
N
EU

RO
SC

IE
N

CE
A

PP
LI

ED
M

A
TH

EM
A

TI
CS

Overcoming catastrophic forgetting in
neural networks
James Kirkpatricka,1, Razvan Pascanua, Neil Rabinowitza, Joel Venessa, Guillaume Desjardinsa, Andrei A. Rusua,
Kieran Milana, John Quana, Tiago Ramalhoa, Agnieszka Grabska-Barwinskaa, Demis Hassabisa, Claudia Clopathb,
Dharshan Kumarana, and Raia Hadsella

aDeepMind, London EC4 5TW, United Kingdom; and bBioengineering Department, Imperial College London, London SW7 2AZ, United Kingdom

Edited by James L. McClelland, Stanford University, Stanford, CA, and approved February 13, 2017 (received for review July 19, 2016)

The ability to learn tasks in a sequential fashion is crucial to the
development of artificial intelligence. Until now neural networks
have not been capable of this and it has been widely thought that
catastrophic forgetting is an inevitable feature of connectionist
models. We show that it is possible to overcome this limitation
and train networks that can maintain expertise on tasks that they
have not experienced for a long time. Our approach remembers
old tasks by selectively slowing down learning on the weights
important for those tasks. We demonstrate our approach is scal-
able and effective by solving a set of classification tasks based on
a hand-written digit dataset and by learning several Atari 2600
games sequentially.

synaptic consolidation | artificial intelligence | stability plasticity |
continual learning | deep learning

Achieving artificial general intelligence requires that agents
are able to learn and remember many different tasks (1).

This is particularly difficult in real-world settings: The sequence
of tasks may not be explicitly labeled, tasks may switch unpre-
dictably, and any individual task may not recur for long time
intervals. Critically, therefore, intelligent agents must demon-
strate a capacity for continual learning: that is, the ability to learn
consecutive tasks without forgetting how to perform previously
trained tasks.

Continual learning poses particular challenges for artificial
neural networks due to the tendency for knowledge of the pre-
viously learned task(s) (e.g., task A) to be abruptly lost as infor-
mation relevant to the current task (e.g., task B) is incorporated.
This phenomenon, termed catastrophic forgetting (2–6), occurs
specifically when the network is trained sequentially on multi-
ple tasks because the weights in the network that are impor-
tant for task A are changed to meet the objectives of task B.
Whereas recent advances in machine learning and in particu-
lar deep neural networks have resulted in impressive gains in
performance across a variety of domains (e.g., refs. 7 and 8),
little progress has been made in achieving continual learning.
Current approaches have typically ensured that data from all
tasks are simultaneously available during training. By interleav-
ing data from multiple tasks during learning, forgetting does
not occur because the weights of the network can be jointly
optimized for performance on all tasks. In this regime—often
referred to as the multitask learning paradigm—deep-learning
techniques have been used to train single agents that can suc-
cessfully play multiple Atari games (9, 10). If tasks are presented
sequentially, multitask learning can be used only if the data are
recorded by an episodic memory system and replayed to the net-
work during training. This approach [often called system-level
consolidation (4, 5)] is impractical for learning large numbers of
tasks, as in our setting it would require the amount of memories
being stored and replayed to be proportional to the number of
tasks. The lack of algorithms to support continual learning thus
remains a key barrier to the development of artificial general
intelligence.

In marked contrast to artificial neural networks, humans
and other animals appear to be able to learn in a continual
fashion (11). Recent evidence suggests that the mammalian
brain may avoid catastrophic forgetting by protecting previously
acquired knowledge in neocortical circuits (11–14). When a
mouse acquires a new skill, a proportion of excitatory synapses
are strengthened; this manifests as an increase in the volume
of individual dendritic spines of neurons (13). Critically, these
enlarged dendritic spines persist despite the subsequent learning
of other tasks, accounting for retention of performance several
months later (13). When these spines are selectively “erased,”
the corresponding skill is forgotten (11, 12). This provides causal
evidence that neural mechanisms supporting the protection of
these strengthened synapses are critical to retention of task per-
formance. These experimental findings—together with neurobi-
ological models such as the cascade model (15, 16)—suggest that
continual learning in the neocortex relies on task-specific synap-
tic consolidation, whereby knowledge is durably encoded by ren-
dering a proportion of synapses less plastic and therefore stable
over long timescales.

In this work, we demonstrate that task-specific synaptic consol-
idation offers a unique solution to the continual-learning prob-
lem for artificial intelligence. We develop an algorithm anal-
ogous to synaptic consolidation for artificial neural networks,
which we refer to as elastic weight consolidation (EWC). This
algorithm slows down learning on certain weights based on how
important they are to previously seen tasks. We show how EWC
can be used in supervised learning and reinforcement learn-
ing problems to train several tasks sequentially without forget-
ting older ones, in marked contrast to previous deep-learning
techniques.

Significance

Deep neural networks are currently the most successful
machine-learning technique for solving a variety of tasks,
including language translation, image classification, and
image generation. One weakness of such models is that,
unlike humans, they are unable to learn multiple tasks
sequentially. In this work we propose a practical solution
to train such models sequentially by protecting the weights
important for previous tasks. This approach, inspired by
synaptic consolidation in neuroscience, enables state of the
art results on multiple reinforcement learning problems expe-
rienced sequentially.

Author contributions: J.K., R.P., N.R., D.H., C.C., D.K., and R.H. designed research; J.K.,
R.P., N.R., J.V., G.D., A.A.R., K.M., J.Q., T.R., and A.G.-B. performed research; and J.K., R.P.,
N.R., D.K., and R.H. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Freely available online through the PNAS open access option.

1To whom correspondence should be addressed. Email: kirkpatrick@google.com.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1611835114/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1611835114 PNAS | March 28, 2017 | vol. 114 | no. 13 | 3521–3526

D
ow

nl
oa

de
d

by
 g

ue
st

 o
n

M
ay

 1
7,

 2
02

1

mailto:kirkpatrick@google.com
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1611835114/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1611835114/-/DCSupplemental
http://www.pnas.org/cgi/doi/10.1073/pnas.1611835114
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1611835114&domain=pdf

Results
EWC. In brains, synaptic consolidation might enable continual
learning by reducing the plasticity of synapses that are vital to
previously learned tasks. We implement an algorithm that per-
forms a similar operation in artificial neural networks by con-
straining important parameters to stay close to their old values.
In this section, we explain why we expect to find a solution to a
new task in the neighborhood of an older one, how we implement
the constraint, and finally how we determine which parameters
are important.

A deep neural network consists of multiple layers of lin-
ear projection followed by element-wise nonlinearities. Learn-
ing a task consists of adjusting the set of weights and biases θ
of the linear projections, to optimize performance. Many con-
figurations of θ will result in the same performance (17, 18);
this overparameterization makes it likely that there is a solu-
tion for task B, θ∗B , that is close to the previously found solu-
tion for task A, θ∗A. While learning task B, EWC therefore
protects the performance in task A by constraining the param-
eters to stay in a region of low error for task A centered around
θ∗A, as shown schematically in Fig. 1. This constraint is imple-
mented as a quadratic penalty and can therefore be imagined
as a spring anchoring the parameters to the previous solution,
hence having the name elastic. Importantly, the stiffness of this
spring should not be the same for all parameters; rather, it
should be greater for parameters that most affect performance in
task A.

To justify this choice of constraint and to define which weights
are most important for a task, it is useful to consider neural net-
work training from a probabilistic perspective. From this point
of view, optimizing the parameters is tantamount to finding their
most probable values given some data D. We can compute this
conditional probability p(θ|D) from the prior probability of the
parameters p(θ) and the probability of the data p(D|θ) by using
Bayes’ rule:

log p(θ|D) = log p(D|θ) + log p(θ)− log p(D). [1]

Note that the log probability of the data given the parame-
ters log p(D|θ) is simply the negative of the loss function for the
problem at hand −L(θ). Assume that the data are split into two

Fig. 1. EWC ensures task A is remembered while training on task B. Train-
ing trajectories are illustrated in a schematic parameter space, with param-
eter regions leading to good performance on task A (gray) and on task B
(cream color). After learning the first task, the parameters are at θ∗A . If we
take gradient steps according to task B alone (blue arrow), we will minimize
the loss of task B but destroy what we have learned for task A. On the other
hand, if we constrain each weight with the same coefficient (green arrow),
the restriction imposed is too severe and we can remember task A only at
the expense of not learning task B. EWC, conversely, finds a solution for
task B without incurring a significant loss on task A (red arrow) by explicitly
computing how important weights are for task A.

independent parts, one defining task A (DA) and the other defin-
ing task B (DB). Then, we can rearrange Eq. 1:

log p(θ|D) = log p(DB |θ) + log p(θ|DA)− log p(DB). [2]

Note that the left-hand side is still describing the posterior
probability of the parameters given the entire dataset, whereas
the right-hand side depends only on the loss function for task
B, log p(DB |θ). All of the information about task A must there-
fore have been absorbed into the posterior distribution p(θ|DA).
This posterior probability must contain information about which
parameters were important to task A and is therefore the key to
implementing EWC. The true posterior probability is intractable,
so, following the work on the Laplace approximation by Mackay
(19), we approximate the posterior as a Gaussian distribution
with mean given by the parameters θ∗A and a diagonal precision
given by the diagonal of the Fisher information matrix F . F has
three key properties (20): (i) It is equivalent to the second deriva-
tive of the loss near a minimum, (ii) it can be computed from
first-order derivatives alone and is thus easy to calculate even for
large models, and (iii) it is guaranteed to be positive semidefi-
nite. Note that this approach is similar to expectation propaga-
tion where each subtask is seen as a factor of the posterior (21).
Given this approximation, the function L that we minimize in
EWC is

L(θ) = LB (θ) +
∑
i

λ

2
Fi(θi − θ∗A,i)

2
, [3]

where LB (θ) is the loss for task B only, λ sets how important
the old task is compared with the new one, and i labels each
parameter.

When moving to a third task, task C, EWC will try to keep
the network parameters close to the learned parameters of both
tasks A and B. This can be enforced either with two separate
penalties or as one by noting that the sum of two quadratic penal-
ties is itself a quadratic penalty.

EWC Extends Memory Lifetime for Random Patterns. As an initial
demonstration, we trained a linear network to associate random
(i.e., uncorrelated) binary patterns to binary outcomes. Whereas
this problem differs in important ways from more realistic set-
tings that we examine later, this scenario admits analytical solu-
tions and thus provides insights into key differences between
EWC and plain gradient descent. In this case, the diagonal of
the total Fisher information matrix is proportional to the num-
ber of patterns observed; thus in the case of EWC the learning
rate lowers as more patterns are observed. Following ref. 15, we
define a memory as retained if its signal-to-noise ratio (SNR)
exceeds a certain threshold. Fig. 2, Top shows the SNR obtained
using gradient descent (blue lines) and EWC (red lines) for the
first pattern observed. At first, the SNR in the two cases is very
similar, following a power-law decay with a slope of −0.5. As
the number of patterns observed approaches the capacity of the
network, the SNR for gradient descent starts decaying exponen-
tially, whereas EWC maintains a power-law decay. The exponen-
tial decay observed with gradient descent is due to new patterns
interfering with old ones; EWC protects from such interference
and increases the fraction of memories retained (Fig. 2, Bottom).
In the next sections we show that in more realistic cases, where
input patterns have more complex statistics, interference occurs
more easily with consequently more striking benefits for EWC
over gradient descent.

EWC Allows Continual Learning in a Supervised Learning Context.
We next addressed the problem of whether EWC could allow
deep neural networks to learn a set of more complex tasks with-
out catastrophic forgetting. In particular, we trained a fully con-
nected multilayer neural network on several supervised learning

3522 | www.pnas.org/cgi/doi/10.1073/pnas.1611835114 Kirkpatrick et al.

D
ow

nl
oa

de
d

by
 g

ue
st

 o
n

M
ay

 1
7,

 2
02

1

http://www.pnas.org/cgi/doi/10.1073/pnas.1611835114

N
EU

RO
SC

IE
N

CE
A

PP
LI

ED
M

A
TH

EM
A

TI
CS

Fig. 2. Log-log plot of the SNR for recalling the first pattern after observ-
ing t random patterns. If no penalty is applied (blue), the SNR decays as
(n/t)0.5 only when t is smaller than the number of synapses n = 1,000 and
then decays exponentially. When EWC is applied (red), the decay takes a
power-law form for all times. The dashed and solid lines show the analytic
solutions derived in Eqs. S28 and S30. The fraction of memories retained
(Bottom) is defined as the fraction of patterns whose SNR exceeds 1. EWC
results in a higher fraction of memories being retained when the network
is at capacity (t≈ n). After network capacity is exceeded (Right), EWC per-
forms worse than gradient descent (Discussion). More detailed plots can be
found in the Supporting Information, Figs. S1 and S2.

tasks in sequence. Within each task, we trained the neural net-
work in the traditional way, namely by shuffling the data and pro-
cessing them in small batches. After a fixed amount of training on
each task, however, we allowed no further training on that task’s
dataset.

We constructed the set of tasks from the problem of classifying
hand-written digits from the Mixed National Institute of Science
and Technology (MNIST) (22) dataset, according to a scheme
previously used in the continual-learning literature (23, 24). For
each task, we generated a fixed, random permutation by which
the input pixels of all images would be shuffled. Each task was
thus of equal difficulty to each other, but would require a differ-
ent solution.

Training on this sequence of tasks with plain stochastic gra-
dient descent (SGD) incurs catastrophic forgetting, as demon-
strated in Fig. 3A. The blue curves show performance on the
testing sets of two different tasks. At the point at which the
training regime switches from training on the first task (A) to
training on the second one (B), the performance for task B falls
rapidly, whereas for task A it climbs steeply. The forgetting of
task A compounds further with more training time and the addi-
tion of subsequent tasks. This problem cannot be countered by
regularizing the network with a fixed quadratic constraint for
each weight (green curves, L2 regularization): here, the perfor-
mance in task A degrades much less severely, but task B cannot
be learned properly as the constraint protects all weights equally,
leaving little spare capacity for learning on B. However, when we
use EWC, and thus take into account how important each weight
is to task A, the network can learn task B well without forgetting
task A (red curves). This is exactly the behavior described dia-
grammatically in Fig. 1.

Previous attempts to solve the continual-learning problem for
deep neural networks have relied upon careful choice of net-
work hyperparameters, together with other standard regulariza-
tion methods, to mitigate catastrophic forgetting. However, on
this task, they have achieved reasonable results only on up to two
random permutations (23, 24). Using a similar cross-validated
hyperparameter search to that in ref. 24, we compared traditional
dropout regularization to EWC. We find that stochastic gradient
descent with dropout regularization alone is limited and that it
does not scale to more tasks (Fig. 3B). In contrast, EWC allows a

large number of tasks to be learned in sequence, with only mod-
est growth in the error rates.

Given that EWC allows the network to effectively squeeze in
more functionality into a network with fixed capacity, we might
ask whether it allocates completely separate parts of the net-
work for each task or whether capacity is used in a more efficient
fashion by sharing representation. To assess this, we determined
whether each task depends on the same sets of weights, by mea-
suring the overlap between pairs of tasks’ respective Fisher infor-
mation matrices (Fisher Overlap). A small overlap means that the
two tasks depend on different sets of weights (i.e., EWC subdi-
vides the network’s weights for different tasks); a large overlap
indicates that weights are being used for both of the two tasks
(i.e., EWC enables sharing of representations). Fig. 3C shows the
overlap as a function of depth. As a simple control, when a net-
work is trained on two tasks that are very similar to each other
(two versions of MNIST where only a few pixels are permutated),
the tasks depend on similar sets of weights throughout the whole
network (gray dashed curve). When then the two tasks are more
dissimilar from each other, the network begins to allocate sepa-
rate weights for the two tasks (black dashed line). Nevertheless,
even for the large permutations, the layers of the network closer
to the output are indeed being reused for both tasks. This reflects
the fact that the permutations make the input domain very dif-
ferent, but the output domain (i.e., the class labels) is shared.

EWC Allows Continual Learning in a Reinforcement Learning Context.
We next tested whether EWC could support continual learn-
ing in the far more demanding reinforcement learning (RL)
domain. In RL, agents dynamically interact with the environment
to develop a policy that maximizes cumulative future reward. We
asked whether Deep Q Networks (DQNs)—an architecture that
has achieved impressive successes in such challenging RL set-
tings (25)—could be harnessed with EWC to successfully support
continual learning in the classic Atari 2600 task set (26). Specif-
ically, each experiment consisted of 10 games chosen randomly
from those that are played at human level or above by DQN. At
training time, the agent was exposed to experiences from each
game for extended periods of time. The order of presentation of
the games was randomized and allowed for returning to the same
games several times. At regular intervals we would also test the
agent’s score on each of the 10 games, without allowing the agent
to train on them (Fig. 4A).

Notably, previous reinforcement learning approaches to con-
tinual learning have relied either on adding capacity to the net-
work (27, 28) or on learning each task in separate networks,
which are then used to train a single network that can play all
games (9, 10). In contrast, the EWC approach presented here
makes use of a single network with fixed resources (i.e., network
capacity) and has minimal computational overhead.

In addition to using EWC to protect previously acquired
knowledge, we used the RL domain to address a broader set of
requirements that are needed for successful continual-learning
systems: In particular, higher-level mechanisms are needed to
infer which task is currently being performed, detect and incor-
porate novel tasks as they are encountered, and allow for rapid
and flexible switching between tasks (29). In the primate brain,
the prefrontal cortex is widely viewed as supporting these capa-
bilities by sustaining neural representations of task context that
exert top–down gating influences on sensory processing, working
memory, and action selection (30–33).

Inspired by this evidence, we augmented the DQN agents with
extra functionality to handle switching task contexts. Knowledge
of which task is being performed is required for the EWC algo-
rithm as it informs which quadratic constraints are currently
active and also which quadratic constraint to update when the
task context changes. To infer the task context, we implemented
an online clustering algorithm that is trained without supervision

Kirkpatrick et al. PNAS | March 28, 2017 | vol. 114 | no. 13 | 3523

D
ow

nl
oa

de
d

by
 g

ue
st

 o
n

M
ay

 1
7,

 2
02

1

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1611835114/-/DCSupplemental/pnas.201611835SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1611835114/-/DCSupplemental/pnas.201611835SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1611835114/-/DCSupplemental/pnas.201611835SI.pdf?targetid=nameddest=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1611835114/-/DCSupplemental/pnas.201611835SI.pdf?targetid=nameddest=STXT

A B C

Fig. 3. Results on the permuted MNIST task. (A) Training curves for three random permutations A, B, and C, using EWC (red), L2 regularization (green), and
plain SGD (blue). Note that only EWC is capable of maintaining a high performance on old tasks, while retaining the ability to learn new tasks. (B) Average
performance across all tasks, using EWC (red) or SGD with dropout regularization (blue). The dashed line shows the performance on a single task only.
(C) Similarity between the Fisher information matrices as a function of network depth for two different amounts of permutation. Either a small square of
8 × 8 pixels in the middle of the image is permuted (gray) or a large square of 26 × 26 pixels is permuted (black). Note how the more different the tasks
are, the smaller the overlap in Fisher information matrices in early layers.

and is based on the forget-me-not (FMN) process (34) (see
Materials and Methods for more details). We also allowed the
DQN agents to maintain separate short-term memory buffers for
each inferred task. These allow action values for each task to be
learned off-policy, using an experience replay mechanism (25).
As such, the overall system has memory on two timescales: Over
short timescales, the experience replay mechanism allows learn-
ing in the DQN to be based on the interleaved and uncorrelated
experiences (25). At longer timescales, know-how across tasks is
consolidated by using EWC. Finally, we allowed a small num-
ber of network parameters to be game specific. In particular, we
allowed each layer of the network to have biases and per-element
multiplicative gains that were specific to each game.

We compare the performance of agents that use EWC (red)
with ones that do not (blue) over sets of 10 games in Fig. 4. We
measure the performance as the total human-normalized score
across all 10 games; the score on each game is clipped to 1 such
that the total maximum score is 10 (at least at human level on
all games) and 0 means the agent is as good as a random agent.
If we rely on plain gradient descent methods as in ref. 25, the
agent never learns to play more than one game and the harm
inflicted by forgetting the old games means that the total human-
normalized score remains below one. By using EWC, however,
the agents do indeed learn to play multiple games. As a con-
trol, we also considered the benefit to the agent if we explic-
itly provided the agent with the true task label (Fig. 4B, brown),
rather than relying on the learned task recognition through the
FMN algorithm (Fig. 4B, red). The improvement here was only
modest.

Whereas augmenting the DQN agent with EWC allows it to
learn many games in sequence without suffering from catas-
trophic forgetting, it does not reach the score that would have
been obtained by training 10 separate DQNs (Fig. S3). One pos-
sible reason for this is that we consolidated weights for each game
based on a tractable approximation of parameter uncertainty, the
Fisher information. We therefore sought to test the quality of
our estimates empirically. To do so, we trained an agent on a sin-
gle game and measured how perturbing the network parameters
affected the agent’s score. Regardless of which game the agent
was trained on, we observed the same patterns, shown in Fig. 4C.
First, the agent was always more robust to parameter perturba-
tions shaped by the inverse of the diagonal of the Fisher informa-
tion (blue), as opposed to uniform perturbations (black). This
validates that the diagonal of the Fisher information is a good
estimate of how important a parameter is. Within our approx-
imation, perturbing in the null space should have no effect on
performance. Empirically, however, we observe that perturbing

in this space (orange) has the same effect as perturbing in
the inverse Fisher space. This suggests that we are overconfi-
dent about certain parameters being unimportant: It is therefore
likely that the chief limitation of the current implementation is
that it underestimates parameter uncertainty.

Discussion
We present an algorithm, EWC, that allows knowledge of pre-
vious tasks to be protected during new learning, thereby avoid-
ing catastrophic forgetting. It does so by selectively decreas-
ing the plasticity of weights and thus has certain parallels with
neurobiological models of synaptic consolidation (15, 16). We
implement EWC as a soft, quadratic constraint whereby each
weight is pulled back toward its old values by an amount
proportional to its importance for performance on previously
learned tasks. In analytically tractable settings, we demonstrate
that EWC can protect network weights from interference and
thus increase the fraction of memories retained over plain
gradient descent. To the extent that tasks share structure, net-
works trained with EWC reuse shared components of the net-
work. We further show that EWC can be effectively com-
bined with deep neural networks to support continual learning
in challenging reinforcement learning scenarios, such as Atari
2600 games.

The EWC algorithm can be grounded in Bayesian approaches
to learning. Formally, when there is a new task to be learned, the
network parameters are tempered by a prior which is the poste-
rior distribution on the parameters given data from the previous
task(s). This enables fast learning rates on parameters that are
poorly constrained by the previous tasks and slow learning rates
for those that are crucial.

There has been previous work (35, 36) using a quadratic
penalty to approximate old parts of the dataset, but these appli-
cations have been limited to small models. Specifically, ref. 35
used random inputs to compute a quadratic approximation to the
energy surface. Their approach is slow, as it requires recomput-
ing the curvature at each sample. The ELLA algorithm described
in ref. 36 requires computing and inverting matrices with a
dimensionality equal to the number of parameters being opti-
mized; therefore it has been mainly applied to linear and logis-
tic regressions. In contrast, EWC has a run time that is linear
in both the number of parameters and the number of training
examples. We could achieve this low computational complexity
only by using a crude Laplace approximation to the true the
posterior distribution of the parameters. Despite its low com-
putational cost and empirical successes—even in the setting of
challenging RL domains—our use of a point estimate of the

3524 | www.pnas.org/cgi/doi/10.1073/pnas.1611835114 Kirkpatrick et al.

D
ow

nl
oa

de
d

by
 g

ue
st

 o
n

M
ay

 1
7,

 2
02

1

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1611835114/-/DCSupplemental/pnas.201611835SI.pdf?targetid=nameddest=SF3
http://www.pnas.org/cgi/doi/10.1073/pnas.1611835114

N
EU

RO
SC

IE
N

CE
A

PP
LI

ED
M

A
TH

EM
A

TI
CS

A B C

Fig. 4. Results on Atari task. (A) Schedule of games. Black bars indicate the sequential training periods (segments) for each game. After each training
segment, performance on all games is measured. The EWC constraint is activated only to protect an agent’s performance on each game once the agent has
experienced 20 million frames in that game. (B) Total human-averaged scores for each method across all games. The score is averaged across random seeds
and over the choice of which 10 games are played (Fig. S3). The human-normalized score for each game is clipped to 1. Red curve denotes the network that
infers the task labels using the FMN algorithm; brown curve is the network provided with the task labels. The EWC and SGD curves start diverging when
games start being played again that have been protected by EWC. (C) Sensitivity of a single-game DQN, trained on Breakout, to noise added to its weights.
The performance on Breakout is shown as a function of the magnitude (standard deviation) of the weight perturbation. The weight perturbation is drawn
from a zero mean Gaussian with covariance that is either uniform (black; i.e., targets all weights equally), the inverse Fisher ((F + λI)−1; blue; i.e., mimicking
weight changes allowed by EWC), or uniform within the nullspace of the Fisher (orange; i.e., targets weights that the Fisher estimates that the network
output is entirely invariant to). To evaluate the score, we ran the agent for 10 full game episodes, drawing a new random weight perturbation for every
time step.

posterior’s variance (as in a Laplace approximation) does con-
stitute a significant weakness (Fig. 4C). Our initial explorations
suggest that one might improve on this local estimate by using
Bayesian neural networks (37).

Whereas this paper has primarily focused on building an
algorithm inspired by neurobiological observations and theories
(15, 16), it is also instructive to consider whether the algorithm’s
successes can feed back into our understanding of the brain. In
particular, we see considerable parallels between EWC and two
computational theories of synaptic plasticity.

Cascade models of synaptic plasticity (15, 16) construct
dynamical models of synaptic states to understand the trade-
off between plasticity and memory retention. Cascade models
have important differences from our approach. In particular,
they aim to extend memory lifetimes for systems at steady state
(i.e., the limit of observing an infinite number of stimuli). As
such, they allow for synapses to become more or less plastic
and model the process of both retaining and forgetting mem-
ories. In contrast, we tackle the simpler problem of protecting
the network from interference when starting from an empty net-
work. In fact in EWC weights can only become more constrained
(i.e., less plastic) with time and thus we can model only mem-
ory retention rather than forgetting. Therefore when the num-
ber of random patterns observed exceeds the capacity of the net-
work and steady state is reached, EWC starts to perform even
worse than plain gradient descent (Fig. 2, Bottom). Further, the
EWC model—like standard Hopfield networks (38)—is prone to
the phenomenon of blackout catastrophe when network capac-
ity is saturated, resulting in the inability to retrieve any previous
memories or store new experiences. Notably, we did not observe
these limitations under the more realistic conditions for which
EWC was designed—likely because the network was operating
well under capacity in these regimes.

Despite these key differences, EWC and cascade share the
basic algorithmic feature that memory lifetimes are extended by
modulating the plasticity of synapses. Whereas prior work on
cascade models (15, 16) has tied the metaplastic state to pat-
terns of potentiation and depression events—i.e., synaptic-level
measures—our approach focuses on the computational princi-
ples that determine the degree to which each synapses might
be consolidated. It may be possible to distinguish these models
experimentally, because the plasticity of a synapse depends on

the rate of potentiation events in the cascade model, but on task
relevance in EWC.

In this respect, the perspective we offer here aligns with a
recent proposal that each synapse stores not only its current
weight, but also an implicit representation of its uncertainty
about that weight (39). This idea is grounded in observations that
postsynaptic potentials are highly variable in amplitude (sugges-
tive of sampling from the weight posterior during computation)
and those synapses that are more variable are more amenable
to potentiation or depression (suggestive of updating the weight
posterior). Although we do not explore the computational ben-
efits of sampling from a posterior here, our work aligns with
the notion that weight uncertainty should inform learning rates.
We take this one step farther, to emphasize that consolidating
the high precision weights enables continual learning over long
timescales. With EWC, three values have to be stored for each
synapse: the weight itself, its variance, and its mean. Interest-
ingly, synapses in the brain also carry more than one piece of
information. For example, the state of the short-term plastic-
ity could carry information on the variance (39, 40). The weight
for the early phase of plasticity (41) could encode the current
synaptic strength, whereas the weight associated with the late
phase of plasticity or the consolidated phase could encode the
mean weight.

The ability to learn tasks in succession without forgetting is
a core component of biological and artificial intelligence. In
this work we show that an algorithm that supports continual
learning—which takes inspiration from neurobiological mod-
els of synaptic consolidation—can be combined with deep neu-
ral networks to achieve successful performance in a range of
challenging domains. In doing so, we demonstrate that current
neurobiological theories concerning synaptic consolidation do
indeed scale to large-scale learning systems. This provides prima
facie evidence that these principles may be fundamental aspects
of learning and memory in the brain.

Materials and Methods
Full methods for all simulations can be found in Random Patterns, MNIST
Experiments, and Atari Experiments. Hyperparameters for the MNIST exper-
iment are described in Table S1. For the Atari 2600 experiments, we used an
agent very similar to that described in ref. 42. The only differences are that
we used (i) a network with more parameters, (ii) a smaller transition table,

Kirkpatrick et al. PNAS | March 28, 2017 | vol. 114 | no. 13 | 3525

D
ow

nl
oa

de
d

by
 g

ue
st

 o
n

M
ay

 1
7,

 2
02

1

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1611835114/-/DCSupplemental/pnas.201611835SI.pdf?targetid=nameddest=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1611835114/-/DCSupplemental/pnas.201611835SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1611835114/-/DCSupplemental/pnas.201611835SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1611835114/-/DCSupplemental/pnas.201611835SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1611835114/-/DCSupplemental/pnas.201611835SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1611835114/-/DCSupplemental/pnas.201611835SI.pdf?targetid=nameddest=ST1

(iii) task-specific bias and gains at each layer, (iv) the full action set in Atari,
(v) a task-recognition model, and (vi) the EWC penalty. Full details of hyper-
parameters are described in Table S2. Here we briefly describe the two most
important modifications to the agent: the task-recognition module and the
implementation of the EWC penalty.

We treat the task context as the latent variable of a hidden Markov
model. Each task is therefore associated to an underlying generative model
of the observations. The main distinguishing feature of our approach is that
we allow for the addition of new generative models if they explain recent
data better than the existing pool of models by using a training procedure
inspired by the FMN process in ref. 33 (see Atari Experiments for full descrip-

tion). To apply EWC, we compute the Fisher information matrix at each task
switch. For each task, a penalty is added with the anchor point given by the
current value of the parameters and with weights given by the Fisher infor-
mation matrix times a scaling factor λ that was optimized by hyperparame-
ter search. We added an EWC penalty only to games that had experienced
at least 20 million frames.

ACKNOWLEDGMENTS. We thank P. Dayan, D. Wierstra, S. Mohamed, Yee
Whye Teh, and K. Kavukcuoglu for constructive comments and useful discus-
sion. C.C. was funded by the Wellcome Trust, the Engineering and Physical
Sciences Research Council, and the Google Faculty Award.

1. Legg S, Hutter M (2007) Universal intelligence: A definition of machine intelligence.
Minds Mach 17(4):391–444.

2. French RM (1999) Catastrophic forgetting in connectionist networks. Trends Cognit
Sci 3(4):128–135.

3. McCloskey M, Cohen NJ (1989) Catastrophic interference in connectionist networks:
The sequential learning problem. The Psychology of Learning and Motivation, ed GH
Bower (Academic, New York), Vol 24, pp 109–165.

4. McClelland JL, McNaughton BL, O’Reilly RC (1995) Why there are complementary
learning systems in the hippocampus and neocortex: Insights from the successes
and failures of connectionist models of learning and memory. Psychol Rev 102(3):
419–457.

5. Kumaran D, Hassabis D, McClelland JL (2016) What learning systems do intelligent
agents need? Complementary learning systems theory updated. Trends Cogn Sci
20(7):512–534.

6. Ratcliff R (1990) Connectionist models of recognition memory: Constraints imposed
by learning and forgetting functions. Psychol Rev 97(2):285–308.

7. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep con-
volutional neural networks. Advances in Neural Information Processing Systems 25,
eds Pereira F, Burges CJC, Bottou L, Weinberger KQ (Curran Assoc, Red Hook, NY),
pp 1097–1105.

8. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444.
9. Rusu AA, et al. (2015) Policy distillation. arXiv:1511.06295.

10. Parisotto E, Ba JL, Salakhutdinov R (2015) Actor-mimic: Deep multitask and transfer
reinforcement learning. arXiv:1511.06342.

11. Cichon J, Gan WB (2015) Branch-specific dendritic ca2+ spikes cause persistent synap-
tic plasticity. Nature 520(7546):180–185.

12. Hayashi-Takagi A, et al. (2015) Labelling and optical erasure of synaptic memory
traces in the motor cortex. Nature 525(7569):333–338.

13. Yang G, Pan F, Gan WB (2009) Stably maintained dendritic spines are associated with
lifelong memories. Nature 462(7275):920–924.

14. Yang G, et al. (2014) Sleep promotes branch-specific formation of dendritic spines
after learning. Science 344(6188):1173–1178.

15. Fusi S, Drew PJ, Abbott L (2005) Cascade models of synaptically stored memories.
Neuron 45(4):599–611.

16. Benna MK, Fusi S (2015) Computational principles of biological memory. arXiv:1507.
07580.

17. Hecht-Nielsen R (1988) Theory of the backpropagating network. Neural Netw
1(Suppl 1):445–448.

18. Sussmann HJ (1992) Uniqueness of the weights for minimal feedforward nets with a
given input-output map. Neural Networks 5:589–593.

19. MacKay DJ (1992) A practical Bayesian framework for backpropagation networks.
Neural Comput 4(3):448–472.

20. Pascanu R, Bengio Y (2013) Revisiting natural gradient for deep networks. arXiv:1301.
3584.

21. Eskin E, Smola AJ, Vishwanathan S (2004) Laplace propagation. Advances in Neural
Information Processing Systems 16, eds Thrun S, Saul LK, Schoelkopf PB (MIT Press,
Cambridge, MA), pp 441–448.

22. LeCun Y, Cortes C, Burges CJ (1998) The MNIST database of handwritten digits. Avail-
able at yann.lecun.com/exdb/mnist/. Accessed March 3, 2017.

23. Srivastava RK, Masci J, Kazerounian S, Gomez F, Schmidhuber J (2013) Compete to
compute. Advances in Neural Information Processing Systems 26, eds Burges CJC,
Bottou L, Welling M, Ghahramani Z, Weinberg KQ (Curran Assoc, Red Hook, NY),
Vol 26, pp 2310–2318.

24. Goodfellow IJ, Mirza M, Xiao D, Courville A, Bengio Y (2015) An empirical investiga-
tion of catastrophic forgeting in gradient-based neural networks. arXiv:1312.6211.

25. Mnih V, et al. (2015) Human-level control through deep reinforcement learning.
Nature 518(7540):529–533.

26. Bellemare MG, Naddaf Y, Veness J, Bowling M (2013) The arcade learning environ-
ment: An evaluation platform for general agents. J Artif Intell Res 47:253–279.

27. Ring MB (1998) Child: A first step towards continual learning. Learning to Learn, eds
Thrun S, Pratt L (Kluwer Acadamic, Norwell, MA), pp 261–292.

28. Rusu AA, et al. (2016) Progressive neural networks. arXiv:1606.04671.
29. Collins AG, Frank MJ (2013) Cognitive control over learning: Creating, clustering, and

generalizing task-set structure. Psychol Rev 120(1):190–229.
30. O’Reilly RC, Frank MJ (2006) Making working memory work: A computational

model of learning in the prefrontal cortex and basal ganglia. Neural Comput 18(2):
283–328.

31. Mante V, Sussillo D, Shenoy KV, Newsome WT (2013) Context-dependent computation
by recurrent dynamics in prefrontal cortex. Nature 503(7474):78–84.

32. Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu
Rev Neurosci 24(1):167–202.

33. Doya K, Samejima K, Katagiri K-i, Kawato M (2002) Multiple model-based reinforce-
ment learning. Neural Comput 14(6):1347–1369.

34. Milan K, et al. (2016) The forget-me-not process. Advances in Neural Information
Processing Systems 29, eds Lee DD, Sugiyama M, Luxburg UV, Guyon I, Garnett R
(Curran Assoc, Red Hook, NY).

35. French RM, Chater N (2002) Using noise to compute error surfaces in connection-
ist networks: A novel means of reducing catastrophic forgetting. Neural Comput
14(7):1755–1769.

36. Ruvolo PL, Eaton E (2013) ELLA: An efficient lifelong learning algorithm. JMLR Work-
shop Conf Proc 28(1):507–515.

37. Blundell C, Cornebise J, Kavukcuoglu K, Wierstra D (2015) Weight uncertainty in neu-
ral networks. JMLR Workshop Conf Proc 37:1613–1622.

38. Amit D (1989) Modeling Brain Function (Cambridge Univ Press, Cambridge, UK).
39. Aitchison L, Latham PE (2015) Synaptic sampling: A connection between PSP variabil-

ity and uncertainty explains neurophysiological observations. arXiv:1505.04544.
40. Pfister JP, Dayan P, Lengyel M (2010) Synapses with short-term plasticity are optimal

estimators of presynaptic membrane potentials. Nat Neurosci 13(10):1271–1275.
41. Clopath C, Ziegler L, Vasilaki E, Büsing L, Gerstner W (2008) Tag-trigger-consolidation:

A model of early and late long-term-potentiation and depression. PLoS Comput Biol
4(12):e1000248.

42. van Hasselt H, Guez A, Silver D (2016) Deep reinforcement learning with double
q-learning. Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence,
eds Schuurmans D, Wellman M (AAAI Press, Palo Alto, CA), pp 2094–2100.

43. Veness J, Ng KS, Hutter M, Bowling M (2012) Context tree switching. 2012 Data Com-
pression Conference, ed Malvar H (IEEE, New York), pp 327–336.

44. Dowson D, Landau B (1982) The fréchet distance between multivariate normal distri-
butions. J Multivar Anal 12(3):450–455.

3526 | www.pnas.org/cgi/doi/10.1073/pnas.1611835114 Kirkpatrick et al.

D
ow

nl
oa

de
d

by
 g

ue
st

 o
n

M
ay

 1
7,

 2
02

1

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1611835114/-/DCSupplemental/pnas.201611835SI.pdf?targetid=nameddest=ST2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1611835114/-/DCSupplemental/pnas.201611835SI.pdf?targetid=nameddest=STXT
http://yann.lecun.com/exdb/mnist/
http://www.pnas.org/cgi/doi/10.1073/pnas.1611835114

