Pyrite sulfur isotopes reveal glacial–interglacial environmental changes

Virgin Pasquier, Pierre Sansjofre, Marina Rabineau, Sidonie Revillon, Jennifer Houghton, and David A. Fike

The sulfur biogeochemical cycle plays a key role in regulating Earth's surface redox through diverse abiotic and biological reactions that have distinctive stable isotopic fractionations. As such, variations in the sulfur isotopic composition ($\delta^{34}S$) of sedimentary sulfate and sulfide phases over Earth history can be used to infer substantive changes to the Earth's surface environment, including the rise of atmospheric oxygen. Such inferences assume that individual $\delta^{34}S$ records reflect temporal changes in the global sulfur cycle; this assumption may be well grounded for sulfate-bearing minerals but is less well established for pyrite-based records. Here, we investigate alternative controls on the sedimentary sulfur isotopic composition of marine pyrite by examining a 300-m drill core of Mediterranean sediments deposited over the past 500,000 y and spanning the last five glacial–interglacial periods. Because this interval is far shorter than the residence time of marine sulfate, any change in the sulfur isotopic record preserved in pyrite ($\delta^{34}S_{\text{pyr}}$) necessarily corresponds to local environmental changes. The stratigraphic variations (>76%) in the isotopic data reported here are among the largest ever observed in pyrite, and are in phase with glacial–interglacial sea level and temperature changes. In this case, the dominant control appears to be glacial–interglacial variations in sedimentation rates. These results suggest that there exist important but previously overlooked depositional controls on sedimentary sulfur isotope records, especially associated with intervals of substantial sea level change. This work provides an important perspective on the origin of variability in such records and suggests meaningful paleoenvironmental information can be derived from pyrite $\delta^{34}S$ records.

Significance

Changes in sulfur isotope ratios ($\delta^{34}S\text{pyr}$) of marine sulfate phases are often attributed to global biogeochemical perturbations. Sediments collected on the shelf of the Gulf of Lion revealed remarkable sulfur isotopic fluctuations in sedimentary pyrite over the last 500,000 years, ranging between -44.0% and 32.3%. We suggest this pattern is related to changes in the local environmental deposition, specifically, sedimentation modulating connectivity with the overlying water column and resulting microbial activity. Besides providing new understanding of an important and poorly constrained aspect of past glacial–interglacial transitions, our results are critically important because they question the degree to which changes in sulfur isotopes in pyrite reflect global biogeochemical processes versus local depositional conditions.

Author contributions: P.S., M.R., S.R., and D.A.F. designed research; V.P., P.S., and D.A.F. performed research; V.P. and J.H. contributed new reagents/analytic tools; V.P., P.S., and D.A.F. analyzed data; and V.P., P.S., M.R., S.R., J.H., and D.A.F. wrote the paper. The authors declare no conflict of interest.

www.pnas.org/cgi/doi/10.1073/pnas.1618245114

PNAS | June 6, 2017 | vol. 114 | no. 23 | 5941–5945
Results and Discussion

A total of 131 pyrite sulfur isotope analyses have been performed along the 300-m PRGL1-4 core, spanning the last five glacial–interglacial transitions (Fig. S1 and Table S1). Throughout the core, pyrite shows extreme variations in δ34S, from −44.0‰ to 32.3‰, whereas pyrite contents vary between 0.02 wt % and 1.69 wt %. No clear trend was observed between δ34Spyr and the pyrite content, nor between δ34Spyr and the iron content (Figs. S1 and S2). Complementary analysis of organic carbon isotopes (δ13Corg) was conducted, and these values vary between −25.3‰ and −21.8‰, with no clear trends between δ13Corg and total organic carbon (TOC) contents, which vary between 0.35% and 0.84%. Similarly, we do not observe any covariance between δ34Spyr and TOC (Figs. S1 and S2).

A clear distinction in pyrite δ34Spyr values is observed between glacial and interglacial periods (Fig. 2) as deduced from the oxygen isotope curve obtained from planktonic foraminifera (Globigerina bulloides) and the associated updated age model published on the same core (17). Distinctly different bimodal distributions are observed between glacial (sensu stricto, cold substages) periods with high δ34S values and high isotopic variability (average δ34S = −15.2‰ ± 9.0‰, n = 46) and the interglacial (sensu stricto, i.e., warm substages) periods characterized by low δ34S and low isotopic variability (average δ34S = −41.6‰ ± 2.2‰, n = 19; Fig. 2). The increased variability observed during glacial times provides insights into the suite of processes and their inherent temporal fluctuations that are likely to regulate the observed changes in δ34Spyr. Specifically, the lowered sea level during glacial times brought the site of deposition closer to the shore and source of detrital materials. These shallower, more proximal settings are subjected to short-term, stochastic variations in depositional conditions (17), including sediment characteristics (organic carbon loading, sedimentation rates, physical reworking) and benthic ecology (bioturbation, presence of microbial mats) that can impact pyrite formation and eventual δ34S composition. Within the glacial and interglacial sediments, the δ34S values and variability can be further understood as a function of temperature, as reconstructed from alkenone records (18, 19). For example, warmer intervals during interglacial time are associated with more negative δ34S values (Fig. 2).

Over the last two glacial–interglacial cycles, where the time reconstruction is best constrained, pyrite δ34S values in PRGL1-4 are modulated by and track depositional conditions across glacial–interglacial cycles (Fig. 3). During glacial times, higher δ34Spyr values are associated with lower sea levels and low δ13Corg values, which are often attributed to greater input of terrestrial organic matter (20). Interestingly, because of their increased proximity to shore, glacial deposits are also associated with increased sedimentation rates of silty clay sediments (21) and are characterized by decreased porosity intervals (Fig. S3). In such nearshore environments, the rapid sediment burial dilutes TOC values. Nevertheless, a higher concentration of labile organic matter (supported by our TOC values) gets into the sediment without undergoing aerobic respiration. As such, a larger fraction of more easily metabolizable (i.e., less degraded by oxic processes) organic matter is available for sulfate reduction during glacial intervals (22).

In contrast, decreased and less variable δ34Spyr values are associated with the transition into and during interglacial times. These periods are associated with warmer temperatures and higher sea levels, as well as increased δ13Corg values, indicative of increased marine input (23). Sediments deposited during interglacial periods are also associated with lower sedimentation rates (because of landward migration of the shoreline) and increased foraminiferal abundance, resulting in intervals of higher porosity (21) (Fig. S3). As sedimentation rates decrease, organic matter spends more time in the zone of aerobic respiration. Therefore, less (and less reactive) organic matter remains for sulfate-reducing bacteria under these conditions.

Stratigraphic variations in pyrite δ34S are often interpreted to reflect changes in the global sulfur biogeochemical cycle, such as intervals of enhanced pyrite burial or variations in the marine sulfate reservoir (9, 24). However, in this case, these strata were deposited over an interval of 500 ky, much less than the residence
time [13 My (25)] of sulfate in the modern ocean. While these sediments were deposited in the Gulf of Lion, the Mediterranean Sea maintained connectivity with the global ocean and retained marine sulfate abundances and isotopic compositions during glacial–interglacial periods, based on both the abundance and isotopic composition of sulfate pore water profiles (26) and the continuous sea water infill of Mediterranean Sea by Atlantic water through the Gibraltar Strait since ~4.4 Ma (27, 28). Thus, continued connectivity with the ocean and the short timescale of deposition preclude any substantive change in the parent sulfate reservoir, such as might arise from prolonged variation in the burial flux of pyrite, during deposition of these sediments. How then is this variation in pyrite δ34S to be interpreted?

Mechanistic Explanations. Two possible mechanisms present themselves to explain the observed data—both fundamentally driven by glaciation induced environmental changes: one reflecting changes in the inherent metabolic activity of sulfate cycling microbes in the sediments, and the other reflecting changes in the connectivity of pore waters to the overlying water column. In the former, isotopic fractionation during microbial sulfate cycling is typically dominated by microbial sulfate reduction (3), and a change in pyrite δ34S can result from variations in the rate of cell-specific sulfate reduction (cSRR) in these sediments (29). Specifically, there is a well-documented relationship whereby faster rates of cSRR are associated with decreased isotopic fractionation between the parent sulfate and the produced sulfide (29, 30). Thus, our data could indicate faster cSRR during glacial times, possibly driven by enhanced input of more easily metabolizable organic matter [as supported by lower organic carbon isotopic values (Fig. S1)]. In contrast, slower cSRR would characterize interglacial times associated with more stable and more limited (both in abundance and reactivity) organic matter resources.

Assuming that pyrite is formed mainly in the pore water environment, as is expected under an oxygenated (noneuxinic) water column (31), an alternative mechanism to explain our data involves a change in the connectivity of sedimentary pore waters where pyrites are forming with the overlying water column (32). Such a change could be the natural result of the increased sedimentation rates and decreased porosity during glacial times (Fig. S3), both of which act to more effectively isolate pore waters from ready communication with seawater. This decreased connectivity effectively isolates the local pore water sulfate reservoir, leading to increased pore water δ34S SO4 through ongoing microbial sulfate reduction (32). In turn, this microbial activity naturally leads to an increase in the resulting biogenic δ34S SO4, which eventually forms pyrite following reaction with available iron. The increased variability in δ34S SO4 during glacial times can be understood as the natural response to increased short-term fluctuations in depositional conditions that characterize shallower water environments more proximal to the shore. During interglacial times, the return to slower sedimentation rates and higher porosity, driven in part by the admixture of foraminifera (Fig. S3), results in enhanced communication between pore water and seawater. In this relatively open system, the constant supply of seawater sulfates results in a stable, low value for pore water δ34S SO4 (and therefore in the resulting δ34S pyrr) in these intervals. Although the relationship between sedimentation rate and δ34S pyrr indicates a dominant control by sedimentation (Fig. 4), it should be noted that these two mechanisms are not mutually exclusive. Indeed, all things being equal, increased cSRR will inherently lead to more closed system behavior because it represents enhanced sulfate consumption relative to the diffusive exchange of sulfate. Further, there is a general trend toward increasing rates of sulfate reduction with increasing sedimentation rate (33).

The magnitude and directionality of the relationship between water depth and pyrite δ34S observed here agree with predictions previously made (2) but never rigorously tested and provide a powerful
way to reconstruct paleoenvironmental conditions in sedimentary environments, particularly the degree to which sedimentary pore fluids may have been in communication with the overlying water column. In addition, the δ^{34}S$_{pyr}$ data presented here also shed light on the origins of similar variability in this proxy in deep time.

Implication for Deep-Time Records. Many deep-time studies make use of direct proxies for seawater sulfate, such as CAS, which are generally thought to reflect marine sulfate with little fractionation (e.g., ref. 7; but see ref. 34). Indeed, studies using proxies for seawater sulfate (e.g., refs. 9, 24, 35, and 36) can provide powerful insights into ancient biogeochemical conditions. In many cases, however, no direct proxy of seawater sulfate is present and stratigraphic records of δ^{34}S$_{pyr}$ are used to reconstruct global biogeochemical cycling and redox change (e.g., refs. 10–13). In other cases, the isotopic offsets between coeval δ^{34}S records from sulfate and pyrite are used to reconstruct marine sulfate levels or the types of microbial metabolism present (e.g., refs. 4 and 8). With few exceptions (e.g., ref. 6), these δ^{34}S$_{pyr}$ records are not interpreted in the context of local depositional or facies change.

Interestingly, many of the reports showing positive δ^{34}S$_{pyr}$ excursions in the rock record are also associated with shallowing-upward depositional sequences formed during sea level lowstands. The present study is particularly relevant for considering the \sim10 to 30‰ positive excursions in δ^{34}S$_{pyr}$ that are associated with the initiation and termination of the end-Ordovician Hirnantian glaciation and mass extinction (e.g., refs. 6 and 10–13). Depositional environments at this time experienced a magnitude (\sim100 m) and timescale (\sim105 y) of sea level change that would have been comparable to those influencing the Pleistocene sediments of the Gulf of Lion. Our data suggest that, rather than reflecting a change in the global sulfur cycle, these δ^{34}S$_{pyr}$ excursions could also be explained by local changes in depositional conditions, particularly changes in sedimentation that modulate connectivity with the overlying water column (e.g., Fig. 4). In this scenario, it is likely that local sedimentological changes that impact how records of sulfur cycling get preserved in sedimentary records. The temporal coincidence of the Hirnantian δ^{34}S$_{pyr}$ excursions, found in sections around the world associated with the end Ordovician glaciation, would then be the result of synchronous local changes in environmental conditions in basins around the world, changes driven globally by sea level fluctuations during the onset and termination of the Hirnantian glaciation. Local environmental controls could be relevant for explaining other stratigraphic δ^{34}S$_{pyr}$ excursions in Earth history, particularly those associated with changing depositional facies and lacking a direct proxy for the marine sulfate reservoir (e.g., refs. 37–39). As such, the data presented here show that pyrite δ^{34}S can be a valuable proxy for reconstructing local paleoenvironmental and sedimentological conditions throughout Earth history.

Materials and Methods

Pyrite Sulfur (δ^{34}S$_{pyr}$ and S Content). Pyrite sulfur from the samples was extracted using the chromium reduction method (40–42). This method allows a recovering of all inorganic sulfur present in sedimentary samples (pyrite, element sulfur, and iron monosulfide phases). During extraction, samples were reacted with \sim25 mL of 1 M reduced chromium chloride (CrCl$_2$) solution and 25 mL of 6N HCl for 4 h in a specialized extraction line under a nitrogen atmosphere. The liberated hydrogen sulfide was reacted in a silver nitrate (0.1 M) trap, recovering the sulfide as Ag$_2$S. The reproducibility was under 5% for repeated analyses. Residual Ag$_2$S were rinsed three times using Milli-Q water, centrifuged, and then the dried until complete dryness. The Ag$_2$S powders were homogenized before being analyzed; then 450 µg was loaded into tin capsules with excess V$_2$O$_5$. The Ag$_2$S was analyzed measuring $\frac{34}{32}$S ratio following online combustion with a Thermo Delta V Plus coupled with a Costech ECS 4010 Elemental Analyzer at Washington University in St. Louis. Pyrite sulfur composition is expressed in standard delta notation as per mil (%deviation from Vienna Canyon Diablo Troilite with an analytical error of \pm0.5‰).

Organic Carbon Analyses (δ^{13}C$_{org}$ and TOC). Before organic carbon and nitrogen analyses, the carbonated fraction was removed from bulk samples using excess 1.5 HCl digestion for 48 h. During digestion, centrifuge tubes were placed in an ultrasonic bath to increase the mechanical separation of clay and calcium carbonates. After total dissolution, residues were washed three times with distilled water, centrifuged, and then dried at 50 °C. The residual powders were homogenized, and before analyses, 30 mg were loaded into a tin capsule. Analyses were performed using an Elemental Analyzer (EA, Flash 2000; Thermo Scientific) coupled to an isotope ratio mass spectrometer (Delta V+ Thermo Scientific EA-IRMS) at the Pôle de Spectrométrie Océan (PSO). Carbon is given as delta notation as per mil deviation from Pee Dee Belemnite, with an analytical error of \pm0.2‰ (1σ) for organic carbon isotopes. TOC was measured using the Thermal Conductivity Detector of the Flash EA 2000 (Thermo Scientific) at PSO.

ACKNOWLEDGMENTS. We thank the European PROMESS Scientific committee and colleagues at Ifremer for previous contributions of data acquisition, processing, interpretations, and permission to resample the borehole. We acknowledge C. Lorizou, who kindly helped during the analytical preparation of samples, and O. Lebeau, for stable isotope analyses assistance in Brest. This work was supported by the “Laboratoire d’Excellence” LabexMER (Grant ANR-10-LABX-19) and was funded by a grant from the French government under the program “Investissements d’Avenir,” and by a grant from the Regional Council of Brittany. Additional funding came from Actions Merges Program (Mediterranean Sea). The drilling operation was conducted within the European Commission Project PROMESS (Contract ERE1-CT-2002-40042).

4. Fike DA, Grotzinger JP, Pratt LM, Summons RE (2006) Oxidation of the Ediacaran Nitrogen atmosphere. The liberated hydrogen sulfide was reacted in a silver nitrate (0.1 M) trap, recovering the sulfide as Ag$_2$S. The reproducibility was under 5% for repeated analyses. Residual Ag$_2$S were rinsed three times using Milli-Q water, centrifuged, and then the dried until complete dryness. The Ag$_2$S powders were homogenized before being analyzed; then 450 µg was loaded into tin capsules with excess V$_2$O$_5$. The Ag$_2$S was analyzed measuring $\frac{34}{32}$S ratio following online combustion with a Thermo Delta V Plus coupled with a Costech ECS 4010 Elemental Analyzer at Washington University in St. Louis. Pyrite sulfur composition is expressed in standard delta notation as per mil (%deviation from Vienna Canyon Diablo Troilite with an analytical error of \pm0.5‰).

Organic Carbon Analyses (δ^{13}C$_{org}$ and TOC). Before organic carbon and nitrogen analyses, the carbonated fraction was removed from bulk samples using excess 1.5 HCl digestion for 48 h. During digestion, centrifuge tubes were placed in an ultrasonic bath to increase the mechanical separation of clay and calcium carbonates. After total dissolution, residues were washed three times with distilled water, centrifuged, and then dried at 50 °C. The residual powders were homogenized, and before analyses, 30 mg were loaded into a tin capsule. Analyses were performed using an Elemental Analyzer (EA, Flash 2000; Thermo Scientific) coupled to an isotope ratio mass spectrometer (Delta V+ Thermo Scientific EA-IRMS) at the Pôle de Spectrométrie Océan (PSO). Carbon is given as delta notation as per mil deviation from Pee Dee Belemnite, with an analytical error of \pm0.2‰ (1σ) for organic carbon isotopes. TOC was measured using the Thermal Conductivity Detector of the Flash EA 2000 (Thermo Scientific) at PSO.

ACKNOWLEDGMENTS. We thank the European PROMESS Scientific committee and colleagues at Ifremer for previous contributions of data acquisition, processing, interpretations, and permission to resample the borehole. We acknowledge C. Lorizou, who kindly helped during the analytical preparation of samples, and O. Lebeau, for stable isotope analyses assistance in Brest. This work was supported by the “Laboratoire d’Excellence” LabexMER (Grant ANR-10-LABX-19) and was funded by a grant from the French government under the program “Investissements d’Avenir,” and by a grant from the Regional Council of Brittany. Additional funding came from Actions Merges Program (Mediterranean Sea). The drilling operation was conducted within the European Commission Project PROMESS (Contract ERE1-CT-2002-40042).

Pasquier et al.