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Table 4. Single injection of multiple sgRNAs into the embryos of AAEL010097-Cas9 line results in highly efficient rates of multigene
disruption

Triple-mutant

Gos (%);
Single mutant Gos (%); Gis* (%) Double-mutant Ggs (%); Gis' (%) Gis* (%)
Injected Injected G adult Go
sgRNAs embryos survivors (%) mosaic (%) w Y E wry WIE YIE WIYIE
W1-sgRNA/ 200 122 (61) 110 (90) 4 (4); 170 (15) 7 (6); 238 (21) N/A, N/A 99 (90); 488 (43) N/A; N/A N/A; N/A N/A; N/A
Y-sgRNA
W1-sgRNA/ 200 113 (56) 98 (87) 7(7); 141 (17) N/A; N/A 5 (5); 224 (27) N/A; N/A 86 (88); 390 (47) N/A; N/A N/A; N/A
E-sgRNA
Y-sgRNA/ 200 102 (51) 95 (93) N/A; N/A 3 (3); 343(25) 5 (5); 261 (15) N/A; N/A N/A; N/A 87 (92); 536 (39) N/A; N/A
E-sgRNA
W1-sgRNA/ 200 86 (43) 81 (94) 3 (4); 85 (11) 3 (4); 54(7) 1(1); 23 (3) 5(6); 131 (17) 9 (11); 101 (13) 6 (7); 162 (21) 54 (67); 85 (11)
Y-sgRNA/
E-sgRNA

N/A, not applicable.
*Single-mutant phenotype, W: white eye; Y: yellow body; E: dark body.
"Double-mutant phenotypes, W/Y: white eye and yellow body, W/E: white eye and dark body; Y/E yellow body and dark body.
*Triple-mutant phenotypes, W/Y/E: white eye, yellow body, and dark body.

Increased Rates of HDR with dsDNA Donors. Given the exceedingly high  Cas9 line, we wanted to assess knock-in rates mediated by HDR via
rate of NHEJ-induced mutation when using theAAEL010097-  dsDNA donors in this line. Our strategy was to employ two donor

| Double Mutant {  Triple Mutant |
| | |
yellow/white G yellow/ebony G ebony/white G1 yellow/ebony/white G1

Larvae

Pupae

Adult

Fig. 3. Single injections of multiplexed sgRNAa robustly generate double- and triple-mutant mosquitoes. Larva, pupae, and adult G, phenotypes for double-
mutants, including: yellow body and white eyes (yellow/white), a mixture of yellow and dark body (yellow/ebony), dark body and white eyes (ebony/white),
and one triple-mutant, which is a phenotypic mixture of yellow and dark body and white eyes (yellow/ebony/white). The striking differences between wild-
type and mutant larva, pupae and adult are highlighted. (Magnifications: whole-body images, 20x; Insets, 100x.)
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Fig. 4. Highly efficient site-specific integration via CRISPR-mediated HDR. Schematic representations of the white locus and white-donor construct (A), and
the kh locus and kh-donor construct (B). Exons are shown as boxes, coding regions are depicted in black and the 5" and 3’ UTRs in gray. Locations and se-
quences of the sgRNA targets are indicated with the PAM shown in yellow. Black arrows indicate approximate positions and directions of the oligonucleotide
primers used in the study. The donor plasmids (blue) express fluorescent eye marker (3xp3-DsRed) inserted between regions of homology from the white and
kh locus, respectively (A and B). Gene amplification analysis confirms site-specific integration of the white-donor construct into the white locus using
combinations of genomic and plasmid donor-specific primers (933Cms3/933Cms4 expected 349 bp, and 933Cms5/933Cms6 expected 533 bp) (C), and also
confirms the integration of the kh-donor construct into the kh locus using combinations of genomic and plasmid donor specific primers (924ms3/
924ms4 expected 525 bp, and 924ms5/924ms6 expected 745 bp) with no amplification in wild-type (D). WT represents wild-type, WD represents knockin with

white-donor, KHD represents knockin with kh-donor. (Magnification: 20x.)

plasmids, a white-donor plasmid based on the W1-sgRNA and a
kh-donor plasmid based on the Kh-sgRNA. Each of these two
donor plasmids was designed to contain a dominant fluorescent
marker consisting of 3xP3-dsRed, expressing in the larvae and
adult photoreceptors, flanked by ~1-kb homology arms that were
derived from the genomic sequence immediately flanking the
target cleavage sites (Fig. 4 4 and B). We directly compared two
approaches: (i) coinjection of dsDNA donor combined with in
vitro transcribed sgRNA and purified recombinant Cas9 protein
into wild-type embryos; and (ii) coinjection of circular dsDNA
donor combined with in vitro transcribed sgRNA injected into
AAFL010097-Cas9 line embryos. For the first approach, a total of
600 embryos were separately injected for both the white-donor and
kh-donor, with a HDR rate of 0.15% and 0.14% (Table 5), re-
spectively. For the second approach, a total of 600 embryos from
the Ae. aegypti AAEL010097-Cas9 line were separately injected
for both the white-donor and kh-donor, with a HDR rate of 2.36%
and 2.48% (Table 5), respectively. Overall, we see a dramatic, yet

consistent, 15- to 17-fold increase in rates of HDR when using the
AAFEIL010097-Cas9 line compared with the nontransgenic method
of supplying Cas9. Gene-specific insertion of our donor cassettes
into the intended target sites was confirmed by subsequent genomic
PCR and sequencing (Fig. 4 A-C and SI Appendix, Fig. S12).

Discussion

Previous studies have demonstrated effective CRISPR/Cas9 ge-
nome editing in the mosquito Ae. aegypti (30-34); however, these
studies utilized a nontransgenic source of Cas9, limiting both
survivorship and editing efficiencies. To overcome these previous
limitations, and to reduce the complexity of injecting multiple
components (i.e., Cas9 and sgRNA), herein we developed a sim-
plified transgenic Cas9 expression system in Ae. aegypti, similarly
to what is routinely used in other organisms such as D. mela-
nogaster (27, 41, 42). Importantly, to achieve highly specific and
consistent genome modifications, we demonstrate that embryos
from these Cas9 strains need only be injected with easy-to-make

Table 5. Transgenic source of Cas9 results in increased rates of HDR with dsDNA donors

Ae. aegypti strain Injected component*

Injected embryos

HDR event

No. group
founders/total
group (%)

No. HDR
G1/total G1 (%)

Adult Go
survivors (%)

Liverpool (wild-type) W1-sgRNA/Cas9/white-donor 600
Liverpool (wild-type) Kh-sgRNA/Cas9/kh-donor 600
AAEL010097-Cas9 W1-sgRNA/white-donor 600
AAEL010097-Cas9 Kh-sgRNA/kh-donor 600

251(41.83) 1/20 (5) 9/5,371 (0.15)
273 (45.50) 1/20 (5) 7/4,773 (0.14)
308 (51.33) 4/20 (20) 118/4,993 (2.36)
298 (49.67) 5/20 (25) 149/6,017 (2.48)

*The concentration of sgRNA is 100 ng/uL; Cas9 protein 300 ng/uL. white-donor and kh-donor plasmids 100 ng/uL.
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sgRNAs. By using these Cas9 strains, we disrupted multiple genes
that were either homozygous viable (kh, white, yellow, and ebony),
or homozygous lethal (deformed, sine oculis, vestigial), resulting in
dramatic phenotypes affecting viability, vision, flight, and blood
feeding, and therefore may be useful for developing control
strategies and genetic sexing techniques in the future. For exam-
ple, in a yellow mutant background, the endogenous gene encod-
ing yellow could be linked to the male-determining locus (32),
using CRISPR-mediated HDR, to generate a robust genetic sex-
ing system by which male embryos/larvae/adults would be dark and
female embryos/larvae/adults would be yellow.

An appealing advantage of our Cas9 transgenic system is the
ability to efficiently disrupt multiple genes simultaneously. We have
demonstrated that we can efficiently generate large deletions, or
even double- (yellow-white; ebony-white; yellow-ebony), or triple-
(vellow-ebony-white) mutants. Importantly, these multimutants can
rapidly be generated in a single-step approach by injecting multiple
sgRNAs into the embryos of the transgenic Cas9 strains, signifi-
cantly reducing downstream efforts. This rapid multiplex gene
knockout approach will be instrumental for dissecting gene net-
works in this nonmodel organism. While the Cas9 strains were
generated in the Liverpool genetic background, these strains can be
introgressed into other genetic backgrounds if desired.

The germline Cas9 strains developed here may also bring us one
step closer to engineering an effective CRISPR/Cas9-homing—
based gene drive system (47, 48) in this organism. Homing-based
drive systems rely on HDR to convert heterozygous alleles into
homozygous alleles in the germline, and have recently been suc-
cessfully engineered in two Anopheline mosquito species (51, 69).
While these studies were fruitful at significantly biasing rates of
Mendelian inheritance rates of the drive containing alleles, they
were severely limited by the rapid evolution of resistance alleles
generated by NHEJ, and are therefore not predicted to spread
into diverse wild populations (70). It was hypothesized that these
resistance alleles formed due to high levels of maternal deposition
of Cas9 in the embryo, and by restricting Cas9 expression to the
germline may subsequently increase rates of HDR and reduce
rates of NHEIJ. In addition to restricting expression to the germ-
line, multiplexing of sgRNAs in the drive, and designing the drive
to target a critical gene have also been proposed as innovative
strategies to increase rates of HDR and reduce resistance caused
by NHEJ (47, 48, 70); however, these hypotheses remain to be
demonstrated. Notwithstanding, it will be interesting to determine
if our Ae. aegypti Cas9 strains, each with varying expression in the
germline, will be effective in a gene drive system designed for
Ae. aegypti. This would be straightforward to test in a molecularly
confined safe split-gene drive design where the Cas9 and the drive
are positioned at different genomic loci. In this split-design, the
Cas9 strains we developed can be directly tested without further
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modification by simply genetically crossing with a split gRNA-
drive component and measuring rates of inheritance (49, 71-73).

While the CRISPR/Cas9 transgenic system developed here is
quite effective, it would be useful to have the ability to supply the
sgRNAs transgenically. In D. melanogaster, polymerase-3 pro-
moters have been utilized to express sgRNAs, and through ge-
netic crosses with Cas9 strains mutation efficiency could be
increased up to 100% (42, 43).

Furthermore, it should be noted, that a slight disadvantage of
these Cas9 strains for some groups may result from the fact that
these strains were generated in the Liverpool genetic back-
ground, which restricts genome modifications to only this back-
ground. However, this can easily be overcome by simply using
genetics to introgress these promoter-Cas9 transgenes into other
genetic backgrounds, or by generating new transgenic strains in
the desired background using the plasmids generated here.

Overall, our results demonstrate that our simplified transgenic
Cas9 system has improved capacity to rapidly induce highly ef-
ficient and specific targeted genome modifications, including
gene disruptions, deletions, and insertions. Given their high ef-
ficiencies, these Cas9 strains can be used to quickly generate
genome modifications allowing for high-throughput gene tar-
geting, thereby accelerating comprehensive functional annota-
tion of the Ae. aegypti genome.

Materials and Methods

Insect Rearing. Mosquitoes used in all experiments were derived from of the
Ae. aegypti Liverpool strain, which was the source strain for the reference
genome sequence (58).

Generation of Ae. aegypti Cas9 Transgenic Lines. Transgenic Ae. aegypti
Cas9 mosquitoes were created by injecting 0- to 1-h-old preblastoderm-stage
embryos with a mixture of piggybac vector containing the Cas9 expressing
plasmid designed above (200 ng/pulL) and a source of piggyBac transposase
[phsp-Pbac, (200 ng/uL)] (74-76).

Characterization of AAEL010097-Cas9 Insertion Site. To characterize the
Cas9 insertion site for AAEL010097-Cas9, we utilized a previously described
inverse PCR protocol (77).

CRISPR Mediated Microinjections. Embryonic collection and CRISPR microin-
jections were performed following previously established procedures (30, 78).
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