










been recently reported, Angola is currently experiencing a large
outbreak of Yellow Fever transmitted by Ae. aegypti, and we
speculate, therefore, that this outbreak might also have been favored
by El Niño conditions. This finding raises additional concerns about
the impact of large El Niño events on VBD risk in a future warmer,
more connected world with increasing levels of drug and insecti-
cide resistance. Flaviviruses, in general, should have a promising
future (39).
Our results corroborate that Ae. aegypti, likely because of its

anthropophilic behavior and its aggressiveness, is a larger threat
than Ae. albopictus for ZIKV transmission worldwide. However,
the threat posed by Ae. albopictus is not negligible, especially during
the warm season in temperate regions, and the overlap of both
vector species produces the largest R0 values. Similarly, in Europe
in recent years, Ae. albopictus was responsible for a small number of
autochthonous cases of chikungunya and dengue in Italy, southern
France, and Croatia, whereas Ae. aegypti was responsible for more
than 2,000 cases of dengue on the island of Madeira in 2012 (40,
41). Consequently, there is a need to focus disease preparedness
measures or vector control interventions primarily in regions infested
by Ae. aegypti or where both vectors co-occur.
The simulated spatial distribution of ZIKV is similar to other

published estimates, which used environmental covariates and the
boosted regression tree method to estimate environmental suit-
ability for ZIKV at global scale (42) or a one-host, one-vector R0
modeling approach to derive attack rates for Latin America (43).
Our model framework further allowed for exploring of spatial and
temporal changes in potential disease risk. We showed the potential
of ZIKV transmission during boreal summer over the southeastern
states of the United States as previously considered by others (44).
Autochthonous transmission of ZIKV was observed in Florida
in the summer of 2016. However, only a few cases were reported
so far; because there is large proportion (80%) of asymptomatic
infections with ZIKV, more people might be infected without
showing any clinical signs.
There are several caveats in our modeling framework that need

to be mentioned. First, we did not consider sexual transmission of
ZIKV, because it likely plays a very minor role in the overall
amount of transmission. Second, we only considered the risk posed
by Ae. aegypti and Ae. albopictus, believed to be the main competent
vectors of ZIKV (and certain other arboviruses, such as dengue
and chikungunya viruses). However, other Aedes species can
transmit ZIKV locally (such as Ae. hensilli in Pacific islands and
Ae. africanus in parts of Africa). There is also a debate about the
capacity of the geographically widespread Culex quinquefasciatus
vector to transmit ZIKV (45–47). However, most recent studies are
showing poor or no competence of this species to transmit ZIKV.
Our model might, therefore, underestimate R0 in some localities
where vectors other than Ae. aegypti or Ae. albopictus are present.
Our mathematical framework can be readily extended to include
additional vectors, but limitations arise from the lack of detailed
distribution and epidemiological data for these species. There is an
urgent need for additional studies on vectors of ZIKV and their
distribution, abundance, and transmission parameters. Third, esti-
mates of vector to host ratios for Ae. aegypti and Ae. albopictus were
approximated from probability of occurrences, because they were
limited by the large spatial and temporal differences in published
field studies. Additional estimates of mosquito densities in different
demographic and geographic settings, preferably with standardized
methods (48), will be highly useful to improve and upscale mech-
anistic spatiotemporal risk models. ZIKV EIPs were approximated
by dengue virus estimates in our study, because they were similar in
high-temperature settings (7). Better estimates of the dependency
of the EIP of ZIKV to temperature, especially in the lower and
higher temperature tails of the distribution, will be highly valuable
for additional model refinement.
Our R0 model presents the risk of transmission given the in-

troduction of virus in a fully susceptibility population. It does not
address the potential of the pathogen and the vectors to spread via
tourism and trade or the risk of transmission in populations that
have already been exposed to ZIKV. Recent modeling work

suggests that the ZIKV epidemic in Latin America should be over
in 3 y maximum and that acquired herd immunity will likely cause a
delay of more than a decade until large epidemics reemerge (49).
India, China, Indonesia, the Philippines, and Thailand have been
estimated at risk for mosquito-borne ZIKV infection because of
the large volume of travelers arriving from affected areas in Latin
America (50). Furthermore, socioeconomic factors (such as health
service per capita, urbanization, and vulnerability indices) should
be included in assessments of the full impact of Zika in future
studies. Our model uses recently published studies by the medical,
biological, and entomological communities; it benefits from sta-
tistical (51) and mathematical (13) modeling techniques and recent
environmental datasets produced by the National Oceanic and
Atmospheric Administration (52, 53). This fact underlines the
importance of taking multidisciplinary approaches to address and
anticipate the health and food security challenges to come.

Materials and Methods
R0 Model Design. To calculate R0 for ZIKV transmission, we adapted the two
hosts–two vectors expression derived from ref. 13. This expression is suitable
for pathogens, including bluetongue virus, that have two main hosts and two
main vectors with different feeding preferences. In the case of ZIKV, there is
one main host (i.e., humans) capable of transmitting the virus. Therefore, we
prevented the second host from contracting and transmitting the infection.
However, because Ae. aegypti and Ae. albopictus feed to different extents on
humans, we retained the measures of feeding preference. In addition, because
infection with ZIKV is not associated with mortality, the standard pathogen-
induced mortality rate (d) was set to zero. The resulting expression is
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Rij is the average number of infectious vectors of type i produced by an infectious
vector of type j; one stands for Ae. aegypti, and two stands for Ae. albopictus. As
a result of the second host being noninfectious, the between-species terms R12
and R21 are eliminated from R0 (additional details are given in SI Appendix). In
fact, this expression for R0 is true for any number of hosts, providing that only
one of them is a true host (i.e., capable of transmitting the infection). Biting rates
(a), mortality rates (μ), and EIPs (eip = 1/ν) for both vector species are the only
parameters dynamically relying on temperature data. These dependencies to
temperature were calculated based on published evidence from the literature
(Table 1 and SI Appendix, Fig. S15). Vector preferences (ɸ), transmission proba-
bilities (from vector to host b and host to vector β), and ZIKV recovery rate (r)
were assumed to be constant, and they were derived from recently published
estimates for ZIKV or dengue virus if they were not available (Table 1).

Vector to host ratios (m1 andm2) were derived from published probability of
occurrence (prob1 and prob2) at global scale (51). Given the large differences in
mosquito density estimates published in the literature for different regions and
seasons (48), these probabilities of occurrences (0–1) have been arbitrarily lin-
early rescaled to range between zero and a maximum estimate of vector to
host ratio following the work in ref. 37. This maximum was estimated as an
order of magnitude (SI Appendix, Fig. S16) using the maximum ZIKV R0 value to
calibrate it. A maximum R0 value of 6.6 was reported in ref. 32 for Colombia
during the outbreak. This maximum R0 value is reached when the vector to
host ratio value reaches about 1,000 in the model between 30 °C and 37 °C
(SI Appendix, Fig. S16C). This constraint is on the maximum solely; however, the
model reproduces well the distribution of R0 values with respect to other
published estimates (Fig. 2). Lower values for m are generally reported by en-
tomologists [10 is a commonly reported value (48)]. However, this value de-
pends on the selected field method to estimate m. Values of 52 Aedes
mosquitoes per person per hour have been reported in Macao using human
baits, 1.8 mosquitoes per hour have been reported using Centers for Disease
Control and Prevention (CDC) traps, and 110 mosquitoes per hour have been
reported using aspirators (54). Because both Aedes species are active from dawn
to dusk (e.g., over 12 h maximum, with a peak of activity in the early morning
and late afternoon), this is equivalent to 624, 21.6, and 1,320 mosquitoes per
day, respectively, thus including the selected maximum if we assume that a trap
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is a potential host. Biting rate estimates for Ae. aegypti of about 150 bites per
person per day were reported for Thailand over a 7-mo period (55). In Macao,
biting rates were reported to range between 94 and 314 bites per person per
day (54). Our estimates of (m × a) range between 100 and 250 bites per person
per day for Ae. aegypti and between 25 and 125 bites per person per day for
Ae. albopictus if we assume m = 1,000 (SI Appendix, Fig. S17).

The percentages of R0 attributed to Ae. aegypti (R11/R0
2) and Ae. albopictus

(R22/R0
2) were derived from Eq. 1, which can be rewritten as 1 = 100% = R11/

R0
2 + R22/R0

2. An explicit mathematical derivation of the R0 model is provided
in SI Appendix; parameter setting details and the publication references used
to estimate them are shown and discussed in Table 1.

R0 Model Integration and Driving Datasets. The Zika R0 model is dynamic,
meaning that some epidemiological parameters are varying in both space and
time from 1948 to 2015. The model runs on a monthly time step. To in-
corporate rainfall seasonality effects, we used a criterion derived for malaria
in Africa within the Mapping Malaria Risk in Africa project framework [e.g.,

“80 mm per month for at least five months for stable transmission” (56)]. If the
criterion was not met, we assumed that R0 = 0 for a particular location andmonth.
All spatially varying parameters were interpolated to the temperature data grid.

For temperature, we used gridded data, which combine station data
from the Global Historical Climatology Network version 2 with the Climate
Anomaly Monitoring System (52). This monthly temperature dataset is
available at 0.5° × 0.5°-square resolution at global scale for the period
1948–2015. For rainfall, we used the Global Precipitation Climatology
Centre global rainfall data available at similar spatial and time resolution
for the same time period (53).

R0 Model Validation. Countries with active transmission of ZIKV (Fig. 1C) were
obtained from the CDC at www.cdc.gov/zika/geo/active-countries.html and
the European Center for Disease Prevention and Control at ecdc.europa.
eu/en/healthtopics/zika_virus_infection/zika-outbreak/pages/zika-countries-with-
transmission.aspx. Historical circulation of ZIKV at country scale (including
seroprevalence estimates) was derived from refs. 22 and 57. Baseline R0

Table 1. R0 model parameter settings—an index of 1 denotes Ae. aegypti and an index of 2 denotes Ae. albopictus

Symbol Description Constant/formula Comments Refs.

*a1 Biting rates (per day) a1 = 0.0043T + 0.0943 The linear dependency to temperature was
based on estimates for Ae. aegypti in
Thailand; biting rates for Ae. albopictus
were halved based on observed feeding
interval data (18)

58, 59
*a2 a2 = 0.5 × a1

ɸ1 Vector preferences (0–1) ɸ1 = 1[0.88–1] Most studies show that Ae. aegypti mainly
feeds on humans; Ae. albopictus can feed
on other wild hosts (cats, dogs, swine. . .),
and large differences are shown for
feeding preference between urban and
rural settings for this species

17, 54, 60–65
ɸ2 ɸ2 = 0.5[0.24–1]

b1 Transmission probability—
vector to host (0–1)

b1 = 0.5[0.1–0.75] Based on dengue parameters—estimates from
a mathematical review study

66
b2 b2 = 0.5[0.1–0.75]
β1 Transmission probability—

host to vector (0–1)
β1 = 0.1 Recent laboratory experiment studies

generally show low transmission efficiency
(in saliva) for various vector/ZIKV strain
combinations (South America and Africa);
estimates from ref. 15 were used in the
final model version

14–16
β2 β2 = 0.033

*μ1 Mortality rates (0–1
per day)

μ1 = 1/(1.22 + exp(−3.05 + 0.72T)) + 0.196
if T < 22 °C

Mortality rates were derived for both
mosquito vectors from published estimates
based on both laboratory and field data

67

*μ2 μ1 = 1/(1.14 + exp(5.14–1.3T)) + 0.192
if T ≥ 22 °C

μ2 = 1/(1.1 + exp(−4.04 + 0.576T)) + 0.12
if T < 15 °C

μ2 = 0.000339T2 − 0.0189T + 0.336
if 15 °C ≤ T < 26.3 °C

μ2 = 1/(1.065 + exp(32.2–0.92T)) + 0.0747
if T ≥ 26.3 °C

*eip1 EIP (days) eip1 = 1/ν1 = 4 + exp(5.15–0.123T) EIPs for dengue were used because estimates
for ZIKV were only available at a single
temperature; 50% (100%) of Ae. aegypti
mosquitoes were infected by ZIKV after 5 d
(10 d) at 29 °C (7). An EIP longer than 7 d
was reported in ref. 15 at similar
temperature. Model estimates for dengue
suggest eip1 ∼ 8–9 d at 29 °C. The 1.03
multiplying factor for Ae. albopictus was
derived from ref. 67

68
*eip2 eip2 = 1/ν2 = 1.03(4 + exp(5.15–0.123T))

m1 Vector to host ratios m1 = 1,000 × prob1 m was derived as the product of a constant
with probability of occurrences published
at global scale for both mosquito vectors;
Materials and Methods has additional
details

51
m2 m2 = 1,000 × prob2

r Recovery rate (per day) r = 1/7 69

T, temperature.
*Parameters that are dynamically simulated in space and time over the whole time period.
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estimates for Rio de Janeiro (Fig. 2) were mathematically derived from
reported cases provided by the Brazilian Notifiable Information System (31). R0
estimates for Colombia (Fig. 2) were mathematically derived from reported
cases provided by the Instituto Nacional de Salud de Bogotá (32).

Supplementary Information. Additional details about the model design, the
model validation, and additional analysis are provided in SI Appendix.
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