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Early resolution of uncertainty during an epidemic outbreak can
lead to rapid and efficient decision making, provided that the
uncertainty affects prioritization of actions. The wide range in
caseload projections for the 2014 Ebola outbreak caused great
concern and debate about the utility of models. By coding and
running 37 published Ebola models with five candidate interventions,
we found that, despite this large variation in caseload projection,
the ranking of management options was relatively consistent.
Reducing funeral transmission and reducing community transmission
were generally ranked as the two best options. Value of information
(VoI) analyses show that caseloads could be reduced by 11% by
resolving all model-specific uncertainties, with information about
model structure accounting for 82% of this reduction and uncertainty
about caseload only accounting for 12%. Our study shows that the
uncertainty that is of most interest epidemiologically may not be
the same as the uncertainty that is most relevant for management. If
the goal is to improve management outcomes, then the focus of
study should be to identify and resolve those uncertainties that most
hinder the choice of an optimal intervention. Our study further shows
that simplifying multiple alternative models into a smaller number of
relevant groups (here, with shared structure) could streamline the
decision-making process and may allow for a better integration of
epidemiological modeling and decision making for policy.

value of information | VoI | epidemiological outbreak management |
decision making

The devastating 2014 Ebola outbreak in West Africa is the
largest ever recorded (1, 2). It resulted in 28,646 cases and

11,323 deaths by March 27, 2016 (WHO report; apps.who.int/ebola/
ebola-situation-reports) and engendered an outpouring of concern
for those affected. A large number of epidemiological models were
developed and published (2–4). To date, we have identified 55
published Ebola models. Most of these models (50 of 55) projected
caseloads as the preferred way to predict epidemic trajectory.
However, caseload projections varied widely between models,
drawing a great deal of attention and causing intense debate (5, 6).
Caseload projection is critical for predicting the size of an epi-

demic and planning management efforts, and it can vary from model
to model for several reasons, such as differences in model structure,
parameterization, and other assumptions. Despite model-specific
variations in caseload projections, a critical question for decision
making is whether different models lead to different management
recommendations or different rankings of alternative management
actions. If all models agree on the optimal management, then dif-
ferences in projections are not a critical concern for decision making.
Otherwise, if models disagree with respect to the ranking of man-
agement recommendations, then the optimal intervention is model-
specific, which means that policymakers face the question of which
model(s) to rely on to make management decisions; a closer exam-
ination of the source of the disagreement is then warranted.
Here, with the objective of minimizing the Ebola caseload, we

explored the management recommendations of a large set of

published Ebola models. We considered 37 published compartmental
Ebola models that varied widely in model structure, parameterization,
or both (Table S1). Among them, the SEIR compartment model is
the most commonly adopted model framework, where individuals
progress through susceptible (S) to exposed (E), infectious (I), and
then removed (R) compartments through either recovery or death.
Because hospital settings and funerals have been identified as critical
transmission sources and targets for intervention, some models ex-
plicitly include a hospital (H) or funeral (F) compartment. Based on
model structure, we classified 37 models into four categories: models
with both H and F explicitly represented (referred to as SEIHFR),
models with only H explicitly represented (SEIHR), models with only
F explicitly represented (SEIFR), and models with neither H nor F
compartments (SEIR). To ensure consistency, we recoded all of the
models within the same stochastic environment by simulating the
epidemic birth and death processes using the Gillespie algorithm with
a tau-leaping approximation (3, 7). We then identified five manage-
ment actions that are broadly applied to control Ebola: reducing
community transmission, reducing hospital transmission, reducing
funeral transmission, increasing hospitalization, and reducing case
fatality ratio (2, 3, 8, 9). We projected the caseload under five
management interventions and identified the optimum management
for each model. We then used value of information (VoI) (10, 11)
analyses to quantify the potential improvement in caseload outcomes
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interventions must be enacted, despite imperfect or missing
information. The wide range in projected caseload generated
attention as a source of uncertainty, but debate did not address
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37 published models, we show that most models concur that
reducing funeral transmission and reducing community trans-
mission are robust and effective management actions to min-
imize projected caseload. Although models disagreed about
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tance of projecting the impact of interventions and is applicable
to management of other epidemic outbreaks where rapid de-
cision making is critical.
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achieved by resolving model-specific uncertainty and identify the key
uncertainties to resolve to achieve that improvement.
The Ebola outbreak highlighted the challenges and opportu-

nities that arise when multiple modeling groups contribute
models and projections to help inform decision making. The VoI
framework allows us to study the robustness of conclusions in the
face of multiple alternative models and discover important model
sensitivities with respect to the ranking of interventions. By studying
an ensemble of models, we can identify actions that are robust in
the face of uncertainty as well as sources of uncertainty that warrant
immediate study.

Results
In our simulations, starting with 10 infectious cases in a population
of 10,000 individuals, the mean projected caseload was 5,615 ±
2,705 (SD), ranging from 184 to 9,887 cases (Fig. 1). Despite this
difference in caseload projections, the majority of the models sug-
gested similar management recommendations (Fig. 1).
We define the effect of an intervention as the percentage

change compared with a no intervention baseline. The effect of
an intervention on underlying rates (e.g., transmission and hos-
pitalization) is unlikely to be known a priori; therefore, we first
projected caseload assuming that each intervention resulted in a
30% change in affected parameters. Given a 30% change for
each intervention, the majority (22 of 37) of the models rec-
ommended reducing funeral transmission as the optimal action,
and 29 of 37 or 36 of 37 models ranked it as among the top 2 or
3, respectively. Reducing community transmission was optimal
for 10 of 37 models, and 33 of 37 models ranked it in the top 2.
Reducing the case fatality ratio was optimal for 3 of 37 models,
and reducing hospital transmission was optimal for 2 of 37
models, whereas increasing hospitalization was not optimal in
any model (Fig. 1). The optimal management recommendation
was closely associated with model structure; for example, all

SEIR and the majority (four of five) of SEIHR models recom-
mended reducing funeral transmission as the optimal action,
whereas the majority (six of eight) of SEIHFR models recom-
mended reducing community transmission (Fig. 1).
The final epidemic size (i.e., the total caseload) is linked to the

basic reproductive ratio, R0, in SEIR-like compartmental models,
such as those analyzed here (12). To provide a deeper mathematical
understanding of our individual model results, we therefore con-
ducted elasticity (proportional sensitivity) analyses of R0 to the pa-
rameters associated with five interventions in the full SEIHFR
models (in which all parameters could be explicitly perturbed). This
analysis revealed that the ranking of the elasticities was the same as
that of the associated interventions, in which reducing community
transmission ranked as the first (6/8 models recommended it as
optimal) and reducing funeral transmission ranked as the second
(Fig. 1 and Table S2); if we only have a single model, alternative
interventions can be ranked by their effect on R0.
To illustrate the sensitivity of the optimal intervention to the

intervention effect size, we also compared caseload projections
under a particular intervention over a gradient of changes ranging
from 10 to 100% in increments of 10% with projections under the
rest of the four interventions with the baseline change of 30%.
These analyses highlight that whether an intervention is ranked as
optimal depends on its effect size. Reducing funeral transmission is
optimal in 22 of 37 models if the effect is over 30% and optimal in
31 of 37 models if interventions associated with burials lead to an
80% reduction. Reducing community transmission is rarely optimal
when the effect size is less than 30%, but it is recommended as the
best intervention in 32 of 37 models if it can be reduced by 50%.
Interventions aimed at reducing the case fatality ratio must
achieve a reduction of 60% to be optimal in 26 of 37 of the models
(Fig. 2 and Fig. S1). Notably, increasing hospitalization and re-
ducing hospital transmission were rarely optimal interventions, even
at 100% effectiveness.
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Fig. 1. Unconstrained caseload projections (Upper) and ranks of five management actions (Lower) under 37 published compartmental Ebola models with
SEIHFR (representing susceptible, exposed, infectious, hospitalized, funeral, and removed compartments), SEIHR, SEIFR, or SEIR structures. For each model, five
management actions were ranked from the worst (with highest caseload projection) as shown in light red to the best (with lowest caseload projection) as
shown in dark red. Simulated population size is 10,000 people, and the effectiveness is 30% for each management action.
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We calculated the expected value of perfect information
(EVPI) (10, 11), which quantifies the maximum achievable im-
provement in management that could be obtained by identifying
a single model as “best” before the implementation of specific
decisions (Materials and Methods has a formal definition). The
EVPI analysis showed that the expected improvement in man-
agement outcomes caused by resolving all model-specific un-
certainties is an 11% reduction in caseload. We further conducted
an analysis of the expected value of partial information (EVPXI)
(10), which quantifies the expected improvement in management
performance by resolving a subset of uncertainties. In particular,
we quantified the relative contribution of uncertainty about
model structure (SEIR, SEIHR, SEIFR, or SEIHFR) and case-
load projection (models that projected low, low intermediate,
high intermediate, or high case burden) to expected manage-
ment outcomes. The EVPXI analysis illustrates that targeting
the uncertainties in model structure could improve management
(i.e., reduction in caseload) by 9% (82% of total EVPI), but
targeting uncertainties in caseload projection could only achieve
1% improvement of management (12% of total EVPI). Thus,
the two most important take home messages from our analyses

are, although differences in caseload projections from the vari-
ous models dominated much of the public discussion, (i) that
intervention rankings are not affected by this issue and (ii) that
resolving uncertainty in model structure is important for identi-
fying optimal response strategies.

Discussion
Identifying the uncertainties that affect the choice of manage-
ment intervention is critical for focusing scientific inquiry on
questions that will improve the management of an epidemic.
Conditional on a single model, a conventional approach is to
evaluate the sensitivity of outcomes and management recom-
mendations to parametric uncertainty. However, it is increasingly
common that there are multiple independent models that can
contribute to the evaluation of candidate interventions and
policy development (2, 3, 8, 9). Thus, we present a framework for
integrating model output to identify actions that are robust to the
parametric, structural, and other uncertainties reflected in an
ensemble of models. Our study showed that, despite large dif-
ferences in caseload projections, management recommendations
are broadly consistent across 37 published Ebola models; re-
ducing funeral transmission and reducing community transmission
are generally ranked as the top two best management options,
whereas hospital-associated actions are rarely the best. Focusing
on individual SEIHFR models, the same rank order was found for
the proportional sensitivity of R0 to the parameters associated with
each of five interventions, in which reducing community trans-
mission ranked as the first and reducing funeral transmission ranked
as the second. This result aligns with classical theory (12): if we only
have a single model, interventions that most affect the basic re-
productive ratio are the best. Both funeral transmission (2, 9) and
community transmission (9, 13) were identified as critical trans-
mission sources and, therefore, targets for intervention against
Ebola in previous studies. Despite the broad consensus among
model recommendations, our EVPI analysis showed that resolving
model uncertainties could improve management by 11%. Consid-
ering the 2014 Ebola outbreak, which had a caseload of 28,646 and
a case fatality ratio of over 50%, this improvement would represent
a reduction of 3,266 cases and 1,633 deaths averted. By conducting
model–class-specific analyses of EVPXI, we found that the VoI for
model structure was far higher than for caseload projections. Thus,
the ranking of interventions was not strongly correlated with case-
load projections, although expected caseload does provide infor-
mation on how much effort will be required to halt the epidemic.
The ranking of interventions differed more between than within
model structures. This result could be a reflection of the inherent
differences in the dynamics of different model structures or caused
by differences between explicit and implicit representations of in-
terventions within the same model structure. When the target
compartments for specific interventions were not explicitly repre-
sented in the originally published models, then implementing in-
terventions involved more subtle decisions. Although we tried to
achieve the best standardization, our choices (detailed in SI Text)
may hamper fair comparisons. An obvious solution is to focus on
models that consistently and explicitly represent both compartments
and interventions (implying an important role for the integra-
tion of operations research and epidemic modeling to ensure
that modeled interventions are realistic and reflect real world
constraints). However, we garnered important insights by studying
all 37 models rather than restricting our analysis to 8 parame-
terized SEIHFR models.
Our study chose a 30% change to illustrate the management

ranking based on caseload; we did not specifically consider the
operational cost or constraints inherent in achieving that level of
effect with each intervention. In practice, the same percentage
change in one intervention might be harder or more expensive to
achieve than another. Therefore, it is also important to consider
operational and economic constraints (14, 15). Our analysis
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Fig. 2. The number of models for which a particular intervention is recom-
mended as optimal for the interventions of (A) reducing funeral transmission,
(B) reducing community transmission, (C) reducing case fatality ratio, (D) re-
ducing hospital transmission, and (E) increasing hospitalization. Evaluation was
based on comparisons of caseload projections under each specific management
action over a gradient of changes ranging from 10 to 100% against all of the
other management actions with a baseline intensity of 30%.
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showed that some interventions, like reducing funeral transmission,
can be ranked highly even if they only achieve low effectiveness, but
others, such as reducing community transmission and reducing
the case fatality ratio, are only ranked high if highly effective. In
contrast, interventions targeting hospitalization rate and hospital
transmission were rarely optimal, even at 100% effectiveness.
Thus, although additional operational or behavioral information
may be necessary to evaluate the potential effect of these in-
terventions (e.g., because of interactions with social and cultural
processes) (16), the framework that we have presented can be
used to estimate minimal levels of effectiveness necessary to
consider different classes of interventions. It also needs to be
noted that, for purposes of illustration, we evaluated each man-
agement action separately in this study. However, management
interventions are not mutually exclusive, and combined interven-
tions should be studied. The VoI decision-theoretic approach
can easily extend to this situation.
In this study, we focused on minimizing cases as our objective,

because most of the published models projected caseload.
However, recommended interventions may differ when consid-
ering different objectives, such as minimizing mortality or epi-
demic duration (17). In the case of the 2014 Ebola outbreak,
intervention recommendations for the objective of minimizing
deaths were the same as for minimizing caseload, because the
case fatality ratio was quite similar for different compartments in
the published models.
Overall, our study shows that, although differences in Ebola

caseload projections were a subject of concern, identification and
resolution of uncertainties that hinder management (here, model
structure) are more relevant to the selection of optimal response
strategies. Our work adds to a growing body of literature on
uncertainty in disease dynamics from the standpoint of the de-
cision maker and emphasizes that the uncertainty that is of in-
terest epidemiologically (here, final epidemic size) may not be
the same as the uncertainty that is most relevant to management
(ranking of candidate interventions).
Our work used VoI to quantify the expected benefit of re-

solving uncertainty in a decision-making context conditional on
model-specific projections. For the published Ebola models, we
showed that achieving scientific resolution on model structure
achieves 82% of the expected benefit of reducing all uncertainty
considered. Scientific understanding (legitimate scientific dif-
ferences of opinion/data) is frequently described in multiple
competing models. Previous methods have assessed potential
interventions conditional on individual models or used ensemble
prediction (18). Instead, we propose the use of VoI to identify
which scientific differences of opinion lead to different man-
agement recommendations; research should then prioritize
learning about these operationally relevant uncertainties. Thus,
our analysis is explicitly not focused on selecting a best model (as
is commonly done). Rather, we use all models to identify actions
that are robust and uncertainties that are important across the
suite of candidate models. For Ebola, simplifying a large set of
models into a smaller number of relevant classes (at the level of
model structure) may allow for better integration of epidemio-
logical modeling and decision making for policy. In other out-
break situations, resolution of other sources of uncertainty may
be more important. More generally, our study shows how VoI
analysis may provide “rules of thumb” to guide the decision-
making process for other epidemics, such as Zika or avian in-
fluenza, where significant uncertainty about individual models
remains but timely decision making is required.

Materials and Methods
Literature Survey of Published Ebola Models.We conducted a literature survey
for any published Ebola models on the Institute for Scientific Information
Web of Knowledge and through the Google search engine using the search
terms Ebola and model. We identified a total of 55 mathematical models in

35 publications and 1 online final report. Themajority (37 of 55) of themodels
were compartmental models, whereas the rest (18 of 55) adopted one or
more of a variety of modeling approaches, such as branching process
models (19) and spatial models (20). Our study focused on 37 compartment
models (a list is given in Table S1); this model type was the most widely
used modeling approach for Ebola epidemic projection and management
evaluation (2, 3, 9). The consistent framework of compartmental models
allows for a general comparison of projected epidemic dynamics among
models. Additionally, the widely proposed interventions in practice are
either explicitly or implicitly applicable to these models, and therefore, the
effectiveness of different interventions can be compared within and
among models.

Compartment Models. In an Ebola compartment model, individuals in a
population are classified into different states as represented by different
model compartments based on their health status. All individuals remain in
the susceptible (S) compartment until they contract the virus through con-
tact with infectious individuals; they then enter the exposed (E) compart-
ment, where they are infected but are not yet infectious. Exposed
individuals move to the infectious (I) compartment after a certain latent
period, at which point they start to show symptoms and become infectious
to other individuals. Infectious individuals will either remain in the com-
munity or be hospitalized; both are removed (R) from the chain of trans-
mission through either recovery or death. Deceased individuals may infect
others until they are buried.

Compartment models may incorporate different subsets of compartments
to explore different transmissionmechanisms or evaluate the effectiveness of
different interventions. Hospital settings and transmission during funeral
practices have been identified as critical transmission sources of Ebola. A
number of published Ebola compartment models have addressed these
transmission mechanisms by explicitly including a hospitalized (H) compart-
ment and a funeral (F) compartment (3, 8, 9, 13). Based on the model
structure, we classified 37 models into four categories: models with both H
and F explicitly represented (8 models; referred to as SEIHFR), models with
only H explicitly represented (5 models; referred to as SEIHR), models with
only F explicitly represented (7 models; referred to as SEIFR), and models
with neither H nor F compartments (i.e., these mechanisms of transmission
were implicitly incorporated in overall transmission; 17 models; referred to
as SEIR models). To ensure consistency, we recoded all of the 37 models
within the same stochastic environment (epidemic birth and death processes
simulated using the Gillespie algorithm with a tau-leaping approximation;
details are given below) (3, 7) using R 3.2.1 (21). A figure of the global
model, within which all of the 37 models can be represented as submodels, is
presented in Fig. S2. Parameters for 37 models are listed in Dataset S1.
Additionally, to ensure correct representation of the published models, we
recalculated the basic reproductive number (R0) (Dataset S1) using the next
generation framework (22). Links to code to run all of the models are
available in SI Text: Parameters.R, Functions.R, and Running models.R.

Management Actions. By surveying the literature, we selected five interven-
tions that were broadly applied to control Ebola outbreaks: reducing
community transmission, increasing hospitalization, reducing hospital trans-
mission, reducing case fatality ratio, and reducing funeral transmission (2, 3, 8).
Reducing community transmission (i.e., transmission in the community) is a
general intervention that is achieved in a variety of ways, such as by providing
household sanitation kits, improving contact tracing, improving self-quarantine
of sick individuals in the community, reducing individual mobility and border
crossing, and increasing community awareness through educational campaigns
(2, 3, 8). Hospitalization increase can be realized by improving contact tracing
and intensifying campaigns to identify and isolate patients, building more Ebola
Treatment Centers, increasing the number of beds, and increasing necessary
supplies and public support (3, 9). A reduction in hospital transmission can be
achieved by encouraging the use of personal protective equipment for health-
care personnel treating infected cases and reducing hospital visits (8). Hydration
of infected individuals has proved to be an important way to reduce mortality of
Ebola cases, and various other new pharmaceutical approaches are being
explored for future outbreaks. Funeral transmission (i.e., transmission at
funerals) reduction can be achieved through improved funeral practices to
increase safe burial by reducing risky behavior (2, 8).

Intervention Implementation. Interventions can be modeled by changing the
parameters thought to be influenced by the corresponding management
actions. A reduction in transmission in the community, in hospitals, or at
funerals can be modeled by reducing the transmission coefficients associated
with these classes. Increasing hospitalization can be simulated by increasing

5662 | www.pnas.org/cgi/doi/10.1073/pnas.1617482114 Li et al.
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the hospitalization ratio, and reducing mortality can be modeled by de-
creasing the case fatality ratio. Each intervention was assessed in each model
in terms of the objective to minimize the Ebola caseload; for each model, we
projected caseload under five interventions and then ranked the interven-
tions from the best (lowest caseload) to the worst (highest caseload). All five
interventions can be explicitly implemented in the full SEIHFRmodels; for the
other models with some compartments unspecified, the corresponding in-
terventions need to be simulated implicitly. For example, reducing hospital
transmission can only be explicitly applied to the SEIHFR and SEIHR models,
in which the H compartment is explicitly represented, but cannot be applied
in the SEIFR or SEIR models, where the H compartment is unspecified. To be
able to evaluate management options and conduct VoI analysis across all of
the published models, including those that do not explicitly represent all
infectious compartments, we calculated the implicit effect of an intervention
via the average proportional contribution of the target transmission to the
overall transmission based on the full SEIHFR models. For example, a pro-
portional reduction of ΔH in hospital transmission can be explicitly simulated
by multiplying the coefficient of hospital transmission by 1 − ΔH in the
SEIHFR and SEIHR models. However, for the SEIFR or SEIR models where the
H compartment is unspecified, an implicit simulation method needs to be
applied. If PH is the proportional contribution of hospital transmission to the
overall transmission, then a reduction of ΔH in hospital transmission can be
implicitly simulated via multiplying the coefficient of overall transmission by
the factor 1 − ΔHPH. A detailed description of the implicit simulation of the
other interventions is provided in SI Text. The parameters used for the im-
plicit management simulations were all based on the mean of the param-
eters across all of the published SEIHFR full models as shown in Table S3.

The effect of an intervention, which we define as the percentage change
compared with baseline, may not be known a priori. For illustration, we first
projected caseload considering a 30% change for each of five interventions.
Based on the caseload projection, we evaluated five interventions as well as
the outcomes expected without any intervention for each of 37 models. We
ranked them from the best (lowest caseload) to the worst (highest caseload).
To illustrate how to identify at what effect size a particular intervention shifts
to be best, we also compared caseload projections under a particular in-
tervention over a gradient of changes ranging from 10 to 100% (with an
interval of 10%) with the projections under the rest of the four interventions
with the baseline change of 30%. For example, to assess the intervention of
reducing community transmission, we did caseload projections by reducing
community transmission from 10 to 100% for all 37 models, compared each
projection under each level of change against the other four interventions
with a change of 30%, and then ranked the intervention.

We implemented stochastic simulations for all models using Gillespie’s
algorithm (7) with a tau-leaping approximation (3) to capture the random
nature of epidemic birth and death processes (23). We performed 100 sto-
chastic simulations for each management intervention–model combination,
with 10 initial infectious individuals in a population of 10,000 individuals.
When the parameters in the original publication were time-dependent, we
fixed baseline parameters at values used at the start of the epidemic and/or
set them to the no intervention baseline. To be able to conduct this broad
comparison across all models, hospitalization capacity was not modeled,
because only a few models considered this factor. Links to code to assess all
interventions in all of the models in this study are given in SI Text: Param-
eters.R, Functions.R, and Running models.R. Additionally, to examine
how sensitive R0 is to parameters associated with five interventions, we

conducted an elasticity (proportional sensitivity) analysis (Table S2). We
calculated R0 using the next generation framework and estimated deriva-
tives numerically by the method of difference. We limited this analysis to the
full SEIHFR models, in which all associated parameters were explicitly rep-
resented, thus allowing a perturbation of the full set of associated param-
eters. We then compared the rank of the elasticity of the parameters with
the rank of the associated interventions.

VoI Analysis. We calculated EVPI, which quantifies the maximum achievable
improvement in management that could be obtained by resolving uncer-
tainties before the implementation of specific decisions (10, 11). It is quan-
tified as

EVPI =
Xn

j=1

pj
�
optaCa,j

�
−opta

Xn

j=1

pjCa,j , [1]

where n is the total number of models, Ca,j represents management per-
formance (i.e., caseload in this study) associated with taking intervention a
under model j, pj is the weight associated with model j (i.e., the belief that
model j is the true model; subject to the constraint that the pj sum to one),
and opta indicates the optimum over all interventions (10, 11). In this initial
analysis, we weighed the models equally.

EVPI describes the benefit of resolving all sources of uncertainty. In
practice, because of limited time and resources, it may not be possible to
collect all of the required information. In this case, it is more realistic to
prioritize a subset of uncertainties to resolve to maximize management
improvement. Analysis of the EVPXI quantifies how much management
performance could be improved by resolving a subset of uncertainties and
therefore provides a useful tool to identify which subset of uncertainties
should be given priority if time and resources are limited (10). EVPXI is cal-
culated as

EVPXI =
Xq

i=1

opta
X

j∈si

pjCa,j −opta
Xn

j=1

pjCa,j , [2]

where n models are grouped into i = 1 . . . q mutually exclusive and ex-
haustive sets, set si has ni models in it, pj is the weight associated with model
j, and Ca,j is the management performance under model j and intervention a.
Therefore, EVPXI quantifies the improvement in management performance
by resolving the uncertainty associated with si (10). We conducted EVPXI
analyses for four subsets of models with different types of structures
(SEIHFR, SEIHR, SEIFR, and SEIR) and also, four subsets of models with dif-
ferent ranges of caseload projections (<2,500, 2,500–5,000, 5,000–7,500,
and >7,500 cases) to evaluate the improvement in management by resolving
uncertainties in model structure and the range of caseload projections.
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