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The as-yet uncultured filamentous bacteria “Candidatus Entotheonella
factor” and “Candidatus Entotheonella gemina” live associated with
the marine sponge Theonella swinhoei Y, the source of numerous
unusual bioactive natural products. Belonging to the proposed candi-
date phylum “Tectomicrobia,” Candidatus Entotheonella members are
only distantly related to any cultivated organism. The Ca. E. factor has
been identified as the source of almost all polyketide and modified
peptides families reported from the sponge host, and both Ca. Ento-
theonella phylotypes contain numerous additional genes for as-yet
unknown metabolites. Here, we provide insights into the biology of
these remarkable bacteria using genomic, (meta)proteomic, and chem-
ical methods. The data suggest a metabolic model of Ca. Entotheonella
as facultative anaerobic, organotrophic organisms with the ability to
use methanol as an energy source. The symbionts appear to be auxo-
trophic for some vitamins, but have the potential to produce most
amino acids as well as rare cofactors like coenzyme F420. The latter
likely accounts for the strong autofluorescence of Ca. Entotheonella
filaments. A large expansion of protein families involved in regulation
and conversion of organic molecules indicates roles in host–bacterial
interaction. In addition, a massive overrepresentation of members of
the luciferase-like monooxygenase superfamily points toward an im-
portant role of these proteins in Ca. Entotheonella. Furthermore, we
performed mass spectrometric imaging combined with fluorescence in
situ hybridization to localize Ca. Entotheonella and some of the bio-
active natural products in the sponge tissue. These metabolic insights
into a new candidate phylum offer hints on the targeted cultivation of
the chemically most prolific microorganisms known from microbial
dark matter.
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Marine sponges are prolific sources of bioactive natural products
and of great interest for drug development (1). Besides their

pharmacological potential, sponges are among the oldest metazoans
and have attracted attention as ancient models of animal–bacterial
symbioses. Many sponges harbor highly abundant bacterial commu-
nities that exhibit a similar biological complexity as the human
microbiome (2, 3), but the ecological roles of these mostly un-
cultivated microbes remain largely elusive. One of the functions, for
which evidence is accumulating, is the production of toxic natural
products that might contribute to host defense (4, 5). Significant ef-
forts have been made to connect the chemistry of sponges to possible
bacterial producers, largely motivated by the prospect of developing
sustainable production systems for drug development. One of the
important sponge models that has emerged in these studies isThe-
onella swinhoei, a chemically exceptionally rich complex of distinct
chemotypes. Pioneering work on avariant from Palau revealed the
presence of filamentous, multicellular bacteria that could be
mechanically enrichedand contained elevated amounts of theopa-
lauamide-type antifungal peptides(6). The symbiont was assigned to
a new candidate genus and named“Candidatus Entotheonella pal-
auensis” (7). Related Candidatus Entotheonella bacteria were also
detected in the spongeDiscodermia dissoluta (8), the source of the

anticancer drug candidate discodermolide (9, 10), but their chemical
role remains unclear (11). Despite repeated efforts (12, 13), the vast
majority of T. swinhoei symbionts, includingCa. Entotheonella, re-
main uncultured to date, except for a report on the detection of
Ca. Entotheonella in a mixed culture (7). There is some pros-
pect, however, of overcoming this challenge by genomics-based
targeted cultivation (14).

By metagenomic, single-particle genomic, and functional studies, we
and collaborators recently provided evidence that almost all known
bioactive polyketides and modified peptides previously reported from
a Japanese chemotype ofT. swinhoei (termed “chemotype Y”) are
produced by a single member of the complex microbiome named
“Candidatus Entotheonella factor” TSY1 (15–18). In this sponge, the
bacterium co-occurs with a secondCa. Entotheonella symbiont (15)
that, based on average nucleotide identity values, is a distinct candi-
date species and was termed“Candidatus Entotheonella gemina”
TSY2 (21). Disentangling the metagenomic sequence data by binning
analysis revealed a striking number of natural product gene clusters in
both phylotypes, but assigned all clusters for attributableT. swinhoei
Y compounds (onnamides, polytheonamides, keramamides, pseudo-
theonamides, cyclotheonamides, and nazumamides) toCa. E. factor
(15). In addition, multiple clusters for as-yet cryptic natural products
were identified in both phylotypes, suggesting an even higher bio-
synthetic capacity. Both phylotypes remain as-yet uncultivated; are
only distantly related to any cultivated bacterium; and, on the basis of
phylogenomic data, belong to a novel candidate phylum that was
termed “Tectomicrobia” (15).

Recently, we presented evidence that anotherCa. Entotheonella
phylotype,“Candidatus Entotheonella serta,” present in the chemically
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(27). Intrigued by this result, we constructed a phylogenetic tree of
the candidate MDH proteins together with known MDHs classified
by Keltjens et al. (28). BothCa. Entotheonella enzymes cluster well
with MDHs ( Fig. S2A) and, more specifically, fall into the XoxF2
(lanthanide-dependent methanol dehydrogenase) clade. In contrast
to the long-known MxaF-type MDHs that use Ca2+ as cofactor,
XoxF-type MDHs have only recently been shown to depend on ions
of rare earth elements like La3+ or Ce3+ (29). In addition, they use
the rare coenzyme pyrroloquinoline quinone (PQQ). ThexoxF gene
is clustered with genes for the periplasmic protein XoxJ and the cy-
tochromec homolog XoxG, a genome context also known from other
xoxF homologs (28). These data strongly suggest thatCa. Ento-
theonella can use MeOH for energy metabolism. Furthermore, the
genomes encode two putative enzymes for further oxidation of
methanol to carbon dioxide, both depending on rare cofactors (Fig.
S2B): mycothiol-dependent formaldehyde dehydrogenase (30) and
tungsten-dependent formate dehydrogenase (31). Like MDH, both
coding genes are expressed in situ. The data strongly suggest that
Ca. E. factor and Ca. E. gemina oxidize methanol for energy me-

tabolism. Notably, methanol is anabundant molecule in the oceans
(32). To also feed on C1 compounds as a sole carbon source, C1
fixation pathways have to be present. Examining such pathways
revealed a large portion of the serine pathway (33), including serine-
hydroxymethyl transferase (expressed) andD-glycerate-2-kinase
(Fig. 1). However, dedicated candidate genes of the pathway-specific
malyl-CoA synthetase (EC 6.2.1.9,distinct from succinyl-CoA syn-
thetase) were not detected. We are therefore cautious with a final
conclusion about C1 compound assimilation inCa. Entotheonella,
but we suggest that the addition of methanol and rare earth ele-
ments (e.g., LaCl3) to artificial growth media could be a highly
promising strategy for cultivation experiments. Interestingly, the
addition of rare earth metals to growth media was a key to culti-
vating methanotrophic Verrucomicrobia successfully from volcanic
mud pods (29).

In addition to methylotrophy, there is evidence for oxalotrophy
of Ca. Entotheonella, because we found a putative formyl-CoA/
oxalate CoA-transferase gene expressed in bothCa. Entotheonella
phylotypes. Together with the oxalyl-CoA decarboxylase (ETW96684
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Fig. 1. Metabolic pathway reconstruction of Ca. Entotheonella. Ca. Entotheonella possesses various transporters for inorganic and organic substrates. Given
the presence of appropriate transporters, the utilization of sugars is likely. The exact pathway of hexose and pentose catabolism, however, is elusive. Lactate,
acetate, and glycerol are likely used as a carbon sources. MDH renders methanol available for energy metabolism. The assimilation of C1 compounds via the
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III secretion systems (except for the general secretion pathway), or
any other virulence factors listed in the TIGRFAMs database of
protein families (TIGRFAM) under TIGRFAM role “pathogen-
esis.” The lack of classical symbiosis factors sometimes points to-
ward more loose associations with hosts rather than highly intimate
symbioses. However, the fact thatCa. Entotheonella bacteria are
regularly associated with sponges and have thus far not been iso-
lated from any other source is an indication for true mutualism
and suggests as-yet unknown factors involved in recognition,
colonization, and survival within the host. Some of the orphan
biosynthetic gene clusters ofCa. Entotheonella might produce
compounds that act as signaling molecules or host manipula-
tion factors.

Boosted Enzyme Families for Complex Metabolism. Both Ca. E.
factor and Ca. E. gemina possess very large genomes ofca. 9 Mb.
However, the reported high numbers of repetitive elements and
specialized metabolite biosynthesis clusters alone do not account for
this exceptional genome size. We therefore wished to obtain in-
sights as to whether the large genome size is caused by a high
number of distinct encoded protein families, an accumulation of
known protein families, or the presence of unknown protein fami-
lies. In the genome ofCa. E. factor (Ca. E. gemina), 6,318 (6,473)
of 8,440 (8,990) protein coding sequences (CDSs) were assigned to
known families in the protein family (PFAM) database (45). This
finding means that roughly 25% (28%) of the CDSs have no hit in
the PFAM database. The PFAM database was chosen because the
compiled PFAMs are supposed to be nonoverlapping. On the other
hand, it should be noted that domains of one protein usually belong
to different PFAMs. The 6,318 (6,473) proteins with PFAM hits can
be assigned to 2,225 (2,211) distinct PFAMs, indicating that mul-
tiplication of a subset of families, rather than the accumulation of
many distinct families, is the mechanism behind genome expansion
in Ca. Entotheonella. This trend is general, because gene duplica-
tion and functional differentiation are more likely than horizontal
transfer or de novo evolution of genes. To identify PFAMs that are
particularly enriched within Ca. Entotheonella, we compiled a
matrix (PFAMs versus genomes)containing the number of all
PFAM hits per genome analyzed. To put genome statistics into
relation, we chose a set of 100 genomes covering a broad range of
diverse phylogenetic groups, lifestyles (e.g., pathogenic, free-living),
morphologies, metabolic features, and varying genome sizes
(Dataset S3). Thereby, we obtained an abundance matrix of 8,301
PFAMs in 100 genomes (Dataset S4). We ordered the table by
abundance inCa. E. factor to retrieve the 50 most abundant
PFAMs (top 50) present in its genome (a short version of the
table is shown in Fig. 5). Notably, three PFAMs within the top
50 Ca. E. factors are not enriched inCa. E. gemina. These
PFAMs comprise parts of the NRPS assembly lines: pfam00550
(phosphopantetheine attachment site), pfam00668 (condensation
domain), and pfam13745 (HxxPF-repeated domain, unknown
function). This finding is in agreement with the previous finding
that Ca. E. factor harbors far more NRPS genes thanCa. E.
gemina. Inspecting the50 most abundant PFAMs ofCa. E.
factor, we observe a general tendency: The genome size re-
flects the scope of physiological responses to varying envi-
ronmental conditions. Consequently transporters like ABC
transporter (pfam00005) or major facilitator (pfam07690) and
signal transduction systems [e.g., response regulator receiver
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Fig. 2. Rare cofactors of Ca. Entotheonella. (A) Chemical structure of se-
lected rare cofactors encoded in the Ca. Entotheonella genomes. PQQ is a
redox cofactor necessary for MDHs. Mycothiol functions as a glutathione-like
cofactor in Actinobacteria like Mycobacterium tuberculosis. Coenzyme F420
(a deazariboflavine) is a fluorescent two-electron transfer cofactor mainly
found in Actinobacteria and methanogenic archaea. (B) Normalized fluo-
rescence emission spectra of a representative Ca. Entotheonella filament and
M. smithii DSM 861, a methanogenic archaeon known to produce F420. The

excitation wavelength is 405 nm. The fluorescence emission spectra are
nearly identical. (C) Autofluorescence of Ca. Entotheonella filaments: bright-
field image of a representative Ca. Entotheonella filament (Left) and fluo-
rescence image of an Ca. Entotheonella filament recorded at 471 nm using
an excitation of 405 nm (Right). (Scale bars: 5 μm.)
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domain (pfam0007), histidine kinase A (phosphoacceptor) do-
main (pfam00512), sigma factor 70 (pfam04542)] are enriched
in Ca. Entotheonella, but also in other large genomes (e.g.,
Anabaena, Streptomyces, Myxococcus). To pinpoint protein
families that are particularly enriched inCa. Entotheonella, we
adjusted our data matrix by subtraction of the median abundance
of each PFAM over the 100 genomes (Dataset S5). Indeed, sev-
eral PFAMs were particularly abundant inCa. Entotheonella.
One of these PFAMs is pfam02515 (CoA-transferase family III),
with around 90 members in eachCa. Entotheonella phylotype,
followed by Bordetella pertussis and Streptomyces rapamycinicus,
with only 22 and 17 representatives, respectively. CoA-transferase
III was originally discovered in anaerobic pathways and is involved
in the activation of various organic acids like oxalate, bile acids, or
benzylsuccinate for subsequent reactions, such as decarboxylation,

β-oxidation, or racemization (46). It is therefore tempting to
speculate thatCa. Entotheonella might possess an arsenal of en-
zymes to break down a wide range of organic acids. Notably, one
member of pfam0251 is the previously mentioned putative formyl-
CoA/oxalate CoA-transferase presumably involved in oxalotrophy.
Hitherto, the record holder in accumulating CoA-transferase
family III enzymes isFrankia sp. EuI1c, with 49 sequences (of all
873 organisms listed in the PFAM species distribution section).
Thus, both Ca. Entotheonella species significantly surpass this
number, with 87 members inCa. E. factor and 93 members inCa.
E. gemina. Another expanded PFAM with 22 instances inCa. E.
factor and 30 inCa. E. gemina is the molybdopterin-binding do-
main of aldehyde dehydrogenase (pfam02738), which represents
the large subunit of xanthin dehydrogenase, CO dehydroge-
nase, or hydroxybenzoyl-CoA dehydrogenase (47). Because the
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copper-binding motif of CO dehydrogenase is missing in all of the
deducedCa. Entotheonella enzymes, we suspect a role in the
breakdown of aromatic compounds. This hypothesis is further
supported by the high number of taurine catabolism dioxygenase
TauD family proteins (pfam02668). Although TauD itself is involved
in utilization of taurine as a sulfur source, other family members are
involved in the breakdown of the pesticide 2,4-dichlorophenoxyacetic
acid, for instance (48). In conclusion, these data suggest that
Ca. Entotheonella is a prolific source of complex and untapped
biochemistry involved in the transformation of small organic mol-
ecules waiting to be characterized.

Extraordinary Abundance of Luciferase-Like Monooxygenases.Another
intriguing PFAM that is extraordinarily abundant in Ca. Ento-
theonella is pfam00296, the luciferase-like monooxygenase (LLM).
It is the most abundant PFAM in both Ca. E. factor (171
members) andCa. E. gemina (168 members). Due to the great
expansion of this family and the fact that bioluminescence ofCa.
Entotheonella filaments has not been observed, it is reasonable to
assume that these proteins do not act as true luciferases. Rank 2 in
our 100-genome set with 63 LLM genes holdsS. rapamycinicus
(producer of the immunosuppressant rapamycin), another highly
talented producer of specialized metabolites (Fig. 5). This finding
might suggest a role of LLMs in secondary metabolism. Notably,
members of the PFAM TIGR04020 (natural product biosynthesis
LLM domain, a subfamily of pfam00296) are typically found
encoded in specialized metabolite gene clusters. However, only
four proteins of Ca. E. factor, none ofCa. E. gemina, and two of
S. rapamycinicus belong to this particular subfamily. InCa. E. fac-

tor, ETX03783 (OnnC) and ETX03434 (NazB) are proposed hy-
droxylases and belong to the onnamide and nazumamide clusters,
respectively. The other two proteins, ETW93540 and ETX02882,
are not part of any identified natural product gene cluster. Another
interesting feature of LLMs is the fact that several subfamilies
(TIGRFAMs) depend on coenzyme F420 instead of a flavin co-
factor (49). In light of the presence of this cofactor inCa. Ento-
theonella, we assigned all members of pfam00296 to TIGRFAM
subfamilies (Dataset S6). However, only 59of 171 LLM proteins
from Ca. E. factor and 42 of 168 fromCa. E. gemina could be
assigned to any TIGRFAM. Consequently, one might expect a
considerable proportion of LLMs belonging to novel subfam-
ilies. Furthermore, we identified multiple members of assigned
F420-dependent subfamilies, such as the poorly characterized
TIGR03619 (33 members inCa. E. factor and 29 in Ca. E.
gemina). Because the identity of G6PDH is enigmatic inCa.
Entotheonella, the idea is tempting that enzymes with G6PDH
or related activities might be hidden among the large diversity
of LLM proteins. However, as discussed above, a bona fide
member of TIGR03557 (F420-dependent G6PDH) is not pre-
sent in Ca. Entotheonella. Thus, the role of the multifarious
LLMs of Ca. Entotheonella remains obscure, and future work is
highly warranted to shed more light on this PFAM.

Conclusion
Our analyses suggest that the as-yet uncultured bacteriaCa. E.
factor and Ca. E. gemina are organotrophic, aerobic (or at least
microaerophilic), facultative anaerobic organisms that are likely
able to use a broad range of organic carbon sources like organic
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