Microglial NFκB-TNFα hyperactivation induces obsessive–compulsive behavior in mouse models of progranulin-deficient frontotemporal dementia

Grietje Krabbe a,b,1 S. Sakura Minami a,b,1, Jon I. Etchegaray a,b,1 Praveen Taneja a, Biljana Djukic b, Dimitrios Davalos a,2, David Le b, Iris Lo b, Lihong Zhan a,b, Meredith C. Reichert a,b, Faten Sayed b, Mario Merlini a, Michael E. Ward a,b, David C. Perry b,d, Suzee E. Lee b,d, Ana Sias b,d, Christopher N. Parkhurst a, Wen-biao Gan b, Katerina Akassoglou a,b, Bruce L. Miller b,d, Robert V. Farese Jr. f,g, and Li Gan a,b,c,3

*Gladstone Institute of Neurological Diseases, University of California, San Francisco, CA 94158; bDepartment of Neurology, University of California, San Francisco, CA 94158; Neuroscience Graduate Program, University of California, San Francisco, CA 94158; fDepartment of Neurology, University of California, San Francisco, CA 94158; gSkirball Institute of Biomolecular Medicine, New York University Medical Center, New York, NY 10016; hDepartment of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115; and fDepartment of Cell Biology, Harvard Medical School, Boston, MA 02115

Edited by Lawrence Steinman, Stanford University School of Medicine, Stanford, CA, and approved March 20, 2017 (received for review January 9, 2017)

Frontotemporal dementia (FTD) is the second most common dementia before 65 years of age. Haploinsufficiency in the progranulin (GRN) gene accounts for 10% of all cases of familial FTD. GRN mutation carriers have an increased risk of autoimmune disorders, accompanied by elevated levels of tissue necrosis factor (TNF) α. We examined behavioral alterations related to obsessive–compulsive disorder (OCD) and the role of TNFα and related signaling pathways in FTD patients with GRN mutations and in mice lacking progranulin (PGRN). We found that patients and mice with GRN mutations displayed OCD and self-grooming (an OCD-like behavior in mice), respectively. Furthermore, medium spiny neurons in the nucleus accumbens, an area implicated in the development of OCD, display hyperexcitability in PGRN knockout mice. Reducing levels of TNFα in PGRN knockout mice abolished excessive self-grooming and the associated hyperexcitability of medium spiny neurons of the nucleus accumbens. In the brain, PGRN is highly expressed in microglia, which are a major source of TNFα. We therefore deleted PGRN specifically in microglia and found that it was sufficient to induce excessive grooming. Importantly, excessive grooming in these mice was prevented by inactivating nuclear factor κB (NF-κB) in microglia/myeloid cells. Our findings suggest that PGRN deficiency leads to excessive NF-κB activation in microglia and elevated TNFα signaling, which in turn lead to hyperexcitability of medium spiny neurons and OCD-like behavior.

Significance

Frontotemporal dementia (FTD) is a disease characterized by degeneration of the frontal and/or temporal lobes of the brain. Symptoms of FTD include changes in personality, such as loss of social awareness and impulse control. A significant portion of inherited FTD cases are due to mutations in progranulin (PGRN). These mutations lead to a decrease in the production of PGRN. How lower levels of PGRN lead to FTD is unknown. Here, we show that humans carrying PGRN mutations and mice lacking PGRN display obsessive–compulsive disorders (OCDs). In mice, OCD behavior results partially from elevated levels of the cytokine TNFα and aberrant activation of immune cells of the brain known as microglia. Our findings provide evidence that targeting innate immune pathways could be a new therapeutic strategy to treat FTD.
(OCD)-like behaviors. Furthermore, we show that selective deletion of PGRN in microglia is sufficient to induce FTD-like behavioral abnormalities and identify an essential role of excessive NF-κB signaling in PGRN-deficient microglia.

Results

To determine whether a decrease in PGRN leads to OCD behavior in humans, we conducted a review of 35 symptomatic and presymptomatic GRN carriers in the University of California, San Francisco (UCSF) clinical research program. We found repetitive and compulsive behaviors in 57% of carriers (70% of 23 symptomatic and 33% of 12 presymptomatic carriers) but in none of 25 age-, sex-, and education-matched healthy controls ($P < 0.001$, Fisher’s exact test) (Fig. L4 and Table S1). The most common repetitive or compulsive behaviors were simple stereotypes in eight subjects, repetitive checking in six subjects, repetitive grooming or personal cleanliness in three subjects, and collecting in three subjects (Fig. L4).

We also did voxel-based morphometry analyses of structural MRI scans of a subset of symptomatic GRN carriers. Twenty GRN mutation carriers and 42 controls matched for age, sex, and handedness were analyzed (Table S1). Consistent with previous reports (20, 21), symptomatic GRN mutation carriers exhibited extensive frontotemporal atrophy extending into the parietal regions; the subcortical, striatum, and amygdala showed bilateral atrophy (Fig. 1B).

To assess the repetitive and compulsive behavior in mice, we quantified self-grooming, a common phenotype in mouse models of OCD (22). Self-grooming time was significantly increased in Grn$^{−/−}$ mice (Fig. 2A). PGRN is a mediator of TNFα signaling, and increases in TNFα have been implicated in OCD (23). To directly test whether elevated TNFα levels underlie the behavioral deficits in Grn$^{−/−}$ mice, we crossed Tnfa$^{−/−}$ mice with Grn$^{−/−}$ mice. Genetic removal of one allele of Tnfa in Grn$^{−/−}$ mice abolished the excessive grooming phenotype (Fig. 2A). A hot-plate test showed no difference among the groups (Fig. S1), excluding the possibility that PGRN or TNFα deficiency affected self-grooming by altering nociception. We also tested whether Grn$^{−/−}$ mice have social defects, a hallmark of patients with autism and FTD. Using a three-chamber social interaction test, we found that, whereas control mice spent more time with another mouse than an inanimate object, Grn$^{−/−}$ mice showed no preference (Fig. S2), which suggests that Grn$^{−/−}$ mice exhibit impairments in social interaction, consistent with previous studies (6). However, reducing or deleting TNFα did not affect social interaction deficits induced by PGRN deficiency (Fig. S2). Our findings point to a specific modular role of TNFα in OCD-related behaviors but not autistic-like behaviors.

Cortico-basal ganglia circuits, particularly the ventral striatum (nucleus accumbens), are strongly implicated in repetitive, compulsive, and impulsive behaviors. In OCD patients, deep-brain stimulation of the nucleus accumbens normalized activity in this region and restored frontostriatal network activity (24). In mice, excessive activity of striatal MSNs and reduced inhibitory inputs contribute to excessive grooming behavior (25, 26). To assess changes in the excitability of MSN neurons that could account for excessive activity, we performed whole-cell patch-clamp recordings in the core of nucleus accumbens (Fig. 2B). Action potential firing frequencies of MSNs were analyzed at different current intensities in WT (Grn$^{+/+}$), Grn$^{−/−}$, Tnfa$^{−/−}$, and Grn$^{−/−}$/Tnfa$^{−/−}$ mice, and action potential frequency vs. current (FI) curves were generated (Fig. 2C and D). Grn$^{−/−}$ neurons had a higher instantaneous firing frequency than WT neurons at various current intensities, suggesting increased excitability (Fig. 2D). Removing one out of two alleles of the Tnfa gene from Grn$^{−/−}$ mice reduced the instantaneous firing frequency at 250 pA to that of WT neurons (Fig. 2E). TNFα deletion also reduced the elevated slope of the FI curve in Grn$^{−/−}$ neurons to the WT level (Fig. 2F).

Grn$^{−/−}$ mice exhibit exacerbated microglial activation and elevated levels of inflammatory cytokines, including TNFα (8, 9). Functionally, microglial processes constantly survey the environment and act as first responders to injury (12, 13). To assess how PGRN deficiency affects normal function of microglia, we compared microglial motility in Grn$^{−/−}$/Cx3CR1GFP/+ or Grn$^{−/−}$/Cx3CR1GFP−/− mice, in which microglia are labeled with green fluorescent protein (GFP), whose expression is driven by the Cx3CR1 promoter (27). Cortical microglia in intact brains were imaged by two-photon microscopy through a thinned-skull window (Movies S1 and S2). Baseline activity was measured by counting extensions and retractions of microglial processes in 10-min recordings (Fig. 3A, Left). The total number of extensions and retractions was significantly lower in Grn$^{−/−}$ mice than in Grn$^{+/+}$ controls (Fig. 3A, Right). Microglial processes in Grn$^{+/+}$ mice also exhibited an attenuated response to a laser-induced injury (Fig. 3B and C and Movies S3 and S4). In a transwell assay, significantly fewer Grn$^{−/−}$ than Grn$^{+/+}$ microglia-derived cells migrated toward an ATP or ADP gradient (Fig. 3D). Thus, PGRN deficiency impairs normal microglia function.

Alterations in microglia/myeloid cells have been implicated in pathological grooming, but the underlying mechanism is unclear (28, 29). To determine whether microglial abnormality induced by PGRN deficiency induces excessive grooming, we crossed CX3CR1-CreERT2 mice with Grn$^{−/−}$ mice and treated adult offspring with tamoxifen to selectively delete PGRN in microglia (30, 31). CX3CR1-Cre expressed efficiently in microglia, as expected (21). We also confirmed that PGRN reduction selectively delete PGRN in microglia (30, 31). CX3CR1-Cre-ERT2 mice with Grn$^{−/−}$ mice and treated adult offspring with tamoxifen to selectively delete PGRN in microglia (30, 31). CX3CR1-Cre-ERT2 mice with Grn$^{−/−}$ mice and treated adult offspring with tamoxifen to selectively delete PGRN in microglia (30, 31). CX3CR1-Cre-ERT2 mice with Grn$^{−/−}$ mice and treated adult offspring with tamoxifen to selectively delete PGRN in microglia (30, 31). CX3CR1-Cre-ERT2 mice with Grn$^{−/−}$ mice and treated adult offspring with tamoxifen to selectively delete PGRN in microglia (30, 31). CX3CR1-Cre-ERT2 mice with Grn$^{−/−}$ mice and treated adult offspring with tamoxifen to selectively delete PGRN in microglia (30, 31). CX3CR1-Cre-ERT2 mice with Grn$^{−/−}$ mice and treated adult offspring with tamoxifen to selectively delete PGRN in microglia (30, 31). CX3CR1-Cre-ERT2 mice with Grn$^{−/−}$ mice and treated adult offspring with tamoxifen to selectively delete PGRN in microglia (30, 31). CX3CR1-Cre-ERT2 mice with Grn$^{−/−}$ mice and treated adult offspring with tamoxifen to selectively delete PGRN in microglia (30, 31). CX3CR1-Cre-ERT2 mice with Grn$^{−/−}$ mice and treated adult offspring with tamoxifen to selectively delete PGRN in microglia (30, 31). CX3CR1-Cre-ERT2 mice with Grn$^{−/−}$ mice and treated adult offspring with tamoxifen to selectively delete PGRN in microglia (30, 31). CX3CR1-Cre-ERT2 mice with Grn$^{−/−}$ mice and treated adult offspring with tamoxifen to selectively delete PGRN in microglia (30, 31). CX3CR1-Cre-ERT2 mice with Grn$^{−/−}$ mice and treated adult offspring as expected (21). We also confirmed that PGRN reduction was detected only in brain, not in blood cells or plasma (Fig. 3D, E, and F). Selective deletion of PGRN in adult microglia markedly increased self-grooming, as in Grn$^{−/−}$ mice (Fig. 4G). These results demonstrate that PGRN-deficient microglia have a critical role in inducing OCD-like behaviors.

To further dissect how PGRN deficiency in microglia induces OCD-like behaviors, we examined the role of NF-κB signaling, a master regulator of inflammatory mediators, such as TNFα. NF-κB activation in microglia-derived cultures was quantified by expression of the reporter gene under 5xκB enhancer elements. TNFα stimulation induced a significantly stronger NF-κB activation in Grn$^{+/+}$ than Grn$^{−/−}$ cells, suggesting that PGRN deficiency increases...
Discussion

FTD patients exhibit behavioral abnormalities, including OCD-like behaviors (34). Cortico-basal ganglia circuits, particularly ventral striatum (nucleus accumbens), are strongly implicated in the expression of repetitive, compulsive, and impulsive behaviors. Indeed, excessive activity of striatal MSNs and reduced inhibitory inputs contribute to excessive grooming behavior (25, 26). In mice lacking the synaptic scaffolding gene, Sapap3, that have repetitive, compulsive behavior, the baseline firing rates of MSNs in the striatum were significantly elevated, most likely due to a defect in intrastriatal inhibition (26). Using whole-cell recordings in the nucleus accumbens core, we observed hyperexcitability of PGRN-deficient MSNs, which was rescued by reduction or ablation of TNFα levels. TNFα ablation also rescued the excessive grooming, but not social deficits, in PGRN-deficient mice, linking high levels of TNFα specifically to the excessive grooming. Our findings are consistent with a recent study that showed PGRN-deficient mice exhibit excessive grooming (35). Further studies are needed to determine how TNFα and related cytokines alter the circuits to induce OCD-like behavior.

Using confocal and intravital microscopy, we found that microglia lacking PGRN are dysfunctional, with reduced baseline motility and attenuated response to injury and ATP/ADP. Moreover, selective deletion of PGRN in adult microglia, by crossing CX3CR1-CreER mice with GrmF mice, induces excessive grooming and social deficits. These findings provide strong evidence that PGRN-deficient microglia in adult brain play a critical role in FTD-related phenotypes. Distinct from previous findings that linked excessive grooming with the Hoxb8 mutation (36) and bone marrow cells, our findings link excessive grooming to dysfunctional adult microglia. We further identified an instrumental role of NF-κB hyperactivation signaling in PGRN-deficient microglia. Selective inhibition of NF-κB in myeloid cells prevented not only excessive grooming, but also other FTD-like phenotypes, including social interaction deficits. Unlike TNFα, which seems to mediate excessive grooming, but not social deficits, NF-κB is a master regulator of inflammatory responses, and its hyperactivation would alter many pathways in PGRN-deficient mice. As a result, inhibition of NF-κB in myeloid cells abolished all FTD-related behaviors we tested. The downstream pathways responsible for various behavioral alterations in PGRN-deficient mice remain to be determined.

Our findings that PGRN substantially affects microglial function and that disruption of Grm expression in microglia is sufficient to induce OCD-like behavior provide insight into how PGRN deficiency induces FTD. Inhibition of the NF-κB pathway, in particular TNFα, is a potential therapeutic approach for reducing MSN hyperexcitability and associated OCD-like behaviors in PGRN-deficient FTD.

Methods

Patient Behavior and Voxel-Based Morphometry Analyses.

Participants. Written informed consent was obtained from patients or surrogates according to procedures approved by the UCSF Committee on Human Research. All GRN mutation carriers and healthy controls were clinically assessed by a behavioral neurologist and a neuropsychologist within 180 d of MRI scanning. Clinical diagnoses were made at a multidisciplinary consensus conference (Table S1). Genetic analysis for the GRN mutation was as described (4). Repetitive and compulsive behaviors were routinely noted in clinician research summaries and measured with the aberrant motor behavior scale of the Neuropsychiatric Inventory (37). Simple stereotypes are characterized by picking clothing or skin, tapping fingers or feet, rubbing hands or legs, and nail biting. Aberrant motor behaviors seen in these patients also include repetitive checking, repetitive grooming or personal cleanliness (brushing teeth, hand washing, shaving), and collecting. Other repetitive activities were less common in this group of patients (e.g., list making, compulsive visual art, verbal stereotypes, pacing, superstitious fears and rituals, cleaning, ordering or arranging, repetitive purchases, or preoccupation with narrow habits or interests).

Voxel-based morphometry analyses. A review of the University of California, San Francisco Memory and Aging Center database identified 20 symptomatic GRN carriers who had a structural MRI scan. The clinical diagnosis was FTD in 12 of the carriers, cortico-basal syndrome in 2, primary progressive aphasia in 3, and Alzheimer’s disease in 3. Thirteen GRN carriers and 30 controls...
underwent MRI scanning with a Siemens Tim Trio 3T scanner; T1-weighted images were obtained with volumetric magnetization-prepared rapid gradient echo sequences (repetition time, 2,300 ms; echo time, 2.98 ms; flip angle, 9°; 160 sagittal slices; matrix size, 256 × 256; voxel size, 1 mm³). Seven GRN carriers and 12 controls underwent MRI scanning with a 1.5T Magnetom Vision system (Siemens); T1-weighted images of the entire brain were obtained with volumetric magnetization-prepared rapid gradient echo sequences (repetition time, 10 ms; echo time, 4 ms; inversion time, 300 ms; flip angle, 15°; coronal orientation perpendicular to the double spin echo sequence, 1 × 1-mm³ in-plane resolution, and 1.5-mm slab thickness). Voxel-based morphometry was done with SPM12 (www.fil.ion.ucl.ac.uk/spm). T1-weighted images were preprocessed by standard spatial normalization in the SPM12 module, using the six standard tissue probability maps with a light cleanup. Standard affine regularization with the ICBM European brain template and warping regularization with the default parameters were used. Images of gray matter maps of GRN mutation carriers and controls were compared with two-sample t-tests. Nuisance covariates included age, sex, handedness, total intracranial volume, and scanner. Voxel-based morphometry analyses were thresholded at P < 0.05 (corrected for familywise error).

Mice. TNFα, Lym-M-cre, Cx3Cr1-CreERT, IkkβF/F, Cx3Cr1-GFP, and Grn−/− mice were on a C57B6 background. Grn−/− mice (9) were on a C57B66 mixed background. To remove Grn alleles from myeloid cells, Grn+/− mice (9) were crossed with mice in which CreER recombinase expression was driven by the fractalkine receptor (Cx3C1) promoter (30). In 2- to 3-mo-old Cx3Cr1-CreERT/Grn−/− mice, Cre expression was induced by i.p. injection of tamoxifen (2 mg/d in corn oil) for 5 or 10 d. To confirm microglia-specific Cre expression, Cx3Cr1-CreERT mice were crossed with RFP/F mice and treated with tamoxifen. For rescue experiments, Grn+/− or Grn−/− mice were crossed either with mice expressing floxed Ikkβ and Cre recombinase under the LyM promoter to abolish NF-kB signaling specifically in myeloid cells (32, 33) or with TNFα knockouts mice (The Jackson Laboratory) to deplete proinflammatory TNFα signaling. For identification of microglia in vivo imaging experiments, Cx3Cr1-GFP mice (27) were crossed with Grn−/− mice to obtain PGRN-deficient and WT mice that expressed GFP heterozygously in myeloid cells. No more than five same-sex mice were housed in a single cage. All animal procedures were consistent with guidelines approved by the Institutional Animal Care and Use Committee of the University of California, San Francisco.

Behavior Tests. All mice were housed in a pathogen-free barrier facility with a 12 h light/12 h dark cycle and ad libitum access to food and water. Behavioral experiments were done during daylight hours. Investigators who performed the behavior tests and subsequent manual scoring were blinded to the genotypes of the mice. No randomization was used. Mice for experiments were chosen in semirandom, interleaving manner. All mice tested behaviorally had not been subject to prior drug administration or surgery. Some cohorts participated in multiple noninvasive behavioral tests.

Grooming. The protocol for analyzing self-grooming behavior was adapted from Yang et al. (22). Mice were tested between 1200 hours and 1600 hours after 10 min of habitation to an empty housing cage covered with a lid. Then mice were videotaped for 10 min.

Nesting. Mice were placed in a new housing cage containing two cotton nestlets for 7 h. Nest quality was scored under blinded conditions as described (39). A score of 0 indicated a nestlet untouched after 7 h. A score of 5 indicated a nest with complete dome and only one small entry hole. Unfinished nests were scored 1, 2, or 3, depending on the height of the walls.

Social interaction. Mice were allowed to freely explore an empty three-chambered box containing two empty wire cups in the outer chambers. After 10 min, a stranger mouse was placed in one of the cups and an inanimate object in the other, and time spent sniffing each cup was quantified for 10 min. Data are presented as the ratio of time spent sniffing the mouse cup to time spent sniffing the object cup.

Marble burying. Twelve glass marbles were distributed in a 4 × 3 grid in a new housing cage with double bedding material. Each mouse was allowed to explore the cage for 30 min in dim light. A marble was considered buried if it was less than 50% visible.

Hot plate test. Mice were placed in a glass cylinder on a 52 °C hot plate. Latency to a nociceptive response (hind paw lick, flick, or jump) was measured, and mice were immediately removed from the apparatus. If a nocicceptive response was not seen within 30 s, the test was stopped.

Electrophysiological Recordings. The recordings and subsequent analyses were performed by an investigator blinded to the genotypes of the mice. The mean ages of Grn−/−, Grn+/−, and Grn−/− mice were 351, 332, 368, and 358 d, respectively. Mice were anesthetized with isoflurane and cardipac-perfused with ice-cold N-methyl-D-glucamine (NMDG)-based artificial cerebrospinal fluid (ACSF) (93 mM N-methyl-D-glucamine, 2.5 mM KCl, 1.25 mM NaH2PO4, 30 mM NaHCO3, 20 mM HEPES, 25 mM glucose, 2 mM thiourea, 5 mM Na-ascorbate, 3 mM Na-pyruvate, 12 mM N-acetyl-cysteine, 0.5 mM CaCl2, and 10 mM MgSO4; 295 mOsm) designed to obtain healthy slices from aged mice (40). The brain was quickly extracted, allowed to cool for 20 s in ice-cold NMDG-ACSF, and cut into 300-µm coronal sections with a vibratome (Thermo Scientific). Slices 900-µm thick containing the nucleus accumbens (identified by using the anterior commissure and olfactory limb as landmarks) were incubated in NMDG-ACSF for 10 min at 35 °C, in Hepes-based ACSF (92 mM NaCl, 2.5 mM KCl, 1.25 mM NaH2PO4, 30 mM NaHCO3, 20 mM HEPES, 25 mM glucose, 2 mM thiourea, 5 mM Na-ascorbate, 3 mM Na-pyruvate, 12 mM N-acetyl-cysteine, 0.5 mM CaCl2, and 10 mM MgSO4; 295 mOsm) designed to obtain healthy slices from aged mice (40). Then mice were videotaped for 10 min.

Behavioral response. The chemotactic response of primary microglia from Grn−/− or Grn−/− mice toward 100 µM ATP or ADP was measured by a transwell assay. Mice were tested between 1200 hours and 1600 hours after 10 min of habitation to an empty housing cage covered with a lid. Then mice were videotaped for 10 min.

Electrophysiological recording. The recordings and subsequent analyses were performed by an investigator blinded to the genotypes of the mice. The mean ages of Grn−/−, Grn+/−, and Grn−/− mice were 351, 332, 368, and 358 d, respectively. Mice were anesthetized with isoflurane and cardipac-perfused with ice-cold N-methyl-D-glucamine (NMDG)-based artificial cerebrospinal fluid (ACSF) (93 mM N-methyl-D-glucamine, 2.5 mM KCl, 1.25 mM NaH2PO4, 30 mM NaHCO3, 20 mM HEPES, 25 mM glucose, 2 mM thiourea, 5 mM Na-ascorbate, 3 mM Na-pyruvate, 12 mM N-acetyl-cysteine, 0.5 mM CaCl2, and 10 mM MgSO4; 295 mOsm) designed to obtain healthy slices from aged mice (40). The brain was quickly extracted, allowed to cool for 20 s in ice-cold NMDG-ACSF, and cut into 300-µm coronal sections with a vibratome (Thermo Scientific). Slices containing the nucleus accumbens (identified by using the anterior commissure and olfactory limb as landmarks) were incubated in NMDG-ACSF for 10 min at 35 °C, in Hepes-based ACSF (92 mM NaCl, 2.5 mM KCl, 1.25 mM NaH2PO4, 30 mM NaHCO3, 20 mM HEPES, 25 mM glucose, 2 mM thiourea, 5 mM Na-ascorbate, 3 mM Na-pyruvate, 12 mM N-acetyl-cysteine, 0.5 mM CaCl2, and 10 mM MgSO4; 295 mOsm) designed to obtain healthy slices from aged mice (40). Then mice were videotaped for 10 min.
Quantifying Microglial Chemotaxis. To study the chemotaxis of primary microglial cells, we used 24-well cell-culture inserts (pore size 8 μm; Falcon). ADP or ATP was diluted in serum-free DMEM (DMEM, final concentration, 100 μM) and applied to a 24-well cell-culture plate (Corning). Freshly harvested primary microglia (10^5) were placed on a cell-culture insert on wells containing serum-free DMEM (control), ATP, or ADP. After incubation at 37 °C for 5 h, the inserts were washed, and the cells were fixed and stained with Diff-Quik (Medion Diagnostics). Nonmigrated cells on the upper surface of each insert were removed with a cotton swab. The rate of migration was determined by counting cells in four microscopic fields per well with a Leica DFC310 FX camera. All experiments were done in duplicate, and numbers were normalized to a control group (WT microglia in serum-free DMEM).

Blood and Spleen Cell Harvest. Mice were deeply anesthetized with Avertin. Detailed methods are described in the [SI Methods](#).

Isolation of Microglia from Adult Mouse Brain. Adult microglia were isolated from tamoxifen-injected Cx3Cr1CreERT2/GrnF/F or GrnF/F mice as described [41] with minor modifications. Detailed methods are described in the [SI Methods](#).

Primary Mouse Microglia. Primary cultures were prepared from GrnF/F or GrnF/F mice on postnatal day 0 or 1. Detailed methods are described in the [SI Methods](#).

Quantitative Real-Time PCR. RNA was extracted from cortices or from freshly isolated adult microglia. Expression was normalized to that of GAPDH and expressed as fold change relative to the average value in WT mice. Detailed methods are described in the [SI Methods](#).

Protein Extraction and ELISAs. Protein extraction and mouse PGRN levels were detected by ELISA as described [42]. Detailed methods are described in the [SI Methods](#).

Immunohistochemistry. For identification of microglia, mouse brain sections were permeabilized in Tris-buffered saline with 0.5% Triton X-100, blocked with 5% CO_2, pH 7.3–7.35. Slices were transferred to a submerged recording chamber with Na-phosphocreatine, and 0.2% biocytin (300 mOsm). KCl, 100 mM K-gluconate, 10 mM Hepes, 4 mM Mg-ATP, 0.3 mM Na-GTP, 10 mM CaCl_2, and continuously perfused with ACSF at 33 °C during recording. Patch pipettes with a tip resistance of 6–8 MΩ were made in glass pipette electrodes filled with internal solution. The membrane potential was held at −80 mV), and 1.5-s current pulses of different amplitudes were elicited in a pseudorandom sequence with glass pipette electrodes filled with internal solution. The membrane potential was held at −80 mV), and 1.5-s current pulses of different amplitudes were elicited in a pseudorandom sequence with a Leica DFC310 FX camera. All experiments were done in duplicate, and numbers were normalized to a control group (WT microglia in serum-free DMEM).
10% normal goat or donkey serum (Jackson Immunoresearch), and stained with rabbit anti-Iba1 (1:750, Wako). Immunoreactive structures were detected with Alexa-488 Fluor goat or donkey anti-rabbit antibody (Invitrogen). Slices were washed and stained for 30 min with Hoechst 33258 (1:1000; Sigma) and mounted for analysis by confocal microscopy. Images were acquired with a Nikon ECLIPSE Ti 2000 spinning-disk confocal microscope.

NF-κB Reporter Assay. Gm WT or Gm−/− primary microglia cells were transduced with 5xκB-GFP or pGreenFire-5xκB lentivirus expressing both GFP and luciferase as reporters to assess NF-κB activity. Cells were treated with recombinant TNFα (100 mg/mL, R&D Systems) for 8 h and imaged, or they were lysed in luciferase assay buffer (Promega) and analyzed for luciferase activity with a Victor luminometer (Perkin-Elmer).

Statistical Analysis. Prism v.5 (GraphPad, STATA (StataCorp LP), or IgorPro (WaveMetrics)) was used for data analysis. All values in the figures are expressed as means ± SEM. Sample sizes were determined based on our previous experience or published literature. For human studies, the sample size depended on the availability of the patients at the time of the study. Outliers were excluded according to criteria defined a priori (e.g., >2 SD above or below). Differences between means were assessed by unpaired, two-tailed t test (parametric data) or Mann–Whitney U test (nonparametric data). Differences among multiple means were assessed by one-way ANOVA, followed by Bonferroni or Dunnett’s test on pairwise comparisons against genotypes (with Tukey-Kramer or Bonferroni correction for multiple comparisons) as indicated. The Kruskal-Wallis test was used to compare nonparametric data. An F test was used to compare variances on every dataset. If variances were significantly different, Welch’s correction was applied. The analyses of the intrinsic excitability data were carried out using custom scripts in IgorPro. P values were corrected for multiple comparisons using the method of Holm.

Code Availability. The code for analyzing the fH slope is available at https://github.com/praveen-panja/data-analysis-igor-pro-waveometrics.

ACKNOWLEDGMENTS. We thank Yungui Zhou, Vivian Shen, and Robert Chen for technical help; Drs. Eric Roberson, Brian Warmus, Anatol Kreitzer, Laura Mitic, and Seo-hyun Cho for technical advice and insightful discussion; and Dr. Michael Karin (University of California, San Diego) for lkbkbF/F mice. Genotyping information of human samples was provided by Drs. Giovanni Coppola and Dan Geschwind (University of California, Los Angeles). This work was supported in part by the Consortium for Frontotemporal Demencia (L.G., R.V.F., and S.E.L.), NIH Grants R01AG036884 and R01AG051390 (to L.G.), K23 AG039414 (to S.E.L.), and F32NS076239 (to S.S.M.), a postdoctoral fellowship from the German Academic Exchange Service (to G.K.), NIH Grants 1R01NS087198 (to W.-B.G.), and NIH/NCRR Grant GO6 R018928 (a facility grant to The J. David Gladstone Institutes). Behavioral data from NIH Grant R01NS0565780. Human studies were supported by ADRC Grant P50 AG023501 (to B.L.M.) and PPG Grant P01 AG019724 (to B.L.M.).
