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From understanding of color perception to
dynamical systems by manifold learning
Ron Kimmela,1

Comprehending Color
Let us start with a seemingly unrelated field to that
described in the article by Yair et al. (1) in PNAS. The
field of psychophysics deals with the relationships
between physical stimuli and mental phenomena. An
excellent example is the scientific community’s early
efforts to study the human perception of color.
Scientists have been intrigued by visual awareness of
colors, trying to understand our interpretation of
colors and attempting to quantify human perception
with simple equations. Roughly speaking, one could
divide these efforts into axiomatic ones that gave
birth to the Young, Maxwell, Helmholtz, and, later on,
Schrödinger so-called “inductive color line elements”
and the empirical color arc-lengths that reflected the
effort to virtually embed measurements of human color
perception into a simple, often Euclidean, domain. In
fact, the latter school of thought, of treating the problem
empirically rather than axiomatically, is probably one
of the earliest attempts to apply a manifold learning
technique to study a psychophysical phenomenon.
The outcome was the insightful observation that
human color perception is 3D, while most birds
probably have (and most dinosaurs probably had) a
color perception manifold of higher dimensions and
most other mammals share a lower dimensional space
for the (lack of) perception of color. One of the analysis
tools used to arrive at this important observation is
known as multidimensional scaling (MDS), and is
related to the famous principal component analysis
machinery that is commonly used in big data repre-
sentation, for which various modern generalizations
exist. While axiomatic realizations of studying the color
receptors in the eye lead Maxwell (2) to the under-
standing that color images could be synthesized by a
linear combination of three monochromatic colors, the
space in which one should operate and the ways by
which anchor (basis) colors should be selected has been
the topic of many scientific and industrial explorations
leading to the design of modern mobile, computer,
and television screens, as well as almost all printing
devices. The early empirical analysis of color perception
by manifold learning is indeed a remarkable step in our

ability to model human behavior and harness this
understanding to our benefit.

When trying to process images so as to enhance
them and improve their quality, the color line element
should obviously come into play. Geometry modeling
of image formation indeed led researchers to the
introduction of a new manifold that marries the color
line element with the image coordinates, giving rise to
a 2D manifold (the image) embedded in a 5D space,
where three of these dimensions are an exact result of
our understanding of color perception. Indeed, these
geometric observations are incorporated, in one way or
another, into most modern color image processing
tools. The Beltrami filter, bilateral filter, and, in fact,
most color processing methodologies exploit our
understanding of the fundamental geometry behind
color perception in one way or another.

Image Understanding
Once our perception of color was well understood,
automatic identifying and classifying of the content in
an image became the next problem the academic
community was trying to resolve. This effort gave birth
to a field known as robot vision, computer vision, or
image understanding. The notion of so-called “deep
learning” without “understanding” has very recently
substantially changed the way in which fields like
computer vision are addressed. Within the context of
deep learning, we can now deliberately avoid the term
understanding, as deep learning methods try to
interpolate between given observations, fitting a non-
linear interpolation mechanism with a multiparameter
fixed architecture into a huge corpus of annotated
observations. In these research arenas, “big data” of
annotated objects are usually publicly available, which
make the process of tuning the large number of
parameters of the interpolation mechanism (often
referred to as a neural network) feasible. At the other
end, representation of empirical observations of physical
phenomena for which there is no apparent explanation
through a nonlinear multiparameter generic mechanism
without an Occam’s razor simple theoretical or axiomatic
reasoning is what the article by Yair et al. (1) is about.

aComputer Science Department, Technion-Israel Institute of Technology, Haifa 32000, Israel
Author contributions: R.K. wrote the paper.
The author declares no conflict of interest.
See companion article on page E7865.
1Email: ron@cs.technion.ac.il.

9998–9999 | PNAS | September 19, 2017 | vol. 114 | no. 38 www.pnas.org/cgi/doi/10.1073/pnas.1713161114

C
O

M
M

E
N
T
A
R
Y

D
ow

nl
oa

de
d 

by
 g

ue
st

 o
n 

S
ep

te
m

be
r 

21
, 2

02
1 

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1713161114&domain=pdf
mailto:ron@cs.technion.ac.il
www.pnas.org/cgi/doi/10.1073/pnas.1713161114


A couple of centuries after the manifold learning way of deciphering
the psychophysical modeling of color perception, the model of Yair
et al. (1) comes in a timely fashion, introducing novel concepts and
ideas by which some understanding could still be extracted from the
learned objective. In this case, the learning is not deep by its modern
definition but rather belongs to the class of approaches known as
manifold learning, or geometric reasoning.

Study of Shapes and Forms
Another interesting and related geometric reasoning mechanism
for analyzing the structure of the cortical surface by mapping its
geometric structure into a Euclidean one was introduced by
Schwartz et al. (3). Treating surfaces as metric spaces was an in-
teresting new line of thought that came about from the effort of
Schwartz et al. (3) to find a unified parametrization for the surface
of the brain. The idea was to first embed the geometric structure of
the surface into a 2D Euclidean space invoking, yet again, the
MDS procedure. This effort, in a sense, is a generalization of the
celebrated mapmakers’ cartography problem.

In an attempt to refine the shape-matching problem, theGromov–
Hausdorff distance, which was thought to be restricted to theo-
retical analysis of abstract metric spaces, has also been adopted
by the shape analysis and manifold learning communities. It was
suggested as a candidate for measuring the discrepancy between
two deformable shapes (4), followed by the generalized MDS
(GMDS) (5) that numerically approximates that measure to
compute the map between two surfaces that best preserves
corresponding intergeodesic distances. In the GMDS framework,
the Hausdorff distance was replaced by the Wasserstein norm.
Other efforts that try to find a universal parametrization for surfaces
suggested conformal mapping to a disk (6–8) and even using the
earth mover’s distance (EMD) between corresponding conformal
factors on the disk (9) in a fashion related to that suggested in
the model of Yair et al. (1).

Distances measured on surfaces are smooth functions for
which the gradient magnitude is equal to 1 almost everywhere. As
such, they are suited for compact spectral representation (10),
allowing us to translate the Gromov–Hausdorff framework into
the spectral domain. In fact, resorting to a truncated spectral
domain as an alternative for computing the Gromov distance

explicitly for metric analysis was probably first suggested by
Bérard et al (11) and more recently adopted to surface analysis by
Ovsjanikov et al. (12).

Deciphering Dynamical Systems
In their paper, Yair et al. (1) are applying geometric manifold
learning techniques to find compact representations of empirical
observations of physical phenomena through a geometry known
as diffusion maps. That is, distances between events are described

A couple of centuries after the manifold learning
way of deciphering the psychophysical modeling
of color perception, the model of Yair et al.
comes in a timely fashion, introducing novel
concepts and ideas bywhich some understanding
could still be extracted from the learned
objective.

by kernels defined through some basis functions. On top
of that, Wasserstein distance is efficiently approximated using
recent developments with an even smoother version of measuring
discrepancies, treating distances between events as ones between
probability distributions that relate to the Monge–Kantorovich
problem or the EMD. In the paper of Yair et al. (1), the EMD is
computed in such a way that the coupling between the “ground
distance” is constructed in a data-driven way from the observa-
tions. Although most of the ingredients and tools have been
known for a while, their combination allows the authors to nicely
apply them to find the governing behavior of a pendulum
extracted from a video of its different positions in time as one
example and to find a compact geometric description of even
more complicated systems, like two pendula. Capturing the
behavior of dynamical systems efficiently for which only the time
axis is a common denominator poses a challenge that Yair et al. (1)
seem to gracefully overcome. It is yet to be seen if this novel
application of manifold learning to dynamical systems would lead
to technological innovative inventions such as those resulting from
deciphering human perception of color.
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