Human cultural traits—behaviors, ideas, and technologies that can be learned and transmitted between individuals and can change over time (1). This process of transmission and change is reminiscent of Darwin’s principle of descent with modification through natural selection, and Darwin himself drew this explicit link in the case of languages: “The formation of different languages and of distinct species, and the proofs that both have been developed through a gradual process, are curiously parallel” (2, 3). Theory underpins most scientific endeavors, and, in the 1970s, researchers began to lay the groundwork for cultural evolutionary theory, building on the neo-Darwinian synthesis of genetics and evolution by using verbal, diagrammatic, and mathematical models (4–8). These models are, by necessity, approximations of reality (9), but because they require researchers to specify their assumptions and extract the most important features from complex processes, they have proven exceedingly useful in advancing the study of cultural evolution (10). Here, we review the field of cultural evolutionary theory as it pertains to the extension of biology through culture. We focus on human culture because the bulk of cultural evolutionary models are human-centric and certain processes such as cumulative culture seem to be unique to humans. However, numerous nonhuman species also exhibit cultural transmission, and we consider the areas of overlap between models of human and animal culture in Discussion.

The study of cultural evolution is important beyond its academic value. Cultural evolution is a fundamentally interdisciplinary field, bridging gaps between academic disciplines and facilitating connections between disparate approaches. For example, the advent of technologies for revealing genomic variation has led to a plethora of studies that measure association between DNA variants and traits that have major cultural components, such as years of schooling, marriage choices, IQ test results, and poverty. Perhaps because of the perceived greater precision of the genomic data, these culturally transmitted components have been relegated to the deep background, creating a misleading public portrayal of the traits as being predetermined by genetics (see, e.g., ref. 11). Models of the dynamics of interaction among culture, demography, and genetics, which uncover the complexities in the determination of these behaviors and traits, are crucial to remedy this potentially dangerous misinterpretation.

Here, we explore the ways in which we in the Anthropology of Cultural Theory and its applications enhance our understanding of human history and human biology, focusing on the links between cultural evolutionary theory and population genetics, human behavioral ecology, and demography. Throughout, we give examples of efforts to apply theory to data, linking models of cultural evolution to empirical studies of genetics, language, archaeology, and anthropology. For example, studies of cultural factors, including language and customs, help biologists interpret patterns of genetic evolution that might be misinterpreted if the cultural context were not taken into account. Finally, we outline several societal implications of cultural evolutionary theory.

Population Genetics and Cultural Evolution

Many of the first models of cultural evolution drew explicit parallels between culture and genes by modifying concepts from theoretical population genetics and applying them to culture. Cultural patterns of transmission, innovation, random fluctuations, and selection are conceptually analogous to genetic processes of transmission, mutation, drift, and selection, and many of the mathematical techniques used to study genetics can be useful in the study of culture (1, 12). However, these mathematical approaches had to be modified to account for the differences between genetic and cultural transmission. For example, we do not expect cultural transmission to follow the rules of genetic transmission strictly. Indeed, cultural traits are likely to deviate from all three laws of Mendelian inheritance: segregation, independent assortment, and dominance (13).

The simple observation that cultural traits need not conform to Mendelian inheritance is sufficient to produce complex evolutionary dynamics: If children are likely to reject a cultural trait that both of their parents possess, the frequency of that trait in the population may oscillate between generations (4). In addition, if two biological parents have different forms of a cultural trait, their child is not necessarily equally likely to acquire the

Cultural evolutionary theory: How culture evolves and why it matters

Nicole Creanza1, Oren Kolodny1,2, and Marcus W. Feldman1

1Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235; and 2Department of Biology, Stanford University, Stanford, CA 94305

Edited by Kevin N. Laland, University of St. Andrews, St. Andrews, United Kingdom, and accepted by Editorial Board Member Andrew G. Clark April 29, 2017 (received for review January 16, 2017)
mother’s or father’s form of that trait (14). Further, a child can acquire cultural traits not only from its parents (vertical transmission) but also from nonparental adults (oblique) and peers (horizontal) (1, 12); thus, the frequency of a cultural trait in the population is relevant beyond just the probability that an individual’s parents had that trait (Fig. 1). In most cases, the more common a cultural trait is in the population, the more likely it is for an individual to have the opportunity to acquire it through social learning (15). However, the size of the population may also influence the continuing transmission, and thus survival, of a cultural trait (16). The relative importance of a population’s size, and its environmental context, for the retention and perhaps expansion of the cultural repertoire constitutes an ongoing debate (16–20).

The Roles of Transmission and Innovation in Cultural Evolution. Thus far, we have made the analogy between alleles of a gene and forms of a cultural trait, implying that the cultural trait in question can be represented in a binary or discrete manner. Although this approximation is appropriate for some culturally transmitted traits, such as knowing or not knowing how to use a certain tool, or smoking or not smoking, some cultural traits are more naturally regarded as continuous or quantitative traits. For example, cultural norms and preferences, such as degree of risk tolerance, have been modeled as continuous traits (e.g., ref. 21), and knowledge of a tool or technique has usefully been represented in terms of a quantitative “skill level” (e.g., refs. 16, 22, and 23).

Like genes, cultural traits can be more or less adaptive depending on the environment and spread accordingly. An interesting question is the following: If a certain behavior may be either innate (i.e., genetically determined) or culturally acquired (and thus potentially responsive to the environment), which environmental patterns would favor the genetic transmission? Models predict that spatially varying environments will favor cultural transmission, whereas only highly stable environments would favor the genetic determination of the behavior (24–26). Cavalli-Sforza and Feldman note an important reason that genes, cultural traits, and environments should all be considered together: “Given the existence of individual plasticity in response to the environment, correlations between biological relatives are expected even if there is no genetic variation whatsoever” (14).

Unlike in genetics, where mutations are the source of new traits, cultural innovations can occur via multiple processes and at multiple scales (1, 27–29). Most of the models described above include the cultural transmission of existing traits without providing a mechanism for novel traits to be introduced to the population. In many models of social learning, new information enters a population via trial-and-error learning or individual interactions with the environment, and this information can then be culturally transmitted (30, 31). New cultural traits can also originate when existing traits are combined in novel ways, which can lead to exponential rates of cultural accumulation (32). Recent models represent innovation as the result of multiple interacting processes (27–29), and cultural traits can accumulate in punctuated bursts when these processes of innovation are interdependent: A truly groundbreaking innovation can pave the way for many related innovations and novel combinations (28). Such dynamics may explain some of the punctuated bursts that are observed in the archaeological record of stone tools, like the dramatic increases in complexity near the transitions from the Middle to the Upper Paleolithic and from the Paleolithic to the Neolithic (33–35), and may provide an account of the dynamics of technological development in historical times (36–39). In many models of cultural evolution, the frequency of one or more cultural traits is tracked over time, and the equilibrium properties are sought. However, recent research highlights the dynamics of cultural accumulation that occur in the transient phase before the system approaches an equilibrium (28). For example, if innovation processes are interdependent, as described above, the cultural repertoire can fluctuate dramatically before approaching an equilibrium because the loss or gain of a groundbreaking innovation can lead to the loss or gain of its related innovations as well (28). In addition, these models demonstrate how innovation processes can change the parameters, and therefore the dynamics, of cultural evolution, possibly altering the cultural equilibrium, if there is one (29). For example, a game-changing innovation, such as the transition from foraging to agriculture, could allow a population to feed many more people; thus, a cultural innovation can alter the size of the population, which is generally set as a fixed parameter in cultural evolutionary models (29). Non-equilibrium dynamics arise, for example, in a recent comparison between modeling predictions and the archaeological record that showed that the frequencies of Neolithic pottery features over time are not consistent with a cultural system at equilibrium (40).

Linking Genetic and Cultural Evolution. As mentioned above, theoretical treatments of cultural transmission and evolution can usefully draw on concepts from theoretical population genetics, extending them to accommodate cultural processes. However, cultural and genetic evolutionary processes can also interact with one another and with the environment (Fig. 2), and elucidating the relative contributions of genes, culture, and environment to a phenotype can be very difficult (41). Extensive theoretical work has been devoted to characterizing these interactions, termed gene–culture coevolution (1, 42), culture–gene coevolution (43), dual inheritance theory (12, 44), or cultural niche construction (45, 46). When cultural and genetic evolution interact, the dynamics of both genetic and cultural traits are likely to be very different from those characteristic of only one mode of transmission (47, 48). Further, cultural traits can alter the selection pressures on genetic traits and vice versa: For example, genetic traits that are adaptive in one cultural background might not be adaptive in another (49, 50). The classic example of these interactions between cultural and genetic evolution is lactase persistence in adulthood: For much of human history, there was little reason to digest milk after weaning, and adults did not typically produce the enzyme that digests lactose. However, with the cultural
practice of cattle domestication and dairying, a genetic mutation that enabled the production of the lactase enzyme in adulthood was strongly favored by selection (51, 52).

Theoretical analyses show that gene–culture coevolution can be dynamically complex and surprisingly unpredictable. For example, a well-known finding in population genetics is that a fitness advantage to heterozygote genotypes maintains genetic variation in a population. However, it is not sufficient to maintain genetic variation for heterozygote offspring to be superior to homozygotes in their ability to acquire an advantageous cultural trait that is transmitted culturally by a parent (12). In fact, the fitness advantage to the culturally transmitted trait has to be sufficiently large that it overcomes imperfection in vertical cultural transmission. In a similar vein, Aoki et al. (26, 53) modeled the evolution of a genetic trait that increased the efficiency of teaching, defined as vertical transmission of a cultural trait. Genetic variation at this teaching locus could not be maintained with asexually haploid genetics and unparental cultural transmission, but sexual haploid genetics and biparental cultural transmission could preserve both genetic polymorphism of the teaching locus and polymorphism of the cultural trait. These examples illustrate the theoretical complexity that emerges when standard population genetic theory is extended to include the interactions between genetic and cultural traits; the result is a highly nonlinear theory with complex consequences not purely biological.

The theoretical literature on gene–culture interactions has become increasingly relevant in the genomic era. Genome-wide association studies (GWAS) have shown many genomic associations with a wide array of complex phenotypes and have allowed detection of signals of genetic adaptation (54). However, GWA studies of behavioral phenotypes such as IQ, educational attainment, and life history should be interpreted with care (55–58). As the authors of one such study state: ‘‘Studied of genetic analyses of behavioural phenotypes have been prone to misinterpretation, such as characterizing identified associated variants as ‘genes for education.’ Such characterization is not correct for many reasons: Educational attainment is primarily determined by environmental factors’’ (55). Statistical relationships between genetic variants and behaviors need not be causal because assortative mating, spatial autocorrelation, and a shared environment can influence such relationships (55, 59–61). Twin studies of tobacco smoking point to interacting roles of genetics, environment, and assortative mating in the initiation and continuation of smoking (62). In large-scale studies of human health, environmental and cultural factors should also be considered because these could confound the effects of genetics and ancestry with those of poverty, stress, racism, or socioeconomic status (63–65). For example, data from the large-scale Health and Retirement Study showed an association between African ancestry and hypertension: The prevalence of hypertension was eight percentage points higher in respondents with the highest quartile of African ancestry compared with those with the lowest quartile (63). However, controlling for a subset of factors related to socioeconomic status (childhood disadvantage, education, income, and wealth) explained ~38% of this disparity, reducing it to a five-percentage-point difference (63).

Nonrandom Assortment and Biased Transmission

Many theoretical population genetic studies make the assumption that mating is random within a population. However, in real human populations, this assumption is often violated, as individuals tend to prefer mates with similar phenotypes, such as eye color (66), height, IQ (67), education level (61), and smoking status (68). Cultural evolutionary theory has led to significant advances in our understanding of the effects of nonrandom mating, revealing how the transmission and dynamics of cultural traits can be sensitive to both phenotypic and environmental assorting (41). Assortative mating, leading to an increased correlation between mates for genetic or cultural traits, can increase both genotypic and phenotypic variance in a population (69, 70). In addition, assortative mating (and other forms of homophily) acting on one cultural trait can influence the evolutionary dynamics of other cultural traits, facilitating the spread of rare cultural or genetic variants (71, 72). More generally, assorting can affect not just mate choice but many types of cultural interactions, termed ‘‘assortative meeting’’ (73). Empirical work supports this theoretical finding; for example, beneficial health behaviors spread more readily through a social network when individuals’ social contacts were more similar to themselves (74, 75). Culturally mediated assortative mating can also lead to biological differences: Partners that are more similar tend to have more offspring (76), thus increasing fitness, and assortative mating within highly homophilic groups affects the average length of homozygous DNA segments (59, 77), leading to the appearance of higher levels of inbreeding than might actually exist. Humans can also assort by language; however, studies of the interactions between language and genetic population structure show that the resulting dynamics can differ by population. For example, in some geographic regions, language boundaries do not seem to act as barriers to gene flow (78–80) whereas, in other places, assorting with respect to language seems to have had a large effect, and genetic similarity is more closely associated with language than with geographic distance (80–83). Assortative mating has had a measurable effect on human genomic architecture, and genetic and phenotypic correlations between phenotypes are substantial (84).

In addition to choosing their mates nonrandomly, individuals can also choose their cultural role models; these cultural transmission biases affect the relationship between a trait’s frequency in the population and its likelihood of transmission (Fig. 3). For example, conformity bias is an exaggerated preference for the cultural variant practiced by the majority of the population, which can lead to an increasingly large majority over time (85, 86). Alternatively, individuals might preferentially seek out novel cultural traits, termed rarity bias or novelty bias (30). These frequency-dependent biases can lead to patterns of cultural diffusion in which the prevalence of a cultural trait can change dramatically over short timescales, producing logistic growth (‘‘S-shaped’’ curves) of trait frequency over time (87, 88). Examples of cultural traits that are likely to exhibit frequency-dependent transmission are fashion trends (89), career choices (12), and baby names (90). Conformist transmission is likely to dominate when the environment is relatively stable and common cultural traits are well adapted to that environment (86, 91).

Other types of transmission biases reflect not how common a trait is in a population, but the characteristics of the people who have the trait. In the case of prestige bias, individuals attempt to acquire cultural traits that are perceived to be high quality by selectively learning from those individuals with high social rank (92). For example, in an experimental test, children were much more likely to choose an adult cultural role model if they had observed bystanders attending to the potential model rather than ignoring him or her (93); thus, even at a very early age, humans can assess such characteristics as prestige or social standing. Individuals can also use observations of success associated with a cultural trait, such as a fruitful hunt with a certain tool, to develop a preference for cultural role models that are...
demonstrably successful (30). This bias has been demonstrated experimentally (94, 95); for example, when individuals participated in simulated hunting with virtual arrowheads and then modified their arrowheads either by trial and error or imitation, copying success than individuals gave significantly better results than trial and error (94).

Models of Culture and Human Ecology

For thousands of generations humans have been carving their existence in the world with cultural tools that have become integral to their livelihoods, thereby shaping their environment at all scales, both intentionally and unintentionally. Attempting to answer the question of what are the extensions of human biology through culture leads to a striking conclusion: There are few aspects of human biology that have not been shaped by our culture. Human culture has also affected the biology, even the survival, of nonhuman species (96). In this section, we review a number of cases for which incorporating culture into models of coevolutionary dynamics has proven valuable for the interpretation, prediction, and, in some cases, direction of human ecology and of human impact on the ecosystem.

Human Niche Construction. Niche construction is a process in which organisms modify their environment in a way that alters the selective pressures that these organisms experience, thus affecting evolution (97). A special case of niche construction is cultural niche construction: the alteration of the environment through cultural practices, which may themselves evolve. Cultural niche construction involves complex dynamics in which selective pressures act on the culture itself, interacting with genetic evolution and the environment to influence the spread of both genetic and cultural traits (71). Because cultural change has the potential to occur faster than genetic adaptation, dynamics of niche construction that are driven by cultural traits play a prominent role in human evolution; yet, only in recent decades has cultural evolution begun to be explicitly incorporated into human evolutionary ecology (98). Studies that pioneered this approach showed how it can provide insight into the dynamics of the demographic transition in postindustrialized societies (e.g., refs. 1 and 99). For example, the reduction in birth rate during the demographic transition is often characterized as a paradox because, from a Darwinian fitness perspective, individuals should prefer to have more offspring, not fewer (100). However, if a cultural norm favoring small family size spreads, the fertility rate can drop as well, resulting in a culturally induced demographic transition (99), which is a case where natural selection and cultural transmission seem to be in opposition.

The niche-construction approach has been productive in many other studies, such as those that describe culturally driven change at the ecosystem level: for example, the extinction of megafauna after the arrival of humans (102), the change of broad-scale landscapes as a result of cultivation in early and recent times (103–105), and the traditional use of fire as a means to manipulate the environmental dynamics in a way beneficial for humans (106, 107). Niche construction is also important in understanding the evolutionary dynamics driven by changes in the immediate environment that humans experience, such as via construction of shelters and production of clothing that enabled the expansion of humans into otherwise uninhabitable regions (108), and the use of fire for food handling, which allowed dramatic changes in subsistence and may even have led to significant change to the anatomy of the human jaw (109).

Major Cultural Shifts. A key aspect of human evolution is the change over time in human subsistence strategies. Several models consider the interaction of hunter-gatherers with the populations of organisms that they consume and how these interact over time. They propose that predation pressure can decrease a prey species’ population and exert selective pressures in favor of early reproduction at a smaller body size, potentially leaving a telltale pattern in the archaeological record. The result may be the prey species’ extinction, which forces humans to shift their diet in response. Such models as the Diet Breadth Model, the Broad Spectrum Revolution, and Nutritional Ecology (110–113) capture some of these processes, and, although they differ in many important dimensions, such as in the role they assign to plants in the diet, they share the realization that cultural dynamics, genetic evolution, and ecological processes must be considered jointly to understand human evolution. Studies in this tradition have also proposed how gradually changing cultural practices may have created the conditions that culminated in the Neolithic revolution, with the domestication of multiple plant and animal species and the subsequent changes in almost every aspect of human existence (114–116). An interesting niche-construction perspective of these topics is proposed by Smith and Zeder (117).

Models in Human Behavioral Ecology. Human behavioral ecology applies approaches that were developed with a focus on non-human species to the interpretation of human behavior (118). One of these approaches is based on optimality in behavior, and studies frequently devise models that capture human behavioral constraints and alternatives, as well as their associated payoffs, which are then considered jointly in predicting behavior or explaining the evolutionary underpinnings of observed behaviors, often under the assumption that humans behave in a way that maximizes their fitness. A broad range of empirical and theoretical studies of culturally determined behaviors bear directly on human fitness, past and present. Human ecological traits, such as life history profiles, subsistence strategies, mating preferences, economic decision making, and social structures (119–122), have been analyzed to predict individual behavior and to support potential intervention that might alter human behaviors at the societal level.

Interestingly, few studies in human ecology consider the dynamics of cultural evolution on which the studied behaviors depend; thus, for example, it is frequently assumed that alternative possible behaviors are available to the human group of interest when they might not be, such as different subsistence strategies. Similarly, with some notable exceptions (e.g., refs. 123–128), human behavioral ecology models often do not consider ecological and evolutionary dynamics that may depend on the studied behavior and that play out on intermediate and long timescales: For example, how would prey populations evolve over long periods of time in response to a certain human foraging strategy, and how would that feed back onto human strategy choice? We suggest that these aspects are promising avenues for further exploration.

Interspecies and Intergroup Dynamics. One of the hotly debated topics in human prehistory is the replacement of Neanderthals by modern humans ~40,000 y ago. A recent study (129) proposed an ecocultural model that incorporated cultural differences between two competing species into Lotka–Volterra competition dynamics and showed that a difference in culture between moderns and Neanderthals could have driven the latter’s extinction. This model explicitly includes cultural evolutionary dynamics and shows that a difference in population sizes between moderns in Africa and Neanderthals in Eurasia could have led to a difference in the cultural complexity between the two populations, allowing the small groups of moderns that migrated out of Africa to gradually outcompete the larger population of Neanderthals that they encountered.

This pattern—with one group replacing another as a result of a culturally derived advantage—is likely to have taken place repeatedly throughout human history. Thus, for example, genetic evidence largely supports a scenario in which the Neolithic revolution spread throughout the world not by diffusion of farming practices among groups but by replacement of hunter-gatherer groups by farmers (130) (see also refs. 34, 131, and 132). A second revolution occurred 6,000 to 4,000 y ago, when the early Neolithic farmers were overwhelmed by Yamnaya invaders from the Russian Steppe, who had the cultural advantage of
transportation by horses (133, 134). Such dynamics, in which cultural adaptation to temporarily variable conditions may play an important role, are also pervasive more recently: For example, competition between pastoralists and agriculturists and replacement of one by the other are documented from biblical times to the present (135, 136).

Culture and Microbes. Models are also important in analyzing humans’ cultural and genetic coevolution with pathogens, the realm in which many of our species’ most significant evolutionary challenges have occurred. Some of the clearest signals of natural selection in the human genome are found near genes that are directly related to coping with diseases such as malaria (137, 138), Kuru (139), and others (140–142), and the understanding of their evolutionary dynamics is greatly enhanced when we are able to couple such genetic evidence with cultural dynamics that influenced them. Durham (143), for example, argues that yam farming practices in West Africa significantly increased standing water, thus increasing breeding sites for malaria-carrying mosquitoes, which led to high exposure to malaria and exerted selective pressure in favor of genetic variants that increase resistance to malaria. In the New Guinea highlands, cannibalism practices that were widespread until the 1940s drove the Kuru epidemic among the people of this region (144). A model of culture–pathogen interactions demonstrated that different behavioral regimes could shape dynamics of pathogenic bacteria, leading to nonintuitive outcomes (145). For example, antibiotic-resistant strains will spread throughout the population in the presence of ubiquitous antibiotic use whereas the WT bacteria have a fitness advantage if antibiotics are not used; however, if people modify their behavior by decreasing use of antibiotics when they become less effective, both WT and resistant pathogens can coexist (145).

A fast-growing body of research focuses on the host-associated microbiome: the communities of organisms, mostly bacteria, that live in and on eukaryotes. The dynamics of the microbiome can interact with those of its host, including genetic variation, cultural practices, and environmental context, further complicating the study of evolutionary processes. Thus, for example, the interaction between dairy farming and selection on the lactase persistence gene has become the poster child of gene–culture coevolution; however, lactose-using bacteria in humans’ digestive tracts are very likely to have played a prominent role in the emergence of dairy farming (146). Moreover, these bacteria continue to affect individuals who do not carry a genetic mutation that allows them to efficiently digest dairy in adulthood.

Understanding how cultural practices influence human–microbe interactions may provide us not only with insight into the Neo-lithic farming revolution or early cattle domestication and related human evolution since then, but also with the necessary tools to make informed nutritional choices, such as those related to dietary variation in our present lives. Thus, worldwide dietary recommendations stand to benefit significantly from an improved understanding of microbe–human interactions (147).

Demography and Cultural Evolution

The growth and age structure of human populations are both affected by norms and beliefs of their members. A predominantly agricultural lifestyle produced higher population growth than the hunting-gathering lifestyle it replaced (148, 149). This increased growth was most likely due to the spread of a complex of cultural traits (150) whose adoption may have created conditions that favored the accumulation of subsequent culturally transmitted behaviors (151, 152). Beginning in the late 19th century, parts of Europe, Asia, the United States, Australia, and New Zealand began to undergo a second demographic transition, which involved a change from a high birth rate, high mortality regime to a lower birth rate, low mortality regime. These changes were due to the spread of fertility-reducing and survival-increasing behaviors that became part of the developed countries’ cultures.

Standard quantitative models of demographic change do not include within-population variation in behaviors that affect fecundity or mortality. Projections usually use fixed values for birth and death rates; however, religious preferences, marriage customs, dietary choices, population subdivision, and mortality profiles may affect fecundity but are usually not part of demographic models. Further, aspects of cultural transmission, such as prestige bias and the choice of nonparental cultural role models, can facilitate the spread of fertility-reducing behaviors (12, 153). Thus, cultural evolutionary approaches should be integrated into demography, especially the processes that have led to fertility decline (154).

Many models for life history analysis of humans divide the lifespan into an ordered series of age classes. These models first define the fertility rates of each age class and the survival rates from one age class to the next. Then, they iterate the number in each age class produced by these parameters to determine the dynamics of the population, including whether the number in each age class approaches a stable equilibrium, termed the stationary age distribution, or whether the population will grow or go extinct and at what rate (155).

Carotenuto et al. proposed a demo-cultural framework for such an age-structured population, in which each individual carried one variant of a dichotomous trait, say H or h, where H represents the presence of a socially learned behavior (for example, fertility control) and h is its absence (156). An individual of type H might also be more likely to survive into the next age class. This integration of demography and culture yields complex dynamics; for example, the trait H can persist in the populations even if it lowers fertility, as long as the cultural transmission of H is reliable enough, or if H also sufficiently increases the chance of survival. Additional learning steps can also be added to age-structured models, such that vertical and horizontal transmission can occur at different rates for different age classes (101). In this case, horizontal transmission accelerates the trait’s spread and led to faster population growth than vertical transmission alone.

An important outgrowth of demo-cultural modeling has been its application to the sex-ratio problem. In many places, the sex ratio at birth is strongly biased in favor of males and, in China and parts of India, has resulted in up to 120 male births for every 100 female births (157). This cultural preference for sons can be manifested in sex-selective abortion or withholding of resources from daughters. This bias has both economic and socio-cultural antecedent, as well as important ethical and demographic consequences (158).

Data on cultural transmission of son preference can be incorporated into formal demographic analysis (159), linking these data to real-world policy applications (160). Theoretical models can also aid in predicting the effects of policies: For example, one such model tracked the cultural transmission of the perceived present value of a son relative to a daughter, the sex ratio at birth, and their effects on demographic change (161). The results of this model suggest that interventions focused on peer-to-peer cultural transmission of a perceived higher value of daughters might complement existing economic incentives to support and educate daughters, with the goal of mitigating the effects of son preference. The literature on the interaction between cultural transmission and formal demography is quite sparse. Given the large variety of customs that relate to birth and death rates in different human societies, population projections for the future needs of diverse populations should incorporate more cultural dynamics than is currently standard practice.

Discussion

With the extensive body of theoretical and empirical literature on cultural evolution, researchers in this field are now combining information from multiple disciplines and integrating disparate approaches. Part of this new frontier involves more fully bridging the divide between theory and data, as well as developing mathematical models than can aid in the interpretation of anthropological and archaeological information. In addition to
aiding our understanding of human history, the study of cultural transmission and evolution is extremely relevant in the modern era. Insights from cultural evolution and the diffusion of innovations have been coopted in advertising and social media to quantify the viral spread of information (e.g., ref. 162). How can these cultural evolutionary insights be better used for positive action and public health? In addition, how can we better use knowledge about cultural evolution to more fully understand patterns of human genetic variation and population structure? As we continue to understand more about the human genome, it becomes increasingly important to consider environmental and cultural contexts as well as genetic variation; however, in the study of gene-culture interactions, faulty logic or racial biases about “causes” of human differences may be used and must be cautiously guarded against (reviewed in ref. 163).

In this paper, we have reviewed aspects of human cultural evolutionary theory, focusing on those that are most closely linked to the extension of biology through culture. With this focus, we could not do adequate justice to many important domains of cultural evolutionary theory. In brief, many models of cultural evolution focus primarily on the transmission of cultural traits and not on their interactions with genes or fitness. These models include, but are not limited to, models of social learning (e.g., refs. 164–167), models of language evolution (e.g., refs. 168–171), empirically driven verbal models of human evolution based on patterns in material culture (e.g., refs. 172–174), and models of cultural dynamics within and between groups (e.g., refs. 86 and 175–178). In addition, we focused on human studies, although cultural processes are present in many other species. For example, social learning has been extensively studied in nonhuman animals, in which behavioral strategies, such as producer and scavenger, and cultural trajectories can be more clearly defined than in humans (166, 179). Cultural transmission also has large-scale evolutionary implications for some nonhuman animals: For example, theoretical studies suggest that nonrandom mating in birds based on culturally transmitted songs could accelerate speciation (180, 181) and that sexual selection on learned songs could influence evolution of the neural underpinnings of learning (182). Recently, studies in a range of animal species have shown that cultural practices can emerge, spread, and change over time, potentially influencing individuals’ fitness (183–187). Tool use among chimpanzees and capuchins (188–190) is one such example, which also provides insight regarding the possible origins of the early phases of our own species’ adaption to the “cultural niche” (191, 192).

In recent years, models that are used for decision making in various fields, such as economics and public health, have begun to take cultural evolution into account, and a growing number also incorporate the modeling—verbal or mathematical—of the human ecosystem’s expected coevolution with the spread of cultural practices. These models play a prominent role in planned strategies related to climate change and reduction of carbon emissions (193), in predicting global food shortages and requirements (194), and in assessing the distribution of new practices and technologies in agriculture (195, 196). In addition, models in epidemiology have begun to integrate cultural transmission of health practices and behaviors with regard to drug distribution and combating epidemics (e.g., ref. 197).

Deeper analysis of how human culture, human ecology, and the human environment coevolve is necessary for understanding historical and present dynamics, and for predicting future trends. These analyses will provide much-needed tools for the planning and direction of such dynamics. Humans’ worldwide well-being and that of the ecosystem we live in depend on our ability to make such predictions and act accordingly.

ACKNOWLEDGMENTS. We thank the John Templeton Foundation and the Stanford Center for Computational, Evolutionary, and Human Genomics for funding.
