








hypothesis testing to quantify the uncertainty in the probability of
both the event and the contributing physical causes, (iii) ensuring
accurate assessment of the fidelity of the statistical and physical
models to the observational data, (iv) distinguishing changes
in the probability of extremes from changes in the mean, and (v)
systematically differentiating “absence of evidence” of a causal
link from “evidence of absence.”
The ability to robustly quantify the influence of historical global

warming on the severity and probability of individual events has
important implications for climate adaptation and mitigation efforts,
including infrastructure design, resource management practices,
disaster risk management systems, quantification of “loss and damage”
and legal liability, quantification of the “social cost of carbon,” and
“rapid attribution” of individual events. Further, although we have
focused on the influence of historical global warming, our frame-
work could be used to quantify the probability of unprecedented
events at higher levels of forcing, including those identified in the
United Nations Paris Agreement.

Materials and Methods
Observations and Models.
Observations. Table S1 shows datasets and time periods. We use monthly
temperature anomalies from the “NOAAGlobalTemp” gridded dataset (49) to
analyze the maximum peak summer temperature (July in the Northern
Hemisphere and January in the Southern Hemisphere). We use gridded
monthly precipitation from ref. 50 to analyze the minimum annual total
precipitation. We use the global gridded observational datasets from ref. 51
to analyze the maximum hottest day of the year and the maximum wettest
5-d period of the year.

To explore the potential to quantify the influence of global warming on
additional variables beyond temperature and precipitation,we also analyze sea
ice data from ref. 52, and geopotential height patterns and precipitable water
from ref. 53. The geopotential height patterns are calculated using self-
organizing maps as described in ref. 25, with the direct atmospheric “ther-
mal dilation” removed (see ref. 26).
Climate models. The most prominent climate model experiments are those co-
ordinated by CMIP (e.g., ref. 54). Although CMIP provides simulations from
many different climate models, the limited number of realizations means that a
relatively small number of simulated years are available from each model in
each forcing window, which can create substantial errors in the calculation of
return intervals of the most extreme events (23). We therefore analyze the
National Center for Atmospheric Research (NCAR) LENS ensemble, which
generates a large ensemble (∼30 realizations) of a single model in an individual
CMIP5 forcing pathway (e.g., refs. 45 and 55). This approach provides many
hundreds of simulated years in a given forcing window (Table S1), captures a
much larger range of variability than is available in the observations, and iso-
lates internal climate system variability from model structural uncertainty.

LENS was generated with the NCAR Community Earth System Model run at
∼1° horizontal resolution (55). The ensemble methodology branches multiple
GCM simulations from a single CMIP-type transient Historical Simulation. These
multiple realizations differ only in slight perturbations in the initial atmospheric
conditions in 1920. (We analyze only the branched simulations that were ini-
tialized in 1920.) Each ensemble member is then prescribed the transient his-
torical forcing through the end of the CMIP5 historical period (2005), and the
Representative Concentration Pathway (RCP8.5) transient forcing after 2005.

We compare the LENS Historical Simulations with the Pre-Industrial Control
Simulation (Table S1). Depending on the variable, the observed record may be
shorter than the LENS simulations, or only a subset of the observed record may
be deemed reliable (e.g., due to reliance on satellite observations). Although
the initial period of the RCP8.5 simulations can be used to extend the simu-
lated period past 2005, the lack of other real-world forcings such as volcanic
eruptions can affect the fidelity of the simulated climate in the post-2005 pe-
riod (e.g., ref. 56).

Quantifying the Influence of Global Warming on Individual Events.We evaluate
the locally observed maxima or minima of four widely used extreme tem-
perature and precipitation indicators on a global grid. We calculate four target
metrics for each variable (Fig. 1), based on our previously published methods
(22, 24, 34, 57). Our choice of these four metrics is motivated by the need to
compare different metrics that have been explored in the literature (5), in-
cluding the contribution of the local historical trend to a given event, and the
extent to which historical climate forcing has influenced the probability of a
given event. We report results at grid points where the observational dataset
is continuous over the analysis period.

The contribution of the observed trend to the magnitude of the event. We first find
the maximum/minimum event in the observed time series at each grid point.
We then detrend the observed time series at each grid point, and find the new
valueof the original eventmagnitude in the detrended time series (Fig. 1A).We
then calculate the contribution of the observed trend to the event magnitude
as the difference between the observed event magnitude and the detrended
event magnitude, divided by the difference between the observed event
magnitude and the mean of the detrended time series (Fig. 1A). We calculate
the statistical significance of the observed trend following the approach of ref.
24, which accounts for temporal dependence in the observed time series using
the moving block bootstrap.
The contribution of the observed trend to the probability of the event magnitude.
We adapt the approach of refs. 34 and 22 to calculate the ratio of return in-
tervals between the observed and detrended time series. Different authors
have used different parametric distributions (e.g., comparison in ref. 34). Here
we use the Gumbel variation of the Generalized Extreme Value (GEV) distri-
bution, which, for these variables and these datasets, provides a conservative
estimation of the change in probability compared with the more generalized
application of the GEV (Fig. S7). However, we note that the Gumbel distri-
bution will not necessarily provide the most conservative estimation in all
cases, and therefore care should be taken when selecting the method for
calculating the return interval of historically unprecedented events.

Because sampling errors tend to be large when data segment lengths are
similar to the event return interval (23), the fact that the observational record is
limited to several decades is likely to create substantial uncertainty in the
calculated return interval of the most extreme events. We therefore follow
refs. 34 and 22 in using the moving block bootstrap to account for uncertainty
in the fit of the observations to the parametric distribution. As in ref. 24, the
length of each subset for the nonparametric block bootstrap—that is, the
“block size”—is determined by the number of time steps for which temporal
dependence is significant in the time series, based on the partial autocorre-
lation function of the data. By selecting the block size based on the observed
autocorrelation of the data, the moving block bootstrap preserves the ob-
served dependency of the data within—but not among—the blocks. Our ap-
plication of the moving block bootstap is thereby an approach to ensuring
that the statistical assumptions for hypothesis testing hold (i.e., that the block
samples in the bootstrap are approximately independent and identically dis-
tributed random vectors).

This bootstrapping yields a sample of parametric fits to the observations,
which in turn yields a sample of return intervals for the event magnitude in the
observed time series (Fig. 1B and Fig. S8). We repeat this process to calculate
the sample of return intervals for the event magnitude in the detrended time
series. [We find that the return interval uncertainty is very similar between the
observed and detrended time series, with peak summer temperature over
tropical South America exhibiting the greatest discrepancy (Fig. S8).] Finally,
we follow refs. 34 and 22 in calculating the ratio for all possible combinations
of return intervals in the observed and detrended time series, yielding an es-
timate of the uncertainty in the contribution of the observed trend to the
event probability (Fig. 1C). We report the median value of the ratio distribu-
tion (Fig. 1C) at each grid point.
The probability of the observed trend in the historical climate forcing. We follow
the approach of ref. 57 to calculate the probability of the observed trend in the
historical forcing (Fig. 1E). We first calculate the fraction of Historical Simula-
tions that exhibit a trend of the same sign as the observed time series. We then
evaluate the statistical significance of that fraction using a two-tailed binomial
test, where (i) the null hypothesis is that the probability of observing a positive
trend is 0.5 and the probability of observing a negative trend is 0.5, and (ii) the
P value is calculated as the two-tailed probability that the simulated fraction of
trends having the same sign as the observed trend is equal to 0.5. (This method
avoids fitting a parametric distribution to the observed or simulated data.)

As in refs. 34 and 22, we evaluate the climate model’s simulation of inter-
annual variability in each climate indicator (Fig. 1D). Previous event attribution
studies have made this evaluation using the Kolmogorov−Smirnov test (22, 34,
38). However, we find that the Anderson−Darling (A-D) test, which gives more
weight to the tails of the distribution, produces a more restrictive comparison
with observations for the four extreme climate variables (Table S1). We therefore
use the A-D test. We first correct the mean of the Pre-Industrial Control Simu-
lation to be equal to the mean of the detrended observations. We then use the
A-D test to quantify the agreement between the mean-corrected Pre-Industrial
Simulation and the detrended observations. We reject the climate model if the
A-D test yields a P value less than 0.05, as this suggests that the model output
does not come from the same statistical population as the observations.
The probability of the event magnitude in the historical and preindustrial climate
forcing. We follow refs. 34 and 22 in calculating the ratio of return intervals
between the Historical and Pre-Industrial GCM Simulations (Fig. 1F). This
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analysis is similar to that described in The Contribution of the Observed
Trend to the Probability of the Event Magnitude for the influence of the
historical trend, but performed on the Historical and Pre-Industrial GCM
Simulations rather than the observed and detrended time series. The
NCAR large ensemble provides >700 y of data in the Historical and Pre-
Industrial Simulations (Table S1); in contrast to decadal-scale periods,
1,000-y simulations have been shown to “provide fairly accurate estimates
of changes in return levels even for long return periods” (23).

As described in ref. 22, we use the sample of event return intervals in
the observations (calculated above) to define the sample of event mag-
nitudes in the climate model simulation: We first define the sample of
return intervals in the Pre-Industrial Simulation to be identical to that of
the detrended observed time series. We then calculate the sample of event
magnitudes in the Pre-Industrial Control Simulation that are associated
with that sample of event return intervals. Then, for each of the Pre-

Industrial event magnitudes, we calculate the associated event return in-
terval in the Historical Climate Model Simulations. Finally, as described
above, we calculate the ratio for all possible combinations of return in-
tervals in the Historical and Pre-Industrial samples, yielding an uncertainty
estimate for the contribution of historical forcing to the event probability.
We report the median value of the ratio distribution (Fig. 1F) at each
grid point.
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