Laboratory measurements of HDO/H₂O isotopic fractionation during ice deposition in simulated cirrus clouds

Kara D. Lamb¹,¹, Benjamin W. Clouser³, Maximilien Bolotb,² Laszlo Sarkozyb,³ Volker Ebertb, Harald Saathoffb,¹ Ottmar Möhlerb,³ and Elisabeth J. Moyerb,³

¹Department of Physics, University of Chicago, Chicago, IL 60637; ²Department of the Geophysical Sciences, University of Chicago, Chicago, IL 60637; ³Physikalisch-Technische Bundesanstalt, 38116 Braunschweig, Germany; and ⁴Institute for Meteorology and Climate Research, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany

Edited by Mark H. Thiemens, University of California, San Diego, La Jolla, CA, and approved April 5, 2017 (received for review November 5, 2016)

The stable isotopologues of water have been used in atmospheric and climate studies for over 50 years, because their strong temperature-dependent preferential condensation makes them useful diagnostics of the hydrological cycle. However, the degree of preferential condensation between vapor and ice has never been directly measured at temperatures below 233 K (−40 °C), conditions necessary to form cirrus clouds in the Earth’s atmosphere, routinely observed in polar regions, and typical for the near-surface atmospheric layers of Mars. Models generally assume an extrapolation from the warmer experiments of Merlivat and Nief (22) to temperatures warmer than the regime for cirrus formation. (We denote the expression for the temperature dependence in ref. 22 as α_{eq}.)

Measurements of the preferential fractionation of HDO vs. H₂O system, all use extrapolations of α_{eq} from the measurements of Merlivat and Nief (22) at temperatures warmer than the regime for cirrus formation. In Earth’s atmosphere and produce high-vertical-resolution profiles of HDO/H₂O, measurements as tracers: for paleotemperature or paleoaltimetry (6, 12), by nadir-sounding satellite instruments (6, 12), and for understanding the sources of water and the history of hydrogen escape on Mars (10, 11). In Earth’s atmosphere, HDO has been measured by in situ balloon and laboratory instruments (6, 12), by nadir-sounding satellite instruments (6, 12), and by limb sounders that look at the edge of Earth’s atmosphere and produce high-vertical-resolution profiles (15–17). The ExoMars mission, launched in 2016, will measure similar profiles on Mars (18). To date, water isotopologues have been introduced into at least 10 general circulation models of Earth (e.g., refs. 19–21) and one of Mars (10). The science conclusions drawn from comparing model output to isotopic measurements depend sensitively on the models’ assumed value for isotopic fractionation. For the HDO/H₂O system, all use extrapolations of α_{eq} from the measurements of Merlivat and Nief (22) at temperatures warmer than the regime for cirrus formation. (We denote the expression for the temperature dependence in ref. 22 as α_{eq}.)

Measuring α_{eq} at cold temperatures is difficult largely because water vapor pressure becomes so small: in the cold uppermost troposphere, mixing ratios of H₂O can be a few parts per million, and those of HDO can be a few parts per billion. However, equilibrium fractionation becomes very large in these conditions, in part because the effect scales as $\sim 1/T^2$. The temperature dependence is typically assumed as $\alpha_{\text{eq}}(T) = \exp(\alpha_0 + \alpha_1/T^2)$.

Significance

The preferential deposition of heavy water (HDO or H₂¹⁸O) as ice is a fundamental tracer in the geosciences, used for understanding paleoclimate and water cycling, but the basic physical chemistry is not well measured. We describe here measurements of the preferential fractionation of HDO vs. H₂O at the cold temperatures relevant to cirrus clouds on Earth and snow on Mars. We also provide a quantitative demonstration of kinetic isotope effects in nonequilibrium conditions, and show how targeted dynamic experiments can be used to understand processes at ice surfaces.

Author contributions: K.D.L., M.B., and E.J.M. led the fractionation analysis; E.J.M. directed the construction and operation of ChiWIS; L.S. led the design of ChiWIS; K.D.L., B.W.C., and L.S. built and operated ChiWIS; K.D.L., B.W.C., and L.S. analyzed raw ChiWIS data to produce isotopic measurements; H.S. provided and operated multipass optics; H.S. and O.M. operated AIDA during the isoCloud campaign; H.S. and O.M. provided interpreted AIDA instrument data; V.E. provided SP-APiCT and APeT data; and K.D.L., M.B., and E.J.M. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Data deposition: The isoCloud datasets and isotopic model can be found at https://publish.globus.org/pushhandle/11446247.¹

¹Present address: Chemical Sciences Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO 80305.

²Present address: Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ 08540.

³To whom correspondence should be addressed. Email: moyer@uchicago.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1618374114/-/DCSupplemental.
vapor pressure isotope effects seen in natural systems. In 2013, Ellehøj et al. (26) reported measurements implying still stronger fractionation, with α_{eq} nearly 1.6 when extrapolated to 190 K, i.e., preferential partitioning α_{eq}-1 nearly 50% higher than implied by M67 (22). (We denote the expression for the temperature dependence in ref. 26 as E13; see SI Appendix, Table S1 for all previous estimates.) That difference would significantly alter interpretations of water isotopic measurements.

In many real-world conditions, kinetic effects during ice deposition can modify isotopic fractionation from the equilibrium case. Jouzel and Merlivat (27) explained nonequilibrium isotopic signatures in polar snow as the result of reduced effective fractionation when ice grows in diffusion-limited (and hence supersaturated) conditions, reasoning that preferential uptake should isotopically lighten the near-field vapor around growing ice crystals, with the effect amplified by the lower diffusivity of the heavier isotopologues. These diffusive effects are important for rain as well as snow, because most precipitation originates in mixed-phase (ice and liquid water) clouds, and can therefore alter “deuterium excess” in rainwater, a metric of nonequilibrium conditions that is often interpreted as reflecting only the initial evaporation of water (28). Despite the importance of kinetic effects during ice deposition, they are poorly characterized by experimental studies.

In the framework of Jouzel and Merlivat (27), the kinetic modification factor α_k can be written in terms of properties of the bulk gas,

$$\alpha_k = \frac{S_i}{\alpha_{\text{eq}} \cdot d (S_i - 1) + 1},$$

where S_i is the supersaturation over ice and d (following the notation of ref. 29) is the isotopic ratio of diffusivities of water molecules in air. (That is, $d = D_i/D'_i$, where D_i and D'_i are the molecular diffusivities of H$_2$O and HDO, respectively.) The effective isotopic fractionation is then $\alpha_{\text{eff}} = \alpha_{\text{eq}} \cdot \alpha_k$. The modification can be large at high supersaturations and cold temperatures, e.g., when ice nucleates homogeneously within aqueous sulfate aerosols in the upper troposphere ($S_i = 1.5, T = 190$ K). For ice growth occurring at these conditions, the preferential partitioning would be reduced by over 55% ($\alpha_{\text{eq}} = 1.43$, but $\alpha_{\text{eff}} = 1.24$) even conservatively using one of the lowest published estimates of d, that from Cappa et al. (ref. 30, $d = 1.0164$). The diffusive model of Eq. 2 is widely used but poorly validated. Kinetic effects during ice growth have been explored in three prior experimental studies (27, 31, 32). Although these provided qualitative support, relating supersaturated conditions to reduced fractionation or gradients in vapor isotopic composition, no experiments produced quantitative agreement with Eq. 2.

Recent theoretical studies have proposed extending the diffusive model to include surface processes at the vapor–ice interface, which may become important when ice crystals are small (of order microns). In these conditions, surface impedance becomes comparable to vapor impedance, and any difference in deposition coefficients between isotopologues would contribute to kinetic isotope effects (29, 33). (The deposition coefficient quantifies the probability that a molecule incident on a growing ice crystal will be incorporated into the crystal lattice. Again following ref. 29, we define its isotopic ratio as $x = \beta / \beta'$, where β and β' are the deposition coefficients for H$_2$O and HDO, respectively.) The deposition coefficient ratio has never been measured, but suggested plausible values of $x = 0.8$ to 1.2 would, in our example of upper tropospheric cirrus formation, further alter preferential partitioning by an additional 7 to 9%. Previous experimental studies of kinetic fractionation (27, 31, 32) were not sensitive to surface processes, because all involved large dendritic crystals in a regime where growth is not limited by surface effects (e.g., refs. 29, 34, and 35).

IsoCloud Campaigns

To investigate both equilibrium and kinetic isotopic effects at low temperatures, we carried out a series of experiments at the Aerosol Interactions and Dynamics in the Atmosphere (AIDA) cloud chamber during the 2012–2013 IsoCloud (Isotopic fractionation in Clouds) campaign. AIDA is a mature facility that has been widely used for studies of ice nucleation and cirrus formation (e.g., refs. 36–38). In the IsoCloud experiments, we determine isotopic fractionation not from static conditions as in previous studies but by measuring the evolving concentrations of HDO and H$_2$O vapor as ice forms. These experiments more closely replicate the conditions of ice formation in the atmosphere. Results reported here are derived from a new in situ tunable diode laser absorption instrument measuring HDO and H$_2$O (the Chicago Water Isotope Spectrometer, ChiWIS) and from AIDA instruments measuring total water, water vapor, ice crystal number density, temperature, and pressure (Fig. 1).

AIDA experiments produce rapid cooling inside the cloud chamber by pumping and adiabatic expansion, causing nucleation and growth of ice particles in situ. In a typical experiment (Fig. 2), cooling drives supersaturation above the threshold for ice nucleation within a minute of the onset of pumping. ($S_i \approx 1$ to 1.2 for heterogeneous and 1.4 to 1.6 for homogeneous nucleation.) As ice grows, the isotopic ratio of chamber water vapor lightens as the heavier isotopologues preferentially condense. For a typical cooling of 5 K to 9 K, water vapor...
Fig. 2. Typical adiabatic expansion experiment. (Top) Pressure drop (green) causes drop in temperature (red) for ~2 min before thermal flux from the wall becomes important. (Center) Ice formation (light blue, number density of ice particles; dark blue, total ice water content (IWC)) begins when critical supersaturation (black) is reached. (Ice water content is given in units of equivalent mixing ratio in chamber air—parts per million by volume—if ice were sublimated to the vapor phase.) (Bottom) Vapor isotopic ratio (black, doped to ~12× natural abundance) shows three stages: initial decline as ice growth draws down vapor, constant period when ice growth is driven by wall flux, and final rise as ice sublimates. Fractionation factor is derived from model fit to initial period (red). After sublimation, vapor isotopic ratio exceeds starting value because of wall contribution; system then reequilibrates over ~5 min. Fluctuations while ice is present reflect inhomogeneities due to turbulent mixing.

Fig. 3. Example illustrating reduced isotopic partitioning when ice grows in supersaturated conditions. Data points show 1-s measurements of \(R_w = [\text{HDO}]/[\text{H}_2\text{O}] \) in two expansion experiments (#27 and #45) at similar temperatures but with differing \(S_i \) (mean 1.01 and 1.35), plotted against evolving water mixing ratio \(r_w \). Both axes are scaled to initial values because only relative changes are physically meaningful. The experiment proceeds from upper left to lower right, and the slope gives the effective fractionation \(\alpha_{\text{eff}} = 1 \). Deviations from linearity result from changing \(S_i \) (and thus \(\alpha_i \)), from changing temperature (and thus \(\alpha_{\text{eq}} \)), and from wall flux. The two experiments show different effective fractionation (solid lines) but similar derived equilibrium fractionation (dashed lines).

and any additional sources of water. In the absence of other sources, water vapor isotopic composition would evolve by simple Rayleigh distillation, with vapor progressively depleted as ice grows and HDO is segregated into the ice phase. The effective isotopic fractionation \(\alpha_{\text{eff}} = \alpha_{\text{eq}} \cdot \alpha_i \) would then be the slope of that evolution (Fig. 3). Isotopic evolution deviates from Rayleigh distillation when the wall contribution becomes nonnegligible.

We account for all three effects by fitting each experiment to a model derived from mass balance over HDO and HDO,

\[
\frac{dR_v}{dt} = -(\alpha_{\text{eff}} - 1) R_v \frac{P_v}{r_v} + (\gamma - 1) R_v S_{wv} \text{r}_v. \tag{3}
\]

(For further discussion, see SI Appendix, Isotopic Model for Expansion Experiments.) We measure the water vapor concentration \(r_v \) and isotopic composition \(R_v = r'_v/r_w \) (where \(r'_v \) and \(r_v \) denote the mass mixing ratio of HDO and HDO, respectively, in the vapor phase), and use water vapor and total water to infer \(P_v \), the loss of vapor to ice formation, and \(S_{wv} \), the source of vapor from wall outgassing. The remaining two unknowns are the fractionation \(\alpha_{\text{eff}} \) and \(\gamma \equiv R_w/R_v \), the isotopic composition of wall flux (\(R_w = r'_w/r_w \)) normalized by that of bulk vapor.

We fit for these unknowns in two ways: fitting \(\alpha_{\text{eff}} \) and \(\gamma \) independently (two-parameter fit) and assuming that outgassing is nonfractionating sublimation of ice that had previously equilibrated with chamber vapor, i.e., assuming \(R_w = \alpha_{\text{eq}} R_v \) (one-parameter fit). Results are consistent, suggesting that this assumption is valid. To minimize the influence of wall flux uncertainties, we fit only the initial part of each experiment when ice deposition dominates (54 s to 223 s); most ice growth occurs in the first few minutes of each experiment, and the wall contribution grows over time. See SI Appendix, Fitting Protocol: Individual Experiments for discussion of fitting individual experiments and uncertainty treatment.

To convert a derived effective fractionation \(\alpha_{\text{eff}} \) into an equilibrium fractionation \(\alpha_{\text{eq}} \), we must assume a functional form for
α_{eq}. We take as our default assumptions the classical model of Jouzel and Merlivat (27) (Eq. 2) and isotopic diffusivity ratio d from Cappa et al. (30), but validate both assumptions using experiments in differing conditions of saturation and ice particle sizes. (See Results and SI Appendix, Evaluation of Kinetic Models.)

To derive the temperature dependence of the equilibrium fractionation factor, we first evaluate equilibrium fractionation factors for all 28 individual experiments, assuming evolving α_{eq} from measured S_i and Eq. 2. Because the experiments are performed at different temperatures, we can then estimate the temperature-dependent $\alpha_{eq}(T)$ by taking a weighted global fit for the 28 experimental α_{eq} values to the $1/T^2$ temperature dependence of Eq. 1, constraining the fit to agree with the warmest measurement of Merlivat and Nief (22). (See SI Appendix, Global Fit Procedure for details; analysis implies that the functional form of Eq. 2 is indeed valid over this temperature range.)

Results

Equilibrium Fractionation Factor. We find that the temperature dependence of α_{eq} lies far below $E13$ (26), and slightly below the widely used M67 (22) (Fig. 4). The distinction from M67 (22) is significant to a 3σ confidence interval and robust to assumptions made in fitting and in modeling kinetic isotope effects. (The uncertainty estimates in Fig. 4 are used in weighting the global fit; see SI Appendix, Fitting Protocol: Individual Experiments for uncertainty, SI Appendix, Fitting Protocol: Temperature Dependence for global fitting, and SI Appendix, Evaluation of Kinetic Models for tests of kinetic models.) Estimates for $\alpha_{eq}(T)$ obtained by the two fitting methods differ by $<10^{-2}$ throughout the experimental temperature range. We recommend that modelers use derived constants for the one-parameter fit: $a_0 = -0.0559$ and $a_1 = 13,525$; compare to M67 (22) with $a_0 = -0.0945$ and $a_1 = 16,289$.

Kinetic Isotope Effects. As discussed previously, the inferred equilibrium fractionation values of Fig. 4 required correction for assumed kinetic modification, because any supersaturated conditions lead to lower effective isotopic fractionation (Fig. 3). The fact that IsoCloud experiments span a range of supersaturations allows us to quantitatively test models of kinetic isotope effects. Because equilibrium fractionation should depend only on temperature, a validity test for a kinetic model is that retrieved α_{eq} in individual experiments be independent of supersaturation: any dependence on S_i would imply an overcorrection or undercorrection for kinetic effects. We find that if α_{eq} is estimated with the classic diffusive model of Eq. 2 and our default $d = 1.0164$ (30), the resulting fitted values for α_{eq} indeed show negligible dependence on supersaturation.

We can then extend this test to derive constraints on physical parameters in models of the kinetic effect. In each test case, we find the parameter value that yields a consistent α_{eq} independent of S_i, along with 1σ bounds from propagation of uncertainties. (See SI Appendix, Evaluation of Kinetic Models for details.) Estimating the isotopic diffusivity ratio d under the pure diffusive model of Eq. 2 yields an optimal value slightly below the lowest published measurement, although with uncertainty encompassing all literature values (Fig. 5). The optimized value is 1.009 ± 0.036, whereas published estimates of d evaluated at 190 K span 1.015 to 1.045 (SI Appendix, Table S5). Although this constraint is not strong, it motivates our choice of the relatively low diffusivity ratio measured by Cappa et al. (30) as our default, a value that is also consistent with kinetic gas theory.

We next test a model that incorporates surface kinetic effects following Nelson (29) (SI Appendix, Fig. S10). In this model, the isotopic diffusivity ratio d in Eq. 2 is replaced by $(dk + xy)/(1 + k)$, where x is the ratio of deposition coefficients, y is the ratio of thermal velocities ($\sqrt{19}/18$), and the dimensionless coefficient $k \equiv rv/D_s$, where r is the ice particle radius and v, D_s, and β are the thermal velocity, diffusivity in air, and deposition coefficient for H$_2$O, respectively. Note that this surface kinetic model does not reduce to the pure diffusive model of Eq. 2 when x is set to 1 but, when fit to the experiments described here, produces nearly identical results. The limited IsoCloud experiments do not allow d and x to be constrained simultaneously, but we can estimate each given an assumption about the other. We therefore optimize for x in the surface kinetic model given a variety of assumed d.

These tests yield x slightly below 1 regardless of the assumed diffusivity ratio. At the low default $d = 1.0164$, we obtain $x = 0.957 \pm 0.22$ (SI Appendix, Fig. S10). The higher the assumed value of d, the lower the implied value of x; for example, $d = 1.0251$ (40) yields $x = 0.924$ (again ± 0.22). These experiments may therefore provide tighter constraints on x than the range of 0.8 to 1.2 suggested by Nelson (29). The results consistently suggest that HDO molecules are slightly more likely to be incorporated into the crystal lattice than are H$_2$O.

Discussion

Given the extensive use of water isotopic variations in climate, atmospheric, and planetary studies, the paucity of measurements of the fundamental fractionation properties of water has long been a concern. This concern was heightened by the recent significant proposed revision by Ellehøj et al. (26) to the half-century-old measurements of Merlivat and Nief (22). The experiments described here should provide some resolution of that discrepancy. The IsoCloud campaign allowed direct measurements of the equilibrium fractionation factor between HDO and H$_2$O at the cold temperatures characteristic of cirrus clouds, polar snow, or Martian snow and ice deposits. These measurements rule out the substantial upward revision to α_{eq} proposed by Ellehøj et al. (26) and, in fact, imply a slightly weaker temperature dependence.
Fig. 5. Effect of choice of d (ratio of isotopic diffusivities) on calculated kinetic effects and retrieved equilibrium fractionation in experiments, plotted against deposition-weighted supersaturation. Top halves of panels show kinetic factors for different experiments using the diffusive model of Jouzel and Merlivat (27) and the stated value of d (circles), and, for reference, identical calculations using the default d = 1.0164 (open diamonds). Bottom halves show resulting equilibrium fractionations, for each experiment, as the fitted optimal value for d and conservative upper and lower bounds. Bounds span the range of published estimates of d. (See SI Appendix, Tests of Kinetic Models and Fig. S10 for similar analysis on \(x \), the ratio of isotopic deposition coefficients.)

dependence and therefore slightly lower equilibrium fractionation than that of Merlivat and Nief (22).

The IsoCloud campaign also provided quantitative confirmation of theories of the kinetic modification to fractionation during ice deposition. Cirrus formation experiments in supersaturated conditions demonstrate that the diffusive model for kinetic isotope effects originally proposed 3 decades ago provides an adequate explanation of suppressed fractionation when ice growth is diffusion-limited. Experiments show slightly weaker kinetic effects than expected with the perhaps most widely used estimate of the isotopic diffusivity ratio \((d = 1.0251) \) from ref. 40 but are consistent with the slightly lower estimate of Cappa et al. \((d = 1.0164) \) (30).

Experimental results are also consistent with a surface kinetic model that posits additional modifications to fractionation due to isotopic differences in incorporation into the ice lattice. Fits to this model consistently suggest a slightly higher deposition coefficient for HDO than for H2O, although the results cannot exclude equal values. However, the limited set of IsoCloud experiments allows for multiple solutions: an even stronger surface effect favoring HDO deposition could be counteracted by an even stronger diffusion effect preferentially bringing H2O to the growing ice particle.

The constraints on diffusivity and deposition ratios obtained here could be tightened further given a targeted series of experiments. In IsoCloud, the experiments with conditions most sensitive to kinetic effects tended to be those at the coldest temperatures, where signal-to-noise is lowest. Diffusion-related effects play a role only in supersaturated conditions; in the IsoCloud experiments, homogeneous nucleation experiments with high \(S_i \) were conducted only at \(T < 205 \) K. Surface effects play a role only when \(k \) and therefore ice crystal size are small; in IsoCloud, these conditions again occurred only at the coldest temperatures. Values for \(k \) (2 to 15) followed ice particle diameters (2 \(\mu \) m to 14 \(\mu \) m), which followed temperature; in IsoCloud, diameters below 5 \(\mu \) m dominated only for \(T < 215 \) K. New experiments at warmer (> 220 K) temperatures that systematically varied ice crystal diameters in high-supersaturation conditions could allow distinguishing diffusion from surface effects.

Note that, although these methods can, in principle, be used to evaluate fractionation in other isotopologues of water, the oxygen-substituted isotopic systems are more challenging because of their smaller vapor pressure isotope effects: at 190 K, \(\alpha_{18O} < 1.04 \) for H218O/H2O vs. 1.4 for HDO/H2O (41). Isotopic doping is, however, particularly useful for the low-natural-abundance H218O.

Although the particular set of IsoCloud experiments provides only broad constraints on kinetic isotope effects, they demonstrate the potential of in situ vapor measurements in dynamic condensation experiments for diagnosing fundamental isotope physics. All previous approaches to determining equilibrium and kinetic isotopic fractionation in water relied on setting up static conditions and measuring differences or gradients in space. We demonstrate here the power of measuring, instead, evolution over time, in conditions more analogous to condensation in real naturally occurring systems. IsoCloud results show that chamber-based simulations of ice growth in cirrus clouds can provide robust estimates of equilibrium fractionation in the vapor–ice system, and robust constraints on kinetic effects. We hope this approach helps enable further measurements of the fundamental isotopic properties of water and other condensable species.

ACKNOWLEDGMENTS. The many IsoCloud participants contributed greatly to the success of the campaign, including Stephanie Ahn, Jan Habig, Naruki Hiranuma, Erik Kerstel, Benjamin Kühnreich, Janek Landsberg, Eric Stutz, Steven Wagner, and the AIDA technical staff and support team. Marc Blanchard provided data from Pinilla et al., 2014 (42) for the comparison of SI Appendix, Fig. S1. We thank Thomas Ackerman, Marc Blanchard, Peter Blossey, Won Chang, Albert Colman, Nicolas Dauphas, John Eiler, etc.
Edwin Kite, and William Leeds for helpful discussions and comments. Fund-
ing for this work was provided by the National Science Foundation (NSF) and the Deutsche Forschungsgemeinschaft through International Collabor-
ation in Chemistry Grant CHEM1026830. K.D.L. acknowledges support
from a National Defense Science and Engineering Graduate Fellowship and an NSF Graduate Research Fellowship, and L.S. acknowledges support from a Camille and Henry Dreyfus Postdoctoral Fellowship in Environmental Chemistry.

1. Jouzel J, Koster RD (1996) A reconsideration of the initial conditions used for stable
composition (δ18O and δD) of precipitation and water vapor in the tropics. 1. Radiative-convective equilibrium and Tropical Ocean-Global Atmosphere-Coupled
Ocean-Atmosphere Response Experiment (TOGA-COARE) simulations. J Geophys Res
Atmos 113:D19305.
position (δ18O and δD) of precipitation and water vapor in the tropics. 2. Physical
interpretation of the amount effect. J Geophys Res Atmos 113:D19306.
5. Moyer EJ, Irimion FW, Gunson MR (1996) ATMOS stratospheric deuterated water and
troposphere and lower stratosphere derived from ACE-FTS satellite measurements. J
Geophys Res Atmos 117:D06303.
tropopause layer in cloud-resolving simulations of an idealized tropical circulation. J
Geophys Res Atmos 115:D24309.
9. Bolot M, Legras B, Moyer EJ (2013) Modelling and interpreting the isotopic composi-
the tropical tropopause layer and tropical atmosphere. J Geophys Res Atmos 115:D00120.
topology (H218O, H217O, H2O and HDO) retrieved from IASI/METOP data. Atmos
 tropospheric vertical resolution from Aura TES radiances. Atmos Meas Tech 5:397–411.
tropopause layer. J Geophys Res Atmos 112:D21305.
17. Urban J, et al. (2007) Global observations of middle atmospheric water vapour by the
observations on the ExoMars Trace Gas Orbiter. Mars Atmosphere: Modelling and
20. Jouzel J, et al. (1987) Simulations of the HDO and H218O atmospheric cycles using the
NASA GS5 general circulation model: The seasonal cycle for present-day conditions.