G protein stimulatory α-subunit (Gsα)-coupled heptahedral receptors regulate cell processes largely through activation of protein kinase A (PKA). To identify signaling processes downstream of PKA, we deleted both PKA catalytic subunits using CRISPR-Cas9, followed by a “multimic” analysis in mouse kidney epithelial cells expressing the Gsα-coupled V2 vasopressin receptor. RNA-seq (sequencing)-based transcriptomics and SILAC (stable isotope labeling of amino acids in cell culture)-based quantitative proteomics revealed a complete loss of expression of the water-channel gene Aqp2 in PKA knockout cells. SILAC-based quantitative phosphoproteomics identified 229 PKA phosphorylation sites. Most of these PKA targets are thus far unannotated in public databases. Surprisingly, 1,915 phosphorylation sites with the motif x-S/T-P showed increased phosphopoorchoicity, pointing to increased activity of one or more MAP kinases in PKA knockout cells. Indeed, phosphorylation changes associated with activation of ERK2 were seen in PKA knockout cells. The ERK2 site is downstream of expression of the water-channel gene Aqp2 in PKA knockout cells.

Methods
Edited by Peter Agre, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, and approved August 29, 2017 (received for review June 1, 2017)

H eptahedral receptors that couple to the G protein stimulatory α-subunit (Gsα) regulate cell processes largely through activation of protein kinase A (PKA). In a subset of G protein-coupled receptors (GPCRs), ligand binding results in activation of the heterotrimeric Gsα, which activates adenyl cyclases and increases intracellular cyclic AMP (cAMP). These Gsα-coupled receptors include those that regulate glycogenolysis in the liver (glucagon and epinephrine), hydrolysis of triglycerides in adipose tissue (epinephrine), secretion of thyroid hormone (thyroid-stimulating hormone), synthesis of steroid hormones in the adrenal cortex (adrenocorticotropic hormone), resorption of bone (parathyroid hormone), contractility and rate of contraction in the heart (epinephrine), and water excretion by the kidney (vasopressin) (2). Foremost among effectors of cAMP is PKA, also known as cAMP-dependent protein kinase (PKA) that modifies cell function by covalently attaching phosphate groups to proteins. To comprehensively identify PKA substrates, we used genome editing (CRISPR-Cas9) to delete PKA from kidney epithelial cells followed by large-scale mass spectrometry to measure phosphorylation changes throughout the proteome; 229 PKA target sites were identified, many previously unrecognized. Surprisingly, PKA deletion caused seemingly paradoxical phosphorylation increases at many sites, indicating secondary activation of one or more mitogen-activated kinases. The data, coupled with transcriptomics and standard proteomics, identified a signaling network that explains the effects of PKA that regulate cellular functions.
rate compatible with efficient metabolic labeling of proteins required for SILAC quantification. These cells manifest vasopressin responses characteristic of native renal principal cells, including vasopressin-induced increases in adenyl cyclase activity (14), vasopressin-induced trafficking of the molecular water channel aquaporin-2 (AQP2) to the plasma membrane (15), vasopressin-induced increase in AQP2 protein stability (17), and vasopressin-induced increases in transcription of the Aqp2 gene (16, 18).

The studies identified 229 phosphorylation sites in 197 proteins that showed decreased phosphooccupancy in cells with CRISPR-Cas9 deletion of PKA-Cα and PKA-Cβ, including 47 sites in which phosphorylation was ablated by more than 90%. Many of these PKA target sites are previously unidentiﬁed as PKA substrates. Furthermore, there were many phosphorylation sites with increased phosphooccupancy that possessed a proline at position +1 relative to the phosphorylated amino acid. This indicates that the PKA deletion secondarily activates one or more MAP kinases or cyclin-dependent kinases. An ancillary ﬁnding was that expression of the Aqp2 gene is absolutely dependent on PKA. Using large-scale data integration techniques, the quantitative proteomic, phosphoproteomic, RNA-seq, and ChIP-seq datasets obtained in this study were integrated with prior data from the literature to identify a PKA signaling network that has been curated online as a publicly accessible resource (https://hpwebapps.ebi.ac.uk:8080/ESBL/PKANetwork). This network links direct PKA targets to the known physiological responses to V2R signaling.

Results
To eliminate functional PKA protein, we used CRISPR-Cas9 to create indel mutations in exons corresponding to the catalytic regions of PKA-Cα and PKA-Cβ in mouse mpkCCD cells (Fig. 1A). Three distinct guide (g)RNAs were used for both genes, each producing multiple clonal cell lines. Double-knockout (dKO) lines were created using the PKA-Cβ knockout cell lines and superimposing PKA-Cα mutations (Fig. 1B). We raised isoform-speciﬁc and PKA-Cα antibodies targeting epitopes upstream of the catalytic domains and carried out Western blotting analysis revealing an absence of the respective PKA catalytic subunit proteins in single- and double-KO lines (Fig. 1C). Cell lines from CRISPR experiments that retained expression of PKA were used as control lines (Fig. 1B, control A and control B, blue) for subsequent experiments. Among all available dKO and control lines, three representative dKO/control pairs were chosen for further studies. DNA sequencing (PCR/Sanger) identiﬁed speciﬁc indel mutations in Prkaca and Prkacb of the dKO lines and demonstrated a lack of PKA mutations in the control lines (Table S1).

PKA dKO Cells Are Viable and Retain Epithelial Structure and Function. All dKO lines were viable, and grew at approximately the same rates as control cells. The dKO cells exhibited intact epithelial organization, as evidenced by immunofluorescence localization of the tight junction marker ZO-1 and the basolateral plasma membrane marker Na+/K+-ATPase (Fig. 1D). ZO-1 labeling at the tight junctions was sustained, but appeared to be decreased in the PKA dKO cells with increased ZO-1 labeling in the cell nuclei. Transepithelial resistance values increased to high levels on day 1 after seeding as the cells became confluent (Fig. 1E). Interestingly, the transepithelial resistance values were moderately lower in the PKA dKO cells relative to controls. We conclude that the PKA dKO cells are viable and retain their epithelial architecture, and the ion permeability of the tight junctions appears to be a possible target of PKA-dependent regulation.

We carried out Western blotting for aquaporin-2 in multiple PKA-Cα and PKA-Cβ single-knockout lines as well as multiple dKO lines along with the respective controls (Fig. 2 A–H). Both single knockouts resulted in a reduction in AQP2 protein abundance, although AQP2 abundance was decreased more in the PKA-Cα single-KO clones (Fig. 2B) than in PKA-Cβ single-KO clones (Fig. 2E). In the PKA dKO cells, AQP2 protein was undetectable, indicating that AQP2 protein expression requires PKA (Fig. 2 G and H). Interestingly, knocking out PKA-Cα resulted in
a marked increase in PKA-Cβ protein (Fig. 2 A and C). Similarly, knocking out PKA-Cβ resulted in an increase in PKA-Cα protein, although the effect was less pronounced (Fig. 2 D and F). Both findings point to potential compensatory responses.

Rescue of AQP2 Protein Expression by Transfection of Prkaca or Prkacb in PKA dKO Cells. To further address the role of PKA in the regulation of AQP2 protein abundance, we carried out rescue experiments in which PKA dKO cells were transfected with plasmids to express either PKA-Cα or PKA-Cβ (Fig. 2 I–K). As shown by immunofluorescence labeling of vasopressin-treated cells in Fig. 2I, cell clusters expressing either of the two transfected catalytic subunits had variable (but readily detectable) AQP2 protein, while other cells in the same monolayer that did not express PKA protein did not have detectable AQP2. Fig. 2 J and K show corresponding Western blotting results for additional rescue experiments. Despite a relatively low transfection efficiency, AQP2 was readily detectable after transfection with either PKA catalytic subunit when the cells were exposed to vasopressin. We conclude that the vasopressin-mediated increase in AQP2 protein abundance requires PKA.

RNA-Seq. Next, we asked two questions: (i) “Is the loss of AQP2 protein in the PKA dKO cells associated with loss of Aqp2 mRNA?” and (ii) “What other genes show changes in expression with PKA deletion?” To address these questions, we carried out RNA-seq in three PKA dKO clones vs. three separate control clones with intact expression of PKA (Fig. 3 A and B). As shown in Fig. 3A, reads corresponding to Aqp2 transcripts were virtually absent in the PKA dKO cells (Upper Left). Thus, the absence of AQP2 protein is due to an absence of Aqp2 mRNA. Fig. 3A also shows examples of mapped reads for additional transcripts, namely Prkaca (markedly decreased), Prkacb (unchanged), the vasopressin receptor Aqp2 (relatively unchanged), Marcks (increased), and Rhcg (increased). The decrease in Prkaca mRNA could be due to a decrease in the stability of the mutant mRNA or to a physiological effect on transcription. The latter possibility could be seen, for example, if PKA protein were required for Prkaca gene transcription in a manner similar to its role in regulation of Aqp2 gene transcription. The full dataset (Dataset S1) is summarized in Fig. 3B. Most mRNA species were relatively unchanged in abundance. Interestingly, the mRNA for Aqp2 stood out as the most profoundly suppressed transcript among all 10,190 quantified. Thus, PKA is required for Aqp2 gene expression. Transcripts with false discovery rate (FDR) <0.05 are indicated by red points (n = 354). In Fig. 3B, only transcripts with FDR <0.05 and |log_{2}(dKO/control)| >2 are labeled. Both myristoylated alanine-rich C-kinase substrate (Marcks) and the ammonia transporter (Rhcg) matched this criterion and were increased in abundance. Nine transcripts matched this criterion and were decreased, namely Aqp2, Prkaca, Pde4b, Zlx2, Gsdmc2, Gsdmc4, Cdh55, Adh1, and Tmprss4. In collecting duct cells, Tmprss4 has been identified as an activator of the epithelial sodium channel.
RNA-seq data are curated in Genome Browser format at https://hpwebapps.cit.nih.gov/ESBL/Database/PKA-KO.

SILAC-Based Quantitative Proteomics. Next, we asked, “What proteins, aside from AQP2, show changes in abundance in the PKA dKO cells versus control?” For this, we carried out protein mass spectrometry (LC-MS/MS) using SILAC (stable isotope labeling of amino acids in cell culture) (21) for quantification (Fig. 3C–F). Fig. 3C shows examples of MS1 spectra. They confirm the absence of PKA-Cα and PKA-Cβ protein in the PKA dKO cells, and also confirm the profound decrease in AQP2 protein. In contrast, β-actin abundance was virtually unchanged. Among the 7,647 proteins quantified in all three biological replicates, abundances of most were relatively unchanged (Fig. 3D). Fig. 3E is a volcano plot in which only proteins with FDR < 0.05 (red points) and \(\log(dKO/ctrl) > 2 \) are labeled (Dataset S2). The data confirm the profound decrease in AQP2 protein in the PKA dKO cells demonstrated previously by Western blotting. Fig. 3F compares the mRNA responses from the RNA-seq data with protein responses from the quantitative mass spectrometry data (three replicates) (Dataset S3). Surprisingly, there was a broad correlation between the change in transcript abundance and the change in protein abundance (\(R = 0.445, P < 2.2 \times 10^{-16} \)), even among those with relatively small changes, indicating that PKA deletion has a broad impact on the expected transcriptome. The gene products labeled in red are those with FDR < 0.05 for both measures. Again, aquaporin-2 changes were greatest among all gene products quantified by both measures. Note also that a few proteins showed large changes in abundance in the PKA dKO without changes in transcript abundance, presumably due to selective regulation of translation or to selective control of protein stability.

Quantitative Phosphoproteomics. To identify signaling events downstream of PKA, we carried out SILAC-based quantitative phosphoproteomics in three distinct PKA dKO clones paired with control clones in which PKA was not deleted (Fig. 4). 13,913 phosphopeptides were quantified in at least two of three dKO/control pairs and 9,936 were quantified in all three pairs (Dataset S4). Most quantified phosphopeptides showed no substantial change in abundance (Fig. 4G). Among the phosphorylation sites found to be decreased [dKO/control (ctrl) < 0.6], there was a predominance of sites with arginine (R) or lysine (K) in position +3 relative to the phosphorylated amino acid, indicating decreased phosphorylation by one or more basophilic protein kinases (AGC or CAMK families; Fig. 4H, Upper Left). The pattern seen here resembles that seen for phosphorylation events resulting from incubation of protein mixtures with recombinant PKA, including the preference for amino acids with branched-chain aliphatic side chains in position +1 (8).

Among phosphorylation sites found to be increased (dKO/ctrl > 1.667), there was a predominance of sites with proline (P) in position +1, indicating increases in phosphorylation by proline-directed kinases (CMGC family), which include mitogen-activated protein kinases (MAPKs) and cyclin-dependent protein kinases (Fig. 4H, Upper Right). This finding is consistent with the view that one or more proline-directed kinases are negatively regulated either directly or indirectly by PKA in renal epithelial cells (22). Fig. 4B shows the distributions of amino acid sequence motifs among the phosphopeptides decreased in the PKA dKO cells (Upper) and increased in the PKA dKO cells (Lower). Among those decreased, 33.2% had arginine or lysine in position +3 (basophilic targets). Among those increased in the PKA dKO, 53.4% had proline in position +1 (CMGC targets).

We next asked the question, “Do phosphorylation sites that nominally fit the model for PKA targets [motif R-(R/K)-X-pS-P] get phosphorylated by PKA if the site is also a nominal proline-directed site with proline in position +1?” The answer as revealed in Fig. 4C is that proline in position +1 appears to block PKA-mediated phosphorylation. Specifically, none of the sites with the motif R-(R/K)-X-pS-pS-P (namely basophilic with proline in position +1) showed profound decreases in phosphorylation in the PKA dKO.
cells. Among the basophilic sites with decreased phosphorylation in the PKA dKO cells, 47 showed decreases of >90%, and are here considered to be likely direct targets of PKA (Dataset S5). Some could be indirect targets of PKA, due to PKA-mediated activation of other basophilic protein kinases. Additionally, the phosphoproteomic analysis identified 182 basophilic sites that showed lesser decreases in phosphooccupancy in the PKA dKO cells (0.1 < dKO/ctrl <0.6) (Dataset S5). Many of these are also likely PKA sites that presumably can also be phosphorylated by other basophilic protein kinases that were not deleted (e.g., protein kinase G or calmodulin-dependent kinase II). They include several known PKA target sites

Fig. 4. Phosphorylation-site analysis of PKA dKO by LC-MS/MS. (A) Distribution of changes for phosphopeptides quantified in at least two pairs (13,913 phosphopeptides). Vertical dashed lines show log₂(dKO/ctrl) of 0, +1, and −1. Median log₂(dKO/ctrl) = 0.16. Logos summarize the sequence patterns for phosphopeptides that are decreased (Upper Left) or increased (Upper Right) by more than 40%. The former shows a dominance of basophilic kinases (ACG and CAMK families), while the latter shows a dominance of proline-directed kinases (CMGC family). (B) Classification of decreased (Upper) and increased (Lower) phosphorylation sites according to sequence patterns. For the purposes of this analysis, basophilic sites are defined as those with arginine or lysine at position –3; proline-directed sites are defined as those with proline at position +1; and acidophilic sites are defined as those with aspartic acid or glutamic acid at position +3 with respect to the phosphorylated amino acid. (C) Analysis of basophilic phosphorylated proteins with various amino acids at position +1. Beeswarm plots of mean phosphoprotein ratio of dKO/ctrl versus amino acid at position +1. Each point represents a phosphopeptide ratio for one phosphopeptide. (D) List of direct PKA targets. Phosphopeptides which were decreased by at least 90% in PKA dKO and contain arginine or lysine at position –3; proline-directed sites are defined as those with proline at position +1; and acidophilic sites are defined as those with aspartic acid or glutamic acid at position +3 with respect to the phosphorylated amino acid. (E) Distribution of changes for phosphopeptides quantified in at least two pairs of other basophilic protein kinases. Additionally, the phosphoproteomic analysis identified 182 basophilic sites that showed lesser decreases in phosphooccupancy in the PKA dKO cells (0.1 < dKO/ctrl <0.6) (Dataset S5). Many of these are also likely PKA sites that presumably can also be phosphorylated by other basophilic protein kinases that were not deleted (e.g., protein kinase G or calmodulin-dependent kinase II). They include several known PKA target sites including Ser552 of β-catenin (Ctnmb1), Ser104 of cAMP-regulated phosphoprotein 19 (Arpp19), Ser885 of Rho guanine nucleotide exchange factor 2 (Arhgef2), Ser155 of Bcl2-associated agonist of cell death (Bad), and Ser1406 of aspartate carbamoyltransferase (Cad) (cf. PhosphoSitePlus and Phospho.ELM databases). These proteins are distributed among several functional categories relevant to the physiological actions of vasopressin in collecting duct cells (Fig. 4D). Among the PKA target substrates, four protein kinases were identified with decreased phosphorylation in the PKA dKO cells at sites that are known from prior evidence to affect their enzymatic activity, namely Ser358 of Sli2 (salt-inducible kinase 2), Ser17 of Src, Ser2448 of mTOR, and Ser973 of Map3k5 (cf. KinasePhosphoNET database). These form the core of a proposed PKA signaling network (see below). Note in addition that there were multiple phosphorylation sites that decreased in the PKA dKO cells but did not possess upstream amino acids compatible with phosphorylation by PKA (Fig. 4B), including several protein kinases (Table S2). These sites are presumably downstream of but not direct targets of PKA. In a previous study, we used SILAC to quantify phosphoproteomic responses to vasopressin in mpkCCD cells (22). Of the 853 phosphorylation sites quantified in that study, 458 phosphorylation sites were also quantified in the PKA dKO cells in the present study. Fig. 4E compares these values for phosphorylation sites categorized into four general categories by kinase target motif. In general, a majority of sites showed little change by either measure. However, the distribution in the basophilic group skewed into the right lower quadrant, indicating that sites whose phosphorylation increased in response to vasopressin showed a corresponding
Phosphorylation of aquaporin-2 in PKA dKO versus control mpkCCD cells. (A) AQP2 membrane-spanning topology. AQP2 has six transmembrane domains. A cluster of four vasopressin-dependent phosphorylation sites is present within the terminal 16 amino acids in the C-terminal tail. P, phosphorylation domains. A cluster of four vasopressin-dependent phosphorylation sites is present within the terminal 16 amino acids in the C-terminal tail. P, phosphorylation. F, forskolin. (B) The vasopressin-regulated phosphorylation sites are shown. Sequences surrounding Ser256, Ser264, and Ser269 are compatible with phosphorylation by basophilic protein kinases. Ser261 has a proline in position +1 and is presumably phosphorylated by a member of the MAPK family. Vasopressin decreases phosphorylation of Ser261 and increases phosphorylation at the other three sites. (C) Effect of PKA dKO on AQP2 phosphorylation levels. Both control and PKA dKO cells were transfected with AQP2, grown on a solid substratum for 24 h, and then treated with the adenylyl cyclase activator forskolin for 30 min (n = 3). Western blotting was done with phospho-specific antibodies recognizing each of the four phosphorylation sites (Upper) and quantified by densitometry (Lower). The bar graphs show normalized abundances as mean ± SD. Total AQP2 was quantified with a non–phospho-specific AQP2 antibody. (D) Low-power immunofluorescence images of total and phosphorylated AQP2 in PKA dKO and control cells. Cells were transfected with AQP2 and grown on a permeable support without dDAVP for 4 d. Subsequently, cells were stimulated with 0.1 nM dDAVP for 30 min. (Scale bars, 50 μm.)

Phosphorylation of AQP2 in PKA Double KO. The water channel aquaporin-2 is phosphorylated on four serines within the carboxy-terminal 16 amino acids (23) (Fig. 5A). Phosphorylation at each of these sites is regulated by vasopressin via increases in intracellular cAMP (24). Because the PKA dKO cells did not express the Aqp2 gene, absence of PKA in phosphorylation of these sites required transfection to express AQP2. Phosphorylation changes in AQP2 were assessed with phospho-specific antibodies (24) both by Western blotting (Fig. 5C) and by immunofluorescence (Fig. 5D). Phosphorylation at Ser269 of AQP2, a vasopressin-regulated site critical to the regulation of AQP2 endocytosis (24), was nearly undetectable in the PKA dKO cells and did not increase with the adenylyl cyclase activator forskolin (Fig. 5C, Left) or the vasopressin analog dDAVP (1-desamino-8-arginine-vasopressin) (Fig. 5D, Top) in contrast to the control cells with intact PKA. Thus, phosphorylation of AQP2 at Ser269 is PKA-dependent, although not necessarily by direct PKA-mediated phosphorylation. Phosphorylation at Ser264, a site normally increased in phosphooccupancy by vasopressin (24), is sustained in the PKA dKO cells, although it appears to be somewhat diminished and the increase that normally occurs in response to vasopressin did not occur. Because Ser264 of AQP2 is phosphorylated in the absence of PKA, we conclude that other kinases can phosphorylate it, although the response to vasopressin depends on PKA. Phosphorylation at Ser261 of AQP2, which normally decreases with vasopressin (23), was seen to be markedly increased in the PKA dKO cells but did not decrease with forskolin, contrary to observations in the control cells with PKA. Phosphorylation of AQP2 with a high level of phosphooccupancy in either the absence or presence of vasopressin in mpkCCD cells (22) or native rat inner medullary collecting duct (IMCD) cells (25), and is generally regarded to be a PKA target based on the surrounding sequence, in vitro phosphorylation by PKA, and inhibition by PKA inhibitors, as discussed by Bradford et al. (26). Phosphorylation at this site was readily detectable in the PKA dKO cells and did not change with forskolin (Fig. 5C) or vasopressin (Fig. 5D). Thus, one or more basophilic protein kinases other than PKA can phosphorylate AQP2 at Ser261 in intact cells, that is, PKA is not obligatory for Ser261 phosphorylation. Previous studies have pointed to a role for one or more isoforms of calmodulin-regulated kinase 2 (CAMK2) in the phosphorylation of AQP2 at Ser261 in mpkCCD cells (27) and native rat IMCD cells (25). In additional experiments in the PKA-Cα single knockout, vasopressin-mediated phosphorylation changes in Ser269, Ser264, and Ser261 in endogenously expressed AQP2 were sustained, although attenuated in the PKA-Cα knockout cells (Fig. S1).
Functional Relevance of PKA-Mediated Signaling. The vasopressin V2 receptor-expressing cells of the kidney (collecting duct principal cells) have been comprehensively studied, revealing that several cellular physiological processes are regulated by vasopressin (Fig. 6A). We combined the data obtained in this study with prior evidence to build a PKA-dependent signaling network that lays out data-compatible mechanisms for the vasopressin-mediated functional responses. Components of the network, addressing each process in Fig. 6A, are shown in Fig. 6 B–H. The network can be viewed at a permanent publicly accessible website that provides documentation for each network element as “mouse-over” text (https://hpcwebapps.cit.nih.gov/ESBL/PKANetwork/). This network, while undoubtedly incomplete, provides a framework for future studies that will refine the model. In the following, we investigate a few key network components.

PKA-dependent transcriptional regulation. Vasopressin increases RNA polymerase II occupation across the body of the Aqp2 gene, concomitant with an increase in Aqp2 mRNA, pointing to a direct effect on Aqp2 gene transcription (18). The subnetwork shown in Fig. 6D identifies six PKA targets that connect with documented downstream targets relevant to the regulation of Aqp2 gene transcription, namely β-catenin (Ctnnb1), CREB (Creb1), salt-inducible kinase 2 (Sik2), GLI-Kruppel family member GLI3 (Gli3), nucleolar factor of activated T cells cytoplasmic 2 (Nfatc2), and type 3 InsP3 receptor (Itrp3). Full documentation is given at https://hpcwebapps.cit.nih.gov/ESBL/PKANetwork/Transcription.html. One target is Nfatc2, which has previously been demonstrated to bind to an NFAT-binding motif that is located 489 bp upstream of the Aqp2 transcription start site (28) and to regulate InsP3-induced Ca2+ mobilization (32). PKA is also known to phosphorylate S358 of Sik2 (33), reducing its enzymatic activity (34) via 14-3-3 binding. In Sik2, two sites showed decreased phosphorylation in PKA dKO cells, namely Ser358 (dKO/control: 0.043) and Ser587 (dKO/control: 0.484). Downstream targets of Sik2 are two transcriptional coactivators, Credb and Ep300, as well as a CREB-regulated transcriptional coactivator (Crbtc1 or Crbtc2) (35). Sik2-mediated phosphorylation inhibits nuclear translocation of these coactivators (36). The network predicts that vasopressin working through PKA causes nuclear translocation of Nfatc2 (due to increased intracellular Ca2+), Credb, and/or Ep300, as well as Crbtc isoforms due to decreased Sik2 activity. Fig. 7A shows experiments that test these predictions, revealing a vasopressin-induced increase in nuclear Nfatc2, Credb, and Ep300 but not Credb. However, translocation of these factors is not seen in the PKA dKO cells.

Credb and Ep300 are histone acetyltransferases that acetylate histone H3 lysine-27, a histone mark associated with open chromatin and increased transcription (37). The translocation of Ep300 predicts that vasopressin, working through PKA, may increase histone H3K27 acetylation of some genes. We tested this prediction by examining the effect of vasopressin on H3K27 acetylation in AQP2-positive principal cells from vasopressin receptor-expressing cells of the kidney (collecting duct principal cells).

Fig. 6. PKA signaling mapped to functional effects of vasopressin. (A) Direct PKA targets and their physiological and functional effects. (B–H) PKA-regulated signaling network in MAP kinase signaling (B), decreased apoptosis (C), Aqp2 gene transcription (D), actin dynamics (E), AQP2 phosphorylation (F), exocytosis (G), and AQP2 protein stability (H). Data sources are given at https://hpcwebapps.cit.nih.gov/ESBL/PKANetwork/.
Fig. 7. Role of PKA in nuclear translocation of transcriptional regulators, histone acetylation, actin polymerization, and apical membrane trafficking of AQP2. (A) Nuclear translocation of transcriptional regulators in response to vasopressin. Western blot of nuclear and cytoplasmic extracts of various transcriptional regulators (Left). Densitometric analysis showing mean and SD (Right). CE, cytoplasmic extract; NE, nuclear extract. (B) Distribution of ChIP-seq reads across gene bodies of selected genes for vehicle- or dDAVP-treated cells. Green boxes highlight two genomic regions in which increases were observed. (C) Confocal projection x-y (Top) and x-z (Bottom thin panels) images showing changes in actin polymerization in response to vasopressin. Alexa-594 phalloidin staining in cells treated with vehicle or dDAVP. (Scale bars, 10 μm.) (D) Vasopressin-dependent AQP2 trafficking to the apical plasma membrane in control and PKA dKO cells. Confocal x-y (Top) and x-z (Bottom thin panels) images of cells treated with vehicle or dDAVP using anti-AQP2 antibody (green), DAPI-stained nuclei, blue. (Scale bars, 10 μm.)

This by performing ChIP-seq for this modification. As seen in Fig. 7B, there was a marked increase in histone H3K27 acetylation across the body of the Aqp2 gene, and in the promoter, as well as in a region ~6,000 bp upstream of the Aqp2 transcriptional start site. The adjacent Agrp3 and Agrp6 genes did not show parallel changes in histone H3K27 acetylation. Fig. 7B, Lower shows increased histone H3K27 acetylation for another vasopressin-induced gene, Biaiap2l2, which is decreased in expression in the PKA dKO cells (compare Fig. 3F), while adjacent genes show no change. Examples of the H3K27Ac ChIP-seq data are displayed in Genome Browser format at https://hpcewebapps.cit.nih.gov/ESBL/Database/PKA-KO/.

PKA-dependent actin depolymerization. The small GTP-binding proteins Rho, Rac, and Cdc42 are involved in regulation of the state of actin polymerization. Prior studies have demonstrated that vasopressin causes actin depolymerization in both cortical and apical cell cortex (38) and basal stress fibers in epithelial cells (39). The subnetwork shown in Fig. 6E identifies multiple Rho/Rac/Cdc42 GEFs and GAPs with phosphorylation sites that show decreased phosphooccupancy in the PKA dKO cells. These phosphoproteomic findings in the PKA dKO suggest that the actin-depolymerizing effects of vasopressin could be mediated by PKA. To test this, we carried out phalloidin labeling of control and PKA dKO cells, both in the presence and absence of the V2-receptor selective agonist dDAVP (Fig. 7C). dDAVP caused predominantly basal actin depolymerization in the control cells but not in the PKA dKO cells, supporting the hypothesis.

PKA-dependent AQP2 trafficking. Vasopressin regulates water permeability in the collecting duct by stimulating redistribution of the AQP2 water channel to the apical plasma membrane, thereby increasing the water permeability of collecting duct cells (40). Fig. 6G and H shows that several PKA targets found in this study connect with the processes of exo- and endocytosis, namely P4akb (Ser511), Aqp2 (Ser269), Herc4 (Ser830), Hect1 (Ser1389), Nedd4l (Ser371, Ser477), Mtor (Ser2488), Its2 (Ser491), and Fgd3 (Ser442). These phosphoproteomic findings in the PKA dKO suggest that those AQP2 genes trafficked to the apical plasma membrane could be mediated by PKA. To test this directly, we carried out immunocytochemical localization of AQP2 in control and PKA dKO cells transfected with AQP2 and challenged with either dDAVP or vehicle for 30 min (Fig. 7D). dDAVP caused translocation of AQP2 to the apical plasma membrane in the control cells but not in the PKA dKO cells, supporting the hypothesis.

Discussion

To identify signaling processes downstream of PKA activation, we have carried out quantitative proteomics, quantitative phosphoproteomics, ChIP-seq for chromatin modifications, and RNA-seq in epithelial cell lines in which both PKA catalytic subunits have been deleted using CRISPR-Cas9 genome editing. We have combined the current data with prior data to derive a signaling model that can explain the functional responses to GPCR activation by vasopressin in mammalian epithelial cells. Individual aspects of the model represent hypotheses, only a few of which we have addressed in the present paper. The model provides a framework not only for understanding how vasopressin regulates the function of kidney cells but also for studying PKA signaling pathways present downstream of other Gα-linkedGPCRs. This network is provided as a permanent online resource that includes documentation for the nodes and edges revealed as popups, facilitating access to the original evidence.

A byproduct of the approach is an expanded list of phosphorylation target sites for protein kinase A, which is also provided as a permanent publicly accessible online resource. The identification of these targets greatly expands the list of known PKA substrates already documented in various databases. (Some known PKA targets were not detected, e.g., Ser188 of RhoA, whose tryptic peptide was likely too small to detect with the method used.) Beyond the direct targets of PKA, there was a large number of phosphorylation sites that showed increases in phosphooccupancy in the PKA double-knockout cells, most of them putative targets of MAP kinases, which phosphorylate serines or threonines with proline in position +1 relative to the phosphorylated amino acid. This result reveals that PKA activation in the present context inhibits MAP kinase signaling, consistent with findings of prior studies in epithelial cells (22, 41). This conclusion contrasts with several prior studies showing that some GPCRs increase MAP kinase signaling (42). The mechanism of activation of MAP kinases is incompletely understood, but is thought to be dependent on β-arrestin, protease-mediated EGF-receptor activation, or integrin-associated scaffolding by processes that are presumably not PKA-dependent. The general picture may be one of balanced effects on
MAP kinase signaling, with PKA-independent activation being opposed by PKA-dependent inactivation. Consistent with this, when PKA ΔKO cells were challenged with vasopressin, Ser261 of AQ2, an ERK2 substrate, showed a significant increase in phospho occupancy, in contrast to the decrease seen with intact PKA.

In renal collecting duct cells, vasopressin regulates the water channel protein aquaporin-2 to control water excretion. It does so mainly by two mechanisms: (i) short-term effects to regulate trafficking and insertion of the AQ2 water channel into the plasma membrane (40), and (ii) long-term effects to alter AQ2 protein abundance largely through regulation of Aqp2 gene transcription (43). The results of the present study demonstrate that PKA is required for both processes. With regard to AQ2 trafficking, prior evidence for a role for PKA has been derived from the use of the protein kinase inhibitor H89 (44), which is known to inhibit several basophilic kinases other than PKA (26). Trafficking is governed by direct phosphorylation of AQ2, which is inhibited only by high, but not low (PKA-selective), concentrations of H89 (26). With regard to vasopressin-stimulated Aqp2 gene transcription, our results suggest a direct role for PKA. A previous study used transgenic mice expressing a mutant PKA regulatory subunit (Rlo) to create a dominant-negative phenotype with constitutively inactive PKA. Experiments in these mice did not demonstrate a change in AQ2 mRNA in collecting duct cells (45). It seems possible that PKA inactivation in these cells could have been incomplete or compartmentalized (46).

Materials and Methods

SI Materials and Methods includes a more detailed description of methods and materials.

Cell Lines. The immortalized mpkCCD line was produced in ref. 13 and recloned to maximize AQ2 abundance (15). mpkCCD cells were transfected with pcMV-Cas9-GFP plasmids containing gRNAs specific for Prkaca or Prkacb genes (Sigma), using Lipofectamine 3000 (Invitrogen) according to the manufacturer's instructions. GFP-expressing cells were sorted into 96-well plates (~1 cell per well) using a BD FACSAria II cell sorter for clone selection. Target gene expression was evaluated by Western blotting for PKA-Cα and PKA-Cβ, and the genomic indel mutations were identified by Sanger sequencing. To generate PKA double-knockout cells, PKA-Cβ knockout cells were transfected with the CRISPR-Cas9 plasmids targeting PKA-Cα and PKA-Cβ. Control lines were made from cells that were carried through this protocol but continued to express both PKA genes (unmutated sequence confirmed by Sanger sequencing).

Cell Culture and Transient Transfection. Cells were maintained in either complete medium, DMEM/F-12 containing 2% serum and other supplements (5 μg/mL insulin, 50 nM dexamethasone, 1 nM triiodothyronine, 10 ng/mL epidermal growth factor, 60 nM sodium selenite, 5 μg/mL transferrin; all from Sigma), or simple medium (DMEM/F12 with dexamethasone, sodium selenite, and transferrin only). Except where indicated, cells were seeded on permeable membrane supports (Transwell) and grown on complete media containing 0.1 nM 1-desamino-8-D-arginine vasopressin for 4 d. Then, the medium was changed to simple medium with 0.1 nM dDAVP and maintained for 3 d to ensure complete polarization. Transepithelial resistance was measured by EVOM (WPI), and growth medium was changed daily. For short-term vasopressin stimulation, dDAVP-conditioned cells were maintained in the absence of dDAVP for 2 h, and were then treated with either 0.1 nM dDAVP or vehicle for 30 min. In rescue and AQ2 trafficking experiments, the cells were transfected with plasmid vectors to express PKA-Cα, PKA-Cβ, or AQP2 (Sino Biological; MG50618-UT, MG50629-UT, or MG57478-UT) using Lipofectamine 3000. At the time of transfection, the cells were seeded on permeable supports and then grown to confluence.

Generation of Anti-PKA-Cα and –PKA-Cβ Antibodies. Peptides corresponding to amino acids 29 to 44 of mouse PKA-Cα (29-KKWFEPSQNTAQLDQC-44) and PKA-Cβ (29-RKWNENPSSNLGALDC-44) were synthesized, HPLC-purified, and conjugated to KLH. Rabbits were immunized using a standard protocol. Antibodies were affinity-purified using peptide affinity columns (Pierce; Sulfolink Kit). The antibodies’ specificities were confirmed by blotting against the peptides, followed by Western blotting of cell homogenates from the PKA-Cα single knockout, PKA-Cβ single knockout, and PKA ΔKO cells.
Construction of a PKA Signaling Network. Protein kinases and phosphatases with phosphorylation sites that were significantly decreased or increased in abundance in PKA dKO cells were selected from the phosphoproteomic data. Among these, the phosphomodifications known to be associated with changes in enzymatic activity were identified using data from Kinexus PhosphoNET (www.phosphonet.ca) and Signor 2.0 (signor.uniroma2.it). These kinases were mapped to specific cellular processes using Gene Ontology Biological Process and Molecular Function terms. Those related to known regulatory actions of vasopressin in renal epithelial cells (Fig. 6A) were further refined for analysis. The known substrates of these kinases and phosphatases were identified using Kinexus PhosphoNET and by direct PubMed searches. These substrate phosphosites were mapped to the phosphoproteomic data for PKA dKO/controls generated in this paper, and by direct PubMed searches. These substrate phosphosites were mapped to the phosphomodifications known to be associated with changes in enzymatic activity. These substrates were selected from the phosphoproteomic data. Among these, the phosphorylation sites were identified using BIG (https://big.nhlbi.nih.gov/indext.jsp) (47) and from specific PubMed searches where appropriate. In the network, direct PKA phosphorylation target sites were assigned from SILAC phosphoproteomic data based on two criteria: i) the presence of R or K in position –3 relative to the phosphorylated S or T, and ii) phosphorycoppacity of the site significantly decreased in PKA double-KO relative to control cells. Network visualization was achieved by creating a separate subnetwork for each functional response listed in Fig. 6A as separate but interlocking html files. The evidence for individual elements of the network is shown as mouse-over popups. The html files have been mounted on a permanent, publicly accessible website.

Statistical Analysis. Statistical methods are described in SI Materials and Methods.

Data Availability. Protein mass spectrometry data (raw files, search results, and spectra) have been uploaded to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD005938. The FASTQ sequences and metadata for RNA-seq and ChIP-seq studies have been deposited in National Center for Biotechnology Information’s Gene Expression Omnibus (GEO) database (accession no. GSE95009).

Acknowledgments. This work was primarily funded by the Division of Intramural Research, National Heart, Lung, and Blood Institute (NHLBI) (Projects ZIA-HL012185 and ZIA-HLO06129; to M.A.K.). The NHLBI Proteomics Core Facility (M. Gueck, Director), NHLBI DNA Sequencing Core Facility (Y. Li, Director), NHLBI Light Microscopy Core Facility (C. Combs, Director), and NHLBI Flow Cytometry Core Facility (P. McCoy, Director) were used. K.I. was supported by a Japan Society for the Promotion of Science Research Fellowship.