 15, 2016 (received for review August 25, 2015)

The stability of modern ice shelves is threatened by atmospheric and oceanic warming. The geologic record of formerly glaciated continental shelves provides a window into the past of how ice shelves responded to a warming climate. Fields of linear iceberg furrows on the outer, western Ross Sea continental shelf record an early post-Last Glacial Maximum episode of ice-shelf collapse that was followed by continuous retreat of the grounding line for ∼200 km. Runaway grounding line conditions culminated once the ice shelf became pinned on shallow banks in the western Ross Sea. This early episode of ice-shelf collapse is not observed in the eastern Ross Sea, where more episodic grounding line retreat took place. More widespread (∼280,000 km2) retreat of the ancestral Ross Ice Shelf occurred during the late Holocene. This event is recorded in sediment cores by a shift from terrigenous glacimarine mud to diatomaceous open-marine sediment as well as an increase in radiogenic beryllium (10Be) concentrations. The timing of ice-shelf breakup is constrained by compound specific radiocarbon ages, the first application of this technique systematically applied to Antarctic marine sediments. Breakup initiated around 5 ka, with the ice shelf reaching its current configuration ∼1.5 ka. In the eastern Ross Sea, the ice shelf retreated up to 100 km in about a thousand years. Three-dimensional thermodynamic ice-shelf/ocean modeling results and comparison with ice-core records indicate that ice-shelf breakup resulted from combined atmospheric warming and warm ocean currents impinging onto the continental shelf.

Ice shelves are among the most rapidly changing elements of the modern cryosphere, due to their internal weaknesses, atmospheric warming, and melting from beneath by warm ocean currents. In the northern Antarctic Peninsula, accelerated atmospheric warming is the principle cause of ongoing ice-shelf retreat (1, 2), and collapse of the Larsen Ice Shelf has resulted in rapid retreat of tidewater glaciers flowing into the ice shelf (2, 3). Farther south in Pine Island Bay, thermal erosion of the floating terminus of Pine Island Glacier by impinging Circumpolar Deep Water (CDW) results in basal melt rates of 6–12.5 m·yr−1 and is causing rapid grounding line retreat that poses a threat of ice-stream collapse in the foreseeable future (4, 5). Geological evidence for ice-shelf collapse has been reported for Marguerite Bay in the southern Antarctic Peninsula (6, 7) and in Pine Island Bay in West Antarctica (8, 9), but the timing and rate of these events are poorly constrained.

The modern Ross Ice Shelf is the largest ice shelf on Earth, covering an area of ∼500,000 km2. It provides a buttress to the outflow of several large outlet glaciers and ice streams that drain the West Antarctic ice sheet (WAIS) and East Antarctic Ice Sheet (EAIS) and thus plays a crucial role in ice-sheet stability (10, 11). Here we report compelling geomorphological, sedimentological, and geochemical evidence for widespread retreat of the Ross Ice Shelf at ∼5 ka to 1.5 ka. Modeling results and comparison with ice-core records indicate that ice-shelf breakup was triggered by oceanic and atmospheric warming.

Results and Discussion

Geological and Geochemical Reconstructions of Past Ice Shelf. During the Last Glacial Maximum (LGM), a much expanded ice sheet extended across the Antarctic continental shelf (12, 13). In the Ross Sea, the LGM ice sheet left its mark on the sea floor in the form of spectacular subglacial geomorphic features, including drumlinoids and megascale glacial lineations and subglacial deposits (till), which have been sampled in many sediment cores across the shelf (14). These combined results demonstrate that the LGM ice sheet was nourished more or less equally by the WAIS and EAIS. Timing of ice shelf retreat since the LGM remains controversial due to limited age constraints (15–22).

Newly acquired (NBP1502A; NBP indicates the research ship Nathaniel B. Palmer) high-resolution multibeam swath bathymetry data from the outer continental shelf in the western Ross Sea reveal fields of iceberg furrows that are concentrated in water depths around ∼560 m (Fig. 1B). These features mark an early episode of ice-shelf collapse when the calving line reached the grounding line. Back-stepping grounding line marginal features, including grounding zone wedges and recessional moraines, extend continuously southward for nearly 200 km within the JOIDES Trough and indicate “runaway” grounding line conditions following ice-shelf collapse (Fig. 1C). A single radiocarbon age from core NBP 01502A-KC48 in outer JOIDES Trough (Fig. 1A) constrains this initial ice-shelf collapse to 1.5 ka.

Significance

The Ross Sea is a major drainage basin for the Antarctic Ice Sheet and contains the world’s largest ice shelf. Newly acquired swath bathymetry data and sediment cores provide evidence for two episodes of ice-shelf collapse. Two novel geochemical proxies, compound specific radiocarbon dating and radiogenic beryllium (10Be), constrain the timing of the most recent and widespread (∼280,000 km2) breakup as having occurred in the late Holocene. Three-dimensional ice-shelf/ocean modeling results and comparison with ice-core records indicate that oceanic and atmospheric warming caused ice-shelf collapse.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Freely available online through the PNAS open access option.

1To whom correspondence should be addressed. Email: yokoyama@ao.u-tokyo.ac.jp.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1516908113/-/DCSupplemental.
features curve around and migrate up the flanks of the bank (Fig. 1A). Western Ross Sea (WRS), Ross Ice Shelf (RIS), South Drygalski Trough (SDT), Victoria Land Basin (VLB), Drygalski Trough (NDT), Pennell Bank (PB), Pennell Trough (PT), Ross Bank (RB), and gravel with little or no biogenic material or organic carbon. They display little stratigraphic variability in texture and composition within individual cores.

Till and proximal glacial marine sediments are overlain by a thin (0–30 cm) mud unit with subtle grain size sorting, isolated occurrences of foraminifera, no diatoms, and only minor concentrations of ice-rafted material. We interpret this as a subice shelf deposit (16, 24). Resting above, and typically in sharp contact with, subice shelf sediments are diatomaceous sediments that contain variable concentrations of ice-rafted material, higher organic carbon, diatoms, and foraminifera. The contact between subice shelf and diatomaceous sediments marks the retreat of the ice shelf and the onset of open marine conditions. Analysis of cores collected during NBP cruises revealed that diatomaceous sediments extend across Ross Sea but are thickest on the outer, western continental shelf (Fig. 1A). This thickness trend is consistent with geomorphic evidence for an early phase of ice shelf retreat on the outer, western continental shelf.

Unfortunately, Ross Sea sediments are notoriously lacking in carbonate material needed for radiocarbon dating and AIO (acid insoluble organic) bulk radiocarbon dating is seriously biased by old (radiocarbon dead) carbon that is ubiquitous in Ross Sea sediments (14–18). As a result, prior attempts to constrain the timing of ice-shelf retreat and onset of open marine conditions have met with limited success.

Using select cores from the Ross Sea (Table S1), we measured 10Be concentrations to further document ice-shelf breakup and compound-specific (CS) radiocarbon ages to constrain the timing of ice-shelf collapse (Materials and Methods, SI Materials and Methods, and Tables S2 and S3). Eastern Ross Sea cores show an abrupt down-core change in 10Be concentrations, which is associated with a sharp contact between diatomaceous and terrigenous glacimarine sediments (Fig. 2 and Fig. S1). Core KC11, the most offshore site, displays a dramatic increase in 10Be concentration ($0.33 \pm 0.15 \times 10^{6}$ to $3.40 \pm 0.30 \times 10^{6}$ atoms 10Be per g) at 18-cm depth in the core, which is accompanied by a rapid increase in the abundance of diatom frustules (Fig. 2A and Fig. S2). This change occurred at ∼5 ka, based on our CS radiocarbon chronology (Table S3), and is interpreted to indicate the timing of ice-shelf retreat landward of the core site. A similar but more gradual transition is observed in core TC07, recovered from the middle shelf. At this site, 10Be concentrations started to increase at about 4 ka (Fig. 2B and Fig. S2). The low concentration of 10Be found in the lower sections of these cores implies (i) the last exposure of these sediments occurred before the Quaternary and inherited 10Be has nearly completely decayed and (ii) there was little 10Be advection under the ice shelf from the open ocean. Because inherited 10Be is transported by glacial processes to the subice shelf environment, we argue that these sediments also contain abundant “old carbon” (i.e., >50,000 yr old) similar to tills.

Core TC04 was recovered closest to the modern ice-shelf margin (Fig. 1A) and contains in excess of 0.25×10^{6} atoms 10Be per g in the shallower section (<9-cm depth in core), whereas low, constant 10Be concentrations occur below that depth and indicate subice conditions (Fig. 2C). Although only one CS radiocarbon date is available for this core, the results indicate that the Ross Ice Shelf had retreated south of this location by 1.5 ka.

In the western Ross Sea, 10Be concentrations and CS ages acquired from three cores (TC17, TC31, and GC1604; Fig. 3 and Fig. S3) are used to constrain the onset of open marine conditions. Core TC31 sampled the upper part of the transitional contact between subice shelf and diatomaceous sediments, based on correlation with associated piston core PC31. CS radiocarbon ages indicate that the calving line of the ice shelf retreated across this site at ∼5ka (Fig. 3).

Core TC17 sampled only open marine deposits, but based on correlation with associated piston core PC17 it bottomed-out just above the contact between diatomaceous sediments and subice...
Controls on Ice-Shelf Collapse. To date, work has yielded no direct evidence of why the ice shelf retreated from the Ross Sea continental shelf. We use a recently developed 3D thermodynamic ice-shelf model (27) that addresses oceanographic influence on ice-shelf instability. Temperature records from ice cores are used to assess the influence of atmospheric warming on ice-shelf retreat in the mid-to-late Holocene.

The numerical model calculates 3D ocean circulation and the ice shelf–ocean thermal interaction under a fixed ice-shelf configuration and is used to estimate basal melt rates of the Ross Ice Shelf with a 15-km horizontal grid spacing. When run under the present-day configuration (ocean bathymetry, ice front line, grounding line, and ice shelf draft and climatological atmospheric condition), this model reasonably reproduces modern melt rates for all of the ice shelves fringing the Antarctic continent. Past melt rates are calculated at four stages of ice-shelf retreat, listed using the ice front (i.e., calving line) and grounding lines indicated therein (Fig. 5). Ice-shelf thickness is assumed to be 200 m and 450 m within 50 km and outside of 500 km, respectively, from the ice front and changes linearly in between. Atmospheric conditions for these runs are the same as in the present-day run. We perform a 30-y simulation for each experiment. After ∼15 y, modeled basal melting of the ice shelf reaches a quasi-steady state, and thus we use the model results averaged over the last 5 y.

There are primarily three types of water in the Ross Sea including shelf water (SW), CDW, and Antarctic surface water (AASW). SW is produced during the winter due to brine rejection in near-freezing or freezing surface water. CDW is converted to AASW, which is a low-salinity water mass. Among these water masses, CDW and MCDW have the highest

shelf sediments. It therefore provides a minimum age constraint for ice-shelf collapse at ∼5 ka (Table S3), consistent with late Holocene AIO ages from this core (Fig. 3B).

Core GC1604 records onset of open marine conditions in the westernmost Ross Sea (Fig. L4). It sampled the ice-shelf retreat surface, which is manifest as an abrupt increase in 10Be at 155 cm. CS radiocarbon ages for this core indicate onset of open marine conditions at ∼8 ka (Fig. 3C). The earlier timing of ice-shelf collapse suggests that an embayment existed in the ice front along the North Victoria Land coast. This is consistent with radiocarbon dates from shell, seal skin, and penguin remains from nearby Terra Nova Bay that indicate ice-free conditions by ∼8.2 cal ka B.P. (25) and the initiation of beach formation at ∼7 ka due to sufficient coastal wave energy resulting from reduced sea-ice cover (26).

CS age determinations on bank cores were not possible due to limited material available for dating. AIO ages of diatomaceous sediments from Pennell Bank (KC22) and Cray Bank (KC44) in the western Ross Sea (Fig. L4) are both ∼6.5 cal ka B.P. (uncorrected for surface age). Using commonly reported surface corrections for AIO ages (∼2–4.5 ky; e.g., ref. 16), suggests that open marine conditions on the banks were established in the late Holocene, which is consistent with our CS ages from the other cores, with the exception of core GC1604.

The stages of grounding line and ice-shelf retreat in the western Ross Sea are illustrated in Fig. 4.
temperature and the greatest potential for causing basal melting of the ice shelf (28).

The ratios of temperature and total volume transport of inflowing water masses for each experiment are shown in Fig. S4. More warm water reaches the subice shelf cavity when the grounding line is located in a more seaward location. The results of our modeling effort suggest that the melting rate at the bottom of the Ross Ice Shelf was ca. 180 Gt yr⁻¹, equivalent to ca. 1.5 times larger than present basal melt estimated in the control run (i.e., present case: Fig. S4). The most pronounced ice-shelf melting occurs in the western Ross Sea due to warmer CDW, a consequence of shorter residence time of MCDW on the continental shelf. In fact, analysis aimed at estimating subice shelf water temperatures during the Holocene indicate much warmer water beneath the ice shelf at 5 ka compared with the present Fig. S4 (SI Materials and Methods), consistent with widespread ice-shelf collapse across the Ross Sea.

Ice core δ¹⁸O records from the EAIS suggest that Holocene warming occurred around 8 ka (29). In contrast, the Byrd δ¹⁸O record from West Antarctica shows a rapid increase in atmospheric temperatures of about 2 °C at around 4.5 ka. This perhaps reflects differences in local ice thickness or changes in the moisture source (30, 31). However, the Siple Dome ice core contains abundant melt layers that began to increase in frequency around 7 ka and became more prominent by 4 ka, suggesting elevated summer air temperature during the late Holocene (32). The timing of final collapse of the ancestral Ross Ice Shelf is consistent with rapid thinning of an EAIS outlet glacier initiating at ~7 ka followed by gradual thinning well into the late Holocene (33). Additionally, these observations are consistent with glaciological observations at Roosevelt Island that indicate division of flow around the island followed by thinning of ~9 cm yr⁻¹ since ~4–3 ka (34, 35). Thus, ice-shelf retreat in the Ross Sea is consistent with ice-core records of atmospheric warming in the region. Timing of ice-shelf retreat observed here is also well correlated with far-field Holocene sea level records (36–38). Further CS radiocarbon age constraints of grounding-line retreat and ice-shelf collapse around Antarctica will help identify the relationship and phasing of regional and global climate, oceanographic, and sea-level variations in the late Pleistocene and Holocene.

Conclusions

The geologic record provides compelling evidence of widespread and rapid ice-shelf retreat in the Ross Sea. An early episode of ice-shelf collapse was confined to the outer continental shelf of the western Ross Sea and was followed by an episode of continuous grounding-line retreat. This was followed by an extended period when an ice shelf covered the entire eastern continental shelf and most of the western shelf. Newly acquired ¹⁰Be measurements and diatom abundances from select cores provide supporting evidence for ice-shelf retreat and CS radiocarbon ages constrain the onset of the most widespread retreat as occurring at ~5 ka. Modeling results coupled with ice-core temperature records indicate that ice-shelf collapse was caused by combined atmospheric warming and warm ocean currents impinging on the continental shelf. Initial ice-shelf retreat in the western Ross Sea was slowed by the stabilizing effect of shallow banks; however, the modern ice shelf has fewer pinning points than its late Holocene predecessor, making it more vulnerable to climate and oceanographic influences. The sensitivity of the Ross Ice Shelf in the late Holocene to atmospheric and oceanic warming suggests modern accelerated warming may lead to instabilities in the modern ice shelf.

Materials and Methods

Carbonate material in Ross Sea sediments is sparse and AIO fraction ages have proven unsuitable for constraining ice-shelf retreat and the onset of open-marine conditions. Ross Sea sediments are known to contain enough old carbon (radiocarbon dead) to seriously bias AIO ages, especially terrigneous components of glacimarine sediments (14–18, 34). To more accurately determine the marine fractions of glacimarine sediments and better constrain ice-shelf retreat, we used CS radiocarbon dating of C14, C16, and C18 fatty acids isolated from the bulk sediment in six cores, three from the eastern Ross Sea and three from the western Ross Sea (Fig. 1A and Table S1). Although these compounds are derived from various organisms, they contain very little relic organic matter due to rapid decomposition (39). Thus, CS radiocarbon dating can provide accurate ages that are unaffected by reworked organic material from interior Antarctica.

We further measured the concentration of cosmogenic ¹⁰Be (half-life of 1.387 My) in the sediments to identify the timing of ice-shelf edge retreat across the core locations. Following ice-shelf retreat, atmospherically produced ¹⁰Be, which quickly attaches to ambient aerosols, immediately begins to accumulate at the seafloor. This proxy was first applied to sediment taken from underneath the WAIS and revealed that the Ross Embayment previously experienced open-marine conditions (40). Subsequent systematic analysis reveals a significant difference in seafloor ¹⁰Be concentrations, depending on whether the site was covered by a permanent floating ice canopy (41). Thus, down-core ¹⁰Be variations are a proxy for reconstructing ice-shelf retreat.

Fig. 4. Schematic illustration of events described in the text. (A) During the LGM the ice sheet and associated ice shelf extends across the outer continental shelf. A grounding zone wedge marks the LGM grounding line position. Subice shelf deposits contain rare foraminifera but lack diatoms and ¹⁰Be. Diatoms and ¹⁰Be in sediments indicate seasonally open-marine conditions. Subice shelf water temperatures during the Holocene indicate much warmer water beneath the ice shelf at 5 ka compared with the present Fig. S4 (SI Materials and Methods), consistent with widespread ice-shelf collapse across the Ross Sea. (B) The ice core δ¹⁸O records from the EAIS suggest that Holocene warming occurred around 8 ka (29). In contrast, the Byrd δ¹⁸O record from West Antarctica shows a rapid increase in atmospheric temperatures of about 2 °C at around 4.5 ka. This perhaps reflects differences in local ice thickness or changes in the moisture source (30, 31). However, the Siple Dome ice core contains abundant melt layers that began to increase in frequency around 7 ka and became more prominent by 4 ka, suggesting elevated summer air temperature during the late Holocene (32). The timing of final collapse of the ancestral Ross Ice Shelf is consistent with rapid thinning of an EAIS outlet glacier initiating at ~7 ka followed by gradual thinning well into the late Holocene (33). Additionally, these observations are consistent with glaciological observations at Roosevelt Island that indicate division of flow around the island followed by thinning of ~9 cm yr⁻¹ since ~4–3 ka (34, 35). Thus, ice-shelf retreat in the Ross Sea is consistent with ice-core records of atmospheric warming in the region. Timing of ice-shelf retreat observed here is also well correlated with far-field Holocene sea level records (36–38). Further CS radiocarbon age constraints of grounding-line retreat and ice-shelf collapse around Antarctica will help identify the relationship and phasing of regional and global climate, oceanographic, and sea-level variations in the late Pleistocene and Holocene.

Conclusions

The geologic record provides compelling evidence of widespread and rapid ice-shelf retreat in the Ross Sea. An early episode of ice-shelf collapse was confined to the outer continental shelf of the western Ross Sea and was followed by an episode of continuous grounding-line retreat. This was followed by an extended period when an ice shelf covered the entire eastern continental shelf and most of the western shelf. Newly acquired ¹⁰Be measurements and diatom abundances from select cores provide supporting evidence for ice-shelf retreat and CS radiocarbon ages constrain the onset of the most widespread retreat as occurring at ~5 ka. Modeling results coupled with ice-core temperature records indicate that ice-shelf collapse was caused by combined atmospheric warming and warm ocean currents impinging on the continental shelf. Initial ice-shelf retreat in the western Ross Sea was slowed by the stabilizing effect of shallow banks; however, the modern ice shelf has fewer pinning points than its late Holocene predecessor, making it more vulnerable to climate and oceanographic influences. The sensitivity of the Ross Ice Shelf in the late Holocene to atmospheric and oceanic warming suggests modern accelerated warming may lead to instabilities in the modern ice shelf.

Materials and Methods

Carbonate material in Ross Sea sediments is sparse and AIO fraction ages have proven unsuitable for constraining ice-shelf retreat and the onset of open-marine conditions. Ross Sea sediments are known to contain enough old carbon (radiocarbon dead) to seriously bias AIO ages, especially terrigneous components of glacimarine sediments (14–18, 34). To more accurately determine the marine fractions of glacimarine sediments and better constrain ice-shelf retreat, we used CS radiocarbon dating of C14, C16, and C18 fatty acids isolated from the bulk sediment in six cores, three from the eastern Ross Sea and three from the western Ross Sea (Fig. 1A and Table S1). Although these compounds are derived from various organisms, they contain very little relic organic matter due to rapid decomposition (39). Thus, CS radiocarbon dating can provide accurate ages that are unaffected by reworked organic material from interior Antarctica.

We further measured the concentration of cosmogenic ¹⁰Be (half-life of 1.387 My) in the sediments to identify the timing of ice-shelf edge retreat across the core locations. Following ice-shelf retreat, atmospherically produced ¹⁰Be, which quickly attaches to ambient aerosols, immediately begins to accumulate at the seafloor. This proxy was first applied to sediment taken from underneath the WAIS and revealed that the Ross Embayment previously experienced open-marine conditions (40). Subsequent systematic analysis reveals a significant difference in seafloor ¹⁰Be concentrations, depending on whether the site was covered by a permanent floating ice canopy (41). Thus, down-core ¹⁰Be variations are a proxy for reconstructing ice-shelf retreat.
methyl esters (FAMEs) with phy of the methylated acidic fraction was used to separate the fatty acid acidic fraction was esterified with HCl/MeOH. Silica gel column chromatography conditions to remove impurities introduced during HPLC. The C14, C16, and C18 FAMEs can be eluted with n-hexane/CH2Cl2 (2:1, vol/vol). An aliquot of the silica gel elute (up to 1% of the total amount) was transferred to another vial, concentrated, and examined using GC/MS and NMR to evaluate the purity of the target FAMEs.

Typically 30–110 μg of C14–C18 FAMEs were collected and converted to graphite (Table S2). Target graphite samples were then measured at the W. M. Keck Carbon Cycle Accelerator Mass Spectrometry facility at the University of California, Irvine. Radiocarbon for total organic matter was measured at the accelerator MS facility of the University of Tokyo (42). All radio-carbon values were corrected for the contribution of methyl carbon obtained from MeOH (Δ14C = −991‰) during the esterification by isotope mass balance. We have monitored the blank by various methods including gas chromatography, NMR, and elemental analyses. NMR spectroscopy using a 1-mm microcoil NMR probe should be useful for detecting contaminants (10 μg or less), such as compounds whose molecular weight is greater than 600 Da. As demonstrated in Fig. 55, a proton NMR spectrum of C-16 FAME (61 μg) isolated from the sediment with the method described in the paper shows that all spectra can be assigned to either from C-16 FAME or NMR solvent and did not observe peaks originating from other compounds. Therefore, impurities should be lower than the detection limit of NMR spectroscopy (less than ca. 1 μg).

Parallel blank experiments were conducted simultaneously with the samples using identical procedures, including solvent extraction, liquid-liquid extraction, silica gel column chromatography, and derivatization (i.e., methyl esterification). During these blank experiments, we observed two major fatty acids in the gas chromatography analysis. They are C16 fatty acid (palmitic acid) and C18 fatty acid (stearic acid). We quantified these peaks and found that the total amount of these fatty acids is ca. 0.2 μg C on average. This amount corresponds to only 0.2–0.7% of the actual sample size for radiocarbon dating (cf. 30–110 μg C). Assuming that the real sample age is 5,000 y B.P., and that the blank level is 0.2 μg C, the resulting error is ±0.7% of the total sample size, such as either modern or 14C-dead, such a low blank level should shift age younger or older only by 100 y. Thus, we conclude that chemical extraction step blank will not have a significant effect on the results presented here. Graphite sample sizes are significantly correlated with the background, requiring correction of this effect. A correction was applied to each sample using the sample size/blank relationship obtained from measurement of IAEA-C4 (wood: Δ14C = −998.0 ± 955.6‰). Calibration of 14C ages was performed with CALIB 7.0 and the Marine13 calibration curve (43) with a total reservoir age of 1,300 ± 100 y (44, 45).
ACKNOWLEDGMENTS. We thank C. Sawada, M. Toyoda, M. Iwai, and H. Matsuizaki for laboratory assistance and S. Obrochta for discussion. This work was supported by National Science Foundation Polar Programs Grant 1. Scambos TA, Hulbe C, Fahnestock M, Bohnlander J (2000) The link between climate warming and break-up of ice shelves in the Antarctic Peninsula. J Glaciol 46:516–530.