Dinosaur incubation periods directly determined from growth-line counts in embryonic teeth show reptilian-grade development

Gregory M. Erickson a,1, Darla K. Zelenitsky b, David Ian Kay c, and Mark A. Norell c

*Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295; bDepartment of Geoscience, University of Calgary, Calgary, AB, Canada T2N 1N4; and cDivision of Paleontology, American Museum of Natural History, New York, NY 10024

Edited by Neil H. Shubin, University of Chicago, Chicago, IL, and approved December 1, 2016 (received for review August 17, 2016)

Birds stand out from other egg-laying amniotes by producing relatively small numbers of large eggs with very short incubation periods (average 11–85 d). This aspect promotes high survivorship by limiting exposure to predation and environmental perturbation, allows for larger more fit young, and facilitates rapid attainment of adult size. Birds are living dinosaurs; their rapid development has been considered to reflect the primitive dinosaurian condition. Here, nonavian dinosaurian incubation periods in both small and large ornithischian taxa are empirically determined through growth-line counts in embryonic teeth. Our results show unexpectedly slow incubation (2.8 and 5.8 mo) like those of outgroup reptiles. Developmental and physiological constraints would have rendered tooth formation and incubation inherently slow in other dinosaur lineages and basal birds. The capacity to determine incubation periods in extinct egg-laying amniotes has implications for dinosaurian embryology, life history strategies, and survivorship across the Cretaceous–Paleogene mass extinction event.

Significance

Little is known regarding nonavian dinosaur embryology. Embryological period relates to myriad aspects of development, life history, and evolution. In reptiles incubation is slow, whereas in birds it is remarkably rapid. Because birds are living dinosaurs, rapid incubation has been assumed for all dinosaurs. We discovered daily forming growth lines in teeth of embryonic nonavian dinosaurs revealing incubation times. These lines show slow reptilian-grade development spanning months. The rapid avian condition likely evolved within birds prior to the Cretaceous–Paleogene (K–Pg) mass extinction event. Prolonged incubation exposed nonavian dinosaur eggs and attending parents to destructive influences for long periods. Slow development may have affected their ability to compete with more rapidly generating populations of birds, reptiles, and mammals following the K–Pg cataclysm.


The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Freely available online through the PNAS open access option.

1To whom correspondence should be addressed. Email: gerickson@bio.fsu.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1613716114/-/DCSupplemental.
used to determine tooth formation times in postparturition mammals (50, 51), and replacement rates in posthatching crocodilians (52) and dinosaurs (53, 54). This finding prompted us to explore the possibility that these time markers exist in embryonic dinosaur teeth and could be used to determine incubation period.

Here we: (i) show that incremental lines of von Ebner are present in embryonic dinosaur teeth; (ii) use increment counts and data on tooth initiation in reptiles to reveal incubation period in two ornithischian dinosaurs (Protoceratops andrewsi and Hypacrosaurus stebingeri), whose eggs span nearly the entire size range reported for dinosaurs; (iii) test whether these dinosaurs show typical rapid avian incubation times or primitive slow reptilian development; and (iv) explore ramifications of our results with regard to the origin of the modern avian condition, dinosauromorph life history, and survivorship through the Cretaceous–Paleogene (K–Pg) extinction event.

Results

Mean von Ebner incremental line width for embryonic P. andrewsi is 10.04 μm (n = 20; range 9.05–13.92 μm) and 15.26 μm (n = 15; range 9.42–16.62 μm) for H. stebingeri (Fig. 1A and B). Mean replacement rates for embryonic P. andrewsi teeth are 30.68 d (n = 2 tooth families; 31.19 and 30.18 d) and 44.18 d for embryonic H. stebingeri teeth (n = 3 tooth families; 43.22, 43.48, and 45.83 d) (Materials and Methods and Fig. S1).

Near-term P. andrewsi embryos (Fig. 2 A and B) show tooth families composed of two teeth: one that is functional and the other a replacement (Fig. 1C and 2C and Fig. S1). The time elapsed in forming the oldest tooth in the dentition, determined from the total number of incremental lines represented in the tooth, is 48.23 d. As described below (Materials and Methods), hatching teeth were conservatively modeled as initiating at 42% of the incubation period (34.93 d). The sum of these values reveals a minimum incubation period of 83.16 d for the P. andrewsi embryo.

The near-term H. stebingeri embryos show tooth families composed of three teeth: two that are functional and a single replacement (Fig. 2D and Fig. S1). The oldest functional tooth is just a root remnant, so its formation time could not be directly determined from a total growth-line count because of the loss of increments present only in the tooth crown. However, the time elapsed in forming the oldest functional tooth was determined by summing the age of the younger functional tooth (55.27 d) and the tooth family replacement rate (44.18 d) (Materials and Methods and Fig. S1). This finding equates to a value of 99.45 d. Again, because the hatching teeth conservatively began formation at 42% of incubation time (72.02 d), this reveals a minimum incubation period of 171.47 d.

Comparison of P. andrewsi incubation period relative to that typical for birds with same-sized eggs shows greater than twofold slower values (83.16 vs. 39.72 d) and modestly faster values (~17%) than predicted for typical reptiles (83.16 vs. 100.40 d) (Fig. 3). Among reptilian clades, the P. andrewsi incubation period is just 3.5% longer than typical for Crocodylia (83.16 vs. 80.20 d). Notably, crocodilians are the extant sister clade to Dinosauria. The results are 5.6% longer than predicted for chelonians (83.16 vs. 78.50 d) (Fig. 3). These findings support the alternative hypothesis that P. andrewsi retained the primitive reptilian incubation duration.

The comparison of H. stebingeri incubation period with birds of similar size shows over twofold slower values (171.47 vs. 81.54 d) (Fig. 3). The H. stebingeri incubation period is modestly longer (~12%) than predicted for same-sized typical reptilian eggs (171.47 vs. 153.72 d) (Fig. 3). Although it is interesting to speculate what groups H. stebingeri incubation most resembles, eggs in living birds and reptiles are grossly smaller than those from this dinosaur. Nevertheless, these results, like those data for the P. andrewsi embryo, support the alternative hypothesis that H. stebingeri retained the primitive reptilian incubation duration.

Discussion

Discovery of von Ebner incremental lines in embryonic dinosaur teeth provides direct empirical estimates for their incubation periods. This opens the door to tracing the genesis of rapid avian in ovo development and provides some of the first empirical insights into dinosaur embryology and life-history strategy. Dinosaur incubation periods have been estimated to be very rapid, assuming typical extant avian values. Regression of incubation period versus egg size in extant birds predict 40 d for small P. andrewsi eggs and 82 d for large H. stebingeri eggs (12) (Fig. 3). Our analyses show considerably slower development, respectively 83 and 171 d. These results are more similar to slow development typical of extant reptilian embryos (12), strongly suggesting rapid avian incubation was not primitive for Dinosauria. In fact, as explained below, because tooth formation shows developmental and physiological constraints (3, 53, 55, 56), it is very likely that most if not all toothed dinosaurs and basal toothed birds showed slow reptilian-grade incubation. Hatching compliments of teeth typically do not appear earlier than 42% through incubation in extant reptiles (3). In addition, von Ebner line widths are limited to less than 30 μm, regardless of tooth size (53, 55, 56); this is caused by the necessity for dentine calcosphere to fully congeal over a day’s time to form an increment before the next daily mineralization event (49, 57, 58). These factors suggest rapid incubation evolved near the diversification of toothless birds (Neornithes) (59) (= Aves) (60). Notably, Deeming studied eggshell thickness and porosity in eggs representing dinosaurian diversity (61) and for the basal non-neornithine bird, Gobipteryx minuta (Enantiornithes) (62). He then estimated water vapor conductance and compared the results with extant reptilian and avian (Neornithes) values and their respective nesting conditions. Deeming concluded that dinosaurs and basal lineage nonneornithine birds most likely: (i) incubated their eggs buried in substrate like most reptiles and

Fig. 1. Daily growth lines in embryonic dinosaur teeth and CT rendering of a P. andrewsi jaw and tooth family. (A) Von Ebner’s growth lines (alternating dark and light bands) in the orthodentine surrounding the pulp cavity (at top of graphic) of an embryonic H. stebingeri tooth (polarized microscopy, transverse view). (B) Von Ebner’s growth lines surrounding the pulp cavity (at top of the graphic) in an embryonic tooth of P. andrewsi (polarized microscopy, transverse view). (C) High-resolution CT rendition of a P. andrewsi tooth family within the jaw used to determine tooth-formation times in embryonic teeth.
some extant birds (e.g., Megapodiidae); and (ii) did not show contact-incubation to control the incubation environment like most extant birds (61). These factors may have contributed to the slow development we found in the dinosaurs we studied.

A notable implication of our capacity to estimate incubation periods using incremental line counts includes determination of them in any egg-laying fossil embryo that bears teeth, not just dinosaurs and basal birds. New embryological and comparative evolutionary insights into amniote embryology will result. For example, the potential to establish comparative developmental (aka evolutionary insights into amniote embryology will result. For example, the potential to establish comparative developmental (aka evolution).

Fig. 2. *P. andrewsi* nest and embryonic dinosaur jaws. (A) Nest of *P. andrewsi* eggs and embryos. The embryos were partially prepared within the eggs. (B) Expanded view of an embryo within an egg showing the thin surrounding eggshell. (C) Embryonic *P. andrewsi* dentary showing functional and replacement teeth. (D) Section of an embryonic *H. stebingeri* dentary showing functional and developing replacement teeth.

The ecological and life-history implications of our findings that ornithischians and predictably all tooth-bearing dinosaurs (see above) had slow incubation relative to extant birds are considerable. Dinosaur eggs and attending parents (if present) (1, 33–36, 43) would have been exposed to prolonged risks (e.g., predation, starvation, and stochastic environmental events) (43, 45, 70, 71). This exposure likely contributed to their tendency to lay large clutches with relatively smaller eggs as a means to successful reproduction and production of extra broods by some taxa, especially large dinosaurs whose incubation spanned the...
better part of a year. Speculation that neonates of large ornithischian dinosaurs (e.g., ceratopsians and hadrosaurids) made 2,600- to 3,200-km migrations from lower latitude nesting grounds to rich summer feeding grounds in the Arctic may have been infeasible because of unexpectedly short posthatching windows for seasonal travel (75–77). Finally, hypotheses regarding nest microenvironment (43, 61), eggshell gas conductance (61, 78, 79), embryonic physiology (45), reproductive effort, annual numbers of clutches and taxon generation times (21, 80, 81), and developmental mode (43) can be strengthened or formally tested in light of slower in ovo dinosaur development.

These results may have implications for nonavian dinosaur extinction. The end of the Cretaceous was marked by extreme catastrophe and rapid climatic change, resulting in a resource-limited environment (82). Growth-curve analyses suggest dinosaurs and basal birds were endothermic (83) or mesothermic (84) [i.e., considerably more energetically wasteful than ectothermic amphibians and reptiles (85)] but required a year or more to reach somatic and sexual maturity (35, 83). This likely required them to acquire more total resources to reproduce than surviving amphibians, reptiles, birds, and mammals. Coupled with slow generation times, augmented by slow incubation, these attributes may have put nonavian dinosaurs at a disadvantage in competing for vacated niche spaces in the post-K–Pg event world.

Materials and Methods

Specimen Acquisitions and Egg Size Estimations. The embryonic remains of P. andrewsi (1.8-m adult total length; Ceratopsia: Protoceratopsidae) derive from a nest composed of 12 eggs discovered in Campanian sediments of the Upper Cretaceous Djadochta Formation from the Gobi Desert of Mongolia by American Museum of Natural History–Mongolian Academy of Sciences expeditions (86) (Fig. 2A). The nest is a bilobed depression in the sandstone, containing partly crushed 10.07 ± 5.81 cm (±5%) elongated eggs with hemispherical ends, an egg shape previously known only in theropod dinosaur (87). Each egg contains the skeleton of a well-ossified embryo, which occupies a substantial portion of the egg, with fully formed dentition (Fig. 2B). Notably, these are the first eggs definitively ascribed to Ceratopsia. [Eggs (octorax Elongatoolithidae) discovered by the Central Asiatic Expedition of 1923 were famously attributed to P. andrewsi, but were later shown to be from the theropod Oviraptor philoceratops (88). A purported egg from the neoceratopan, Yamaceratops dorngobiensis (89) has been shown to be from an enantiornithine bird (90). The estimated volume of the eggs based on similarly proportioned ellipsoid reptile eggs ([π/6000LD²] (91)) is 177.98 cc, making them the smallest eggs that can be definitively referred to a nonavian dinosaur yet discovered. (The next largest eggs containing identifiable dinosaur embryos are 9 × 7-cm therizinosaur eggs with an estimated volume 2,230 ± 300 cc (47).] For P. andrewsi, the estimated mass of the egg (2.97 kg) (43, 92) at the time of hatching is 194.00 g. A left dentary (IGM 100/1021a, Mongolian Institute for Geology, Ulaanbaatar, Mongolia) containing six tooth families (each composed of a functional tooth plus a single underlying replacement tooth) was extracted from an egg for histological and computerized tomographic analyses (Fig. 2C).

The H. stebingeri (9.1-m adult total length; Hadrosauridae: Lambeosaurinae) eggs were found in nests containing embryonic skeletons discovered by field parties of the Royal Tyrrell Museum of Paleontology, Drumheller, Alberta, Canada, from 1987 to 1999 in fluvial overbank deposits of the late Campanian Oldman Formation at Devil’s Coulee in southernmost Alberta. The nests, eggs, and embryos were described previously in considerable detail (93, 94). These near spherical eggs have dimensions of 18.5 ± 2.0 cm and an estimated volume of 3,900 cc (93). This volume is 76% of the upper-bound of known dinosaur egg size (5, 164 cc (40)). The estimated mass of the egg and embryo (vol. × 1.09 g/cc (43, 92)) at the time of hatching is 4,251 g. We focused on specimens from a clutch containing four broken eggs which include embryonic remains within the confines of the eggs (TMP 87.79.149; Royal Tyrrell Museum of Paleontology, Drumheller, Alberta, Canada) and associated remains of four or more individuals (93), and an isolated same-sized embryonic tooth (TMP 87.077.0099). The latter was found slightly lower in a section from the main nesting horizon (93, 94). The embryos are ~14 cm in length (left, advanced in development) and possess well-formed skeletal elements and dental batteries with teeth worn in ovo (93). We sampled the isolated tooth and a left dentary from the nest that preserves five tooth families (Fig. 2D).

Incubation Period and Tooth Replacement Rate Determinations. Each jaw was digitally prepared using high-resolution CT (2010 GE phoenix vtom x3240 high-resolution, microfocus CT system, General Electric) at the Paleontological Imaging Facility of the American Museum of Natural, History, NY. (The original tomography data are available on request from the authors.) The renderings were used to determine time required to form the tooth batteries from longitudinal CT sections, where the entirety of development is represented [i.e., increments represented only at the apex of the tooth, and all others extending down to the root are accounted for (52, 53)] (Fig. 1C and resolution microCT system, General Electric) at the Microscopy and Imaging Facility of the American Museum of Natural, History, NY. The actual incubation period was likely somewhat greater because (i) the teeth in ovo (3, 66, 67). For example, American alligators (Alligator mississippiensis) go through two to four tooth-replacement cycles before hatching (95–97). The timing for the establishment of amniote hatching functional dentitions is well established. In crocodilians (extant sister taxon to Dinosauria) it typically occurs between 42% and 52% of the total incubation period (3) and at >51% in squamates (64, 65, 67–69). In chicken (Gallus gallus domesticus), living dinosaurs, teeth primordia—none of which become functional—appear at 66% through incubation (98). We conservatively adjusted the total embryonic dinosaur tooth battery formation times to accommodate 42% of the incubation period for skull and jaw formation. The actual incubation periods were likely somewhat greater because (i) the embryos had yet to hatch and (ii) it is indeterminable whether the teeth in the fossils are truly the final hatching complement.

Comparative Incubation Analysis. We plotted the dinosaur incubation data on a log-transformed modern comprehensive compilation of incubation periods relative to egg mass for birds (Aves; n = 1,525 species) (12). The phylogenetically corrected (comparative analysis by independent contrasts (CAIC) (99)) results were used to test the hypothesis that dinosaurs showed typical rapid avian-grade incubation periods. The results were then compared with predictions for eggs typical of extant reptiles (lizards (Squamata), n = 90 species; snakes (Squamata: Serpentes), n = 51 species; crocodilians (Crocodylia), n =12 species; turtles (Chelonia), n = 48 species) (12). The phylogenetically corrected (CAIC) results were then used to test the alternative hypothesis that dinosaurs retained primitive reptilian incubation periods.
ACKNOWLEDGMENTS. We thank James Gardner, Brandon Strickly, Don Brinker, and Carl Mehling for facilitating our access to specimens; Stephen Hendricks and Brian Inouye for discussions about the research; Mick Ellison and Ken Wombles for photographic and graphics assistance; Amy Davison for preparing the Protoceratops materials; and Carolyn Merrill and Paul Gignac for conducting the CT scanning. Funding was provided by National Science Foundation Grant DE 0599209 (to G.M.E. and M.A.N.); the Macaulay Foundation (MA.N.); and Natural Sciences and Engineering Research Council Discovery Grant 327513-09 (to D.K.Z.).


