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The United States spends more than $250 million each year on
the American Community Survey (ACS), a labor-intensive door-to-
door study that measures statistics relating to race, gender, edu-
cation, occupation, unemployment, and other demographic fac-
tors. Although a comprehensive source of data, the lag between
demographic changes and their appearance in the ACS can
exceed several years. As digital imagery becomes ubiquitous and
machine vision techniques improve, automated data analysis may
become an increasingly practical supplement to the ACS. Here,
we present a method that estimates socioeconomic characteris-
tics of regions spanning 200 US cities by using 50 million images
of street scenes gathered with Google Street View cars. Using
deep learning-based computer vision techniques, we determined
the make, model, and year of all motor vehicles encountered in
particular neighborhoods. Data from this census of motor vehi-
cles, which enumerated 22 million automobiles in total (8% of
all automobiles in the United States), were used to accurately
estimate income, race, education, and voting patterns at the
zip code and precinct level. (The average US precinct contains
�1,000 people.) The resulting associations are surprisingly sim-
ple and powerful. For instance, if the number of sedans encoun-
tered during a drive through a city is higher than the num-
ber of pickup trucks, the city is likely to vote for a Democrat
during the next presidential election (88% chance); otherwise,
it is likely to vote Republican (82%). Our results suggest that
automated systems for monitoring demographics may effectively
complement labor-intensive approaches, with the potential to
measure demographics with fine spatial resolution, in close to
real time.
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For thousands of years, rulers and policymakers have sur-
veyed national populations to collect demographic statistics.

In the United States, the most detailed such study is the Amer-
ican Community Survey (ACS), which is performed by the US
Census Bureau at a cost of $250 million per year (1). Each
year, ACS reports demographic results for all cities and coun-
ties with a population of 65,000 or more (2). However, due to
the labor-intensive data-gathering process, smaller regions are
interrogated less frequently, and data for geographical areas with
less than 65,000 inhabitants are typically presented with a lag of
∼ 2.5 y. Although the ACS represents a vast improvement over
the earlier, decennial census (3), this lag can nonetheless impede
effective policymaking. Thus, the development of complemen-
tary approaches would be desirable.

In recent years, computational methods have emerged as a
promising tool for tackling difficult problems in social science.
For instance, Antenucci et al. (4) have predicted unemployment
rates from Twitter; Michel et al. (5) have analyzed culture using
large quantities of text from books; and Blumenstock et al. (6)
used mobile phone metadata to predict poverty rates in Rwanda.
These results suggest that socioeconomic studies, too, might be
facilitated by computational methods, with the ultimate potential

of analyzing demographic trends in great detail, in real time, and
at a fraction of the cost.

Recently, Naik et al. (7) used publicly available imagery to
quantify people’s subjective perceptions of a neighborhood’s
physical appearance. They then showed that changes in these
perceptions correlate with changes in socioeconomic variables
(8). Our work explores a related theme: whether socioeconomic
statistics can be inferred from objective characteristics of images
from a neighborhood.

Here, we show that it is possible to determine socioeconomic
statistics and political preferences in the US population by com-
bining publicly available data with machine-learning methods.
Our procedure, designed to build upon and complement the
ACS, uses labor-intensive survey data for a handful of cities to
train a model that can create nationwide demographic estimates.
This approach allows for estimation of demographic variables
with high spatial resolution and reduced lag time.

Specifically, we analyze 50 million images taken by Google
Street View cars as they drove through 200 cities, neighborhood-
by-neighborhood and street-by-street. In Google Street View
images, only the exteriors of houses, landscaping, and vehicles on
the street can be observed. Of these objects, vehicles are among
the most personalized expressions of American culture: Over
90% of American households own a motor vehicle (9), and their
choice of automobile is influenced by disparate demographic fac-
tors including household needs, personal preferences, and eco-
nomic wherewithal (10). (Note that, in principle, other factors
such as spacing between houses, number of stories, and extent of
shrubbery could also be integrated into such models.) Such street
scenes are a natural data type to explore: They already cover
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much of the United States, and the emergence of self-driving
cars will bring about a large increase in the frequency with which
different locations are sampled.

We demonstrate that, by deploying a machine vision frame-
work based on deep learning—specifically, Convolutional Neu-
ral Networks (CNN)—it is possible to not only recognize vehi-
cles in a complex street scene but also to reliably determine a
wide range of vehicle characteristics, including make, model, and
year. Whereas many challenging tasks in machine vision (such as
photo tagging) are easy for humans, the fine-grained object recog-
nition task we perform here is one that few people could accom-
plish for even a handful of images. Differences between cars can
be imperceptible to an untrained person; for instance, some car
models can have subtle changes in tail lights (e.g., 2007 Honda
Accord vs. 2008 Honda Accord) or grilles (e.g., 2001 Ford F-150
Supercrew LL vs. 2011 Ford F-150 Supercrew SVT). Neverthe-
less, our system is able to classify automobiles into one of 2,657
categories, taking 0.2 s per vehicle image to do so. While it classi-
fied the automobiles in 50million images in 2wk, a human expert,
assuming 10 s per image, would take more than 15 y to perform
the same task. Using the classified motor vehicles in each neigh-
borhood, we infer a wide range of demographic statistics, socio-
economic attributes, and political preferences of its residents.

In the first step of our analysis, we collected 50 million Google
Street View images from 3,068 zip codes and 39,286 voting
precincts spanning 200 US cities (Fig. 1). Using these images
and annotated photos of cars, our object recognition algorithm
[a “Deformable Part Model” (DPM) (11)] learned to automati-
cally localize motor vehicles on the street (12) (see Materials and
Methods). This model took advantage of a gold-standard dataset
we generated by asking humans (both laypeople, recruited using
Amazon Mechanical Turk, and car experts recruited through
Craigslist) to identify cars in Google Street View scenes.

We successfully detected 22 million distinct vehicles, compris-
ing 32% of all of the vehicles in the 200 cities we studied and 8%
of all vehicles in the United States. After localizing each vehi-

2657 Car Categories

200 Cities

50,0000,000 Images

Make: Nissan
Model: Sentra
Year: 2006
Body Type: sedan 
Trim: 1.8 s
Price: $5,417

Make: Ford
Model: Econoline-Cargo
Year: 2003
Body Type: van 
Trim: e-150
Price: $3,778

Make: Honda
Model: Civic
Year: 2004
Body Type: sedan 
Trim: ex
Price:$8,773

Make: Honda
Model: Accord
Year: 1994 
Body Type: sedan
Trim: lx
Price:$3,591

22,000,000 Cars Analyzed

Fig. 1. We perform a vehicular census of 200
cities in the United States using 50 million Google
Street View images. In each image, we detect cars
with computer vision algorithms based on DPM
and count an estimated 22 million cars. We then
use CNN to categorize the detected vehicles into
one of 2,657 classes of cars. For each type of car, we
have metadata such as the make, model, year, body
type, and price of the car in 2012. Images courtesy
of Google Maps/Google Earth.

cle, we deployed CNN (13, 14), the most successful deep learning
algorithm to date for object classification, to determine the make,
model, body type, and year of each vehicle (Fig. 1). Using our
human-annotated gold standard images, we trained the CNN to
distinguish between different types of cars. Specifically, we were
able to classify each vehicle into one of 2,657 fine-grained cate-
gories, which form a nearly exhaustive list of all visually distinct
automobiles sold in the United States since 1990 (Fig. 1). For
instance, our models accurately identified cars (identifying 95%
of such vehicles in the test data), vans (83%), minivans (91%),
SUVs (86%), and pickup trucks (82%). See SI Appendix, Fig. S1.

Using the resulting motor vehicle data, we estimate demo-
graphic statistics and voter preferences as follows. For each geo-
graphical region we examined (city, zip code, or precinct), we
count the number of vehicles of each make and model that were
identified in images from that region. We also include addi-
tional features such as aggregate counts for various vehicle types
(trucks, vans, SUVs, etc.), the average price and fuel efficiency,
and the overall density of vehicles in the region (see Materials
and Methods).

We then partitioned our dataset, by county, into two subsets
(Fig. 2). The first is a “training set,” comprising all regions that
lie mostly in a county whose name starts with “A,” “B,” or “C”
(such as Ada County, Baldwin County, Cabarrus County, etc.).
This training set encompasses 35 of the 200 cities, ∼ 15% of the
zip codes, and ∼ 12% of the precincts in our data. The second is a
“test set,” comprising all regions in counties starting with the let-
ters “D” through “Z” (such as Dakota County, Maricopa County,
Yolo County). We used the test set to evaluate the model that
resulted from the training process.

Using ACS and presidential election voting data for regions
in our training set, we train a logistic regression model to esti-
mate race and education levels and a ridge regression model to
estimate income and voter preferences on the basis of the col-
lection of vehicles seen in a region. This simple linear model is
sufficient to identify positive and negative associations between
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Train
Test

vi. Income (Tampa, Florida)

$7K

$111K

actual predicted

i. White (Seattle, Washington)

100%

0%

actual predicted

ii.Black (Seattle, Washington)

actual predicted

iii.. Asian (Seattle, Washington)

predictedactual

iv. Less than High school   (Milwaukee, Wisconsin)

0%

34%

v. Graduate school  (Milwaukee, Wisconsin)

actual predicted

0%

48%

actual predicted

Fig. 2. We use all of the cities in counties start-
ing with A, B, and C (shown in purple on the
map) to train a model estimating socioeconomic
data from car attributes. Using this model, we
estimate demographic variables at the zip code
level for all of the cities shown in green. We
show actual vs. predicted maps for the percent-
age of Black, Asian, and White people in Seat-
tle, WA (i–iii); the percentage of people with
less than a high school degree in Milwaukee, WI
(iv); and the percentage of people with grad-
uate degrees in Milwaukee, WI (v). (vi) Maps
the median household income in Tampa, FL.
The ground truth values are mapped on Left,
and our estimated results are on Right. We
accurately localize zip codes with the highest
and lowest concentrations of each demographic
variable such as the three zip codes in Eastern
Seattle with high concentrations of Caucasians,
one Northern zip code in Milwaukee with highly
educated inhabitants, and the least wealthy zip
code in Southern Tampa.

the presence of specific vehicles (such as Hondas) and particu-
lar demographics (i.e., the percentage of Asians) or voter prefer-
ences (i.e., Democrat).

Our model detects strong associations between vehicle distri-
bution and disparate socioeconomic factors. For instance, sev-
eral studies have shown that people of Asian descent are more
likely to drive Asian cars (15), a result we observe here as well:
The two brands that most strongly indicate an Asian neighbor-
hood are Hondas and Toyotas. Cars manufactured by Chrysler,
Buick, and Oldsmobile are positively associated with African
American neighborhoods, which is again consistent with exist-
ing research (16). And vehicles like pickup trucks, Volkswagens,
and Aston Martins are indicative of mostly Caucasian neighbor-
hoods. See SI Appendix, Fig. S2.

In some cases, the resulting associations can be easily applied
in practice. For example, the vehicular feature that was most
strongly associated with Democratic precincts was sedans,
whereas Republican precincts were most strongly associated with
extended-cab pickup trucks (a truck with rear-seat access). We
found that by driving through a city while counting sedans and
pickup trucks, it is possible to reliably determine whether the
city voted Democratic or Republican: If there are more sedans,
it probably voted Democrat (88% chance), and if there are more
pickup trucks, it probably voted Republican (82% chance). See
Fig. 3 A, iii.

As a result, it is possible to apply the associations extracted
from our training set to vehicle data from our test set regions
to generate estimates of demographic statistics and voter prefer-
ences, achieving high spatial resolution in over 160 cities. To be
clear, no ACS or voting data for any region in the test set were
used to create the estimates for the test set.

To confirm the accuracy of our demographic estimates, we
began by comparing them with actual ACS data, city-by-city,
across all 165 test set cities. We found a strong correlation
between our results and ACS values for every demographic statis-

tic we examined. (The r values for the correlations were as fol-
lows: median household income, r =0.82; percentage of Asians,
r =0.87; percentage of Blacks, r =0.81; percentage of Whites,
r =0.77; percentage of people with a graduate degree, r =0.70;
percentage of people with a bachelor’s degree, r =0.58; percent-
age of people with some college degree, r =0.62; percentage of
people with a high school degree, r =0.65; percentage of people
with less than a high school degree, r =0.54). See SI Appendix,
Figs. S3–S5. Taken together, these results show our ability to esti-
mate demographic parameters, as assessed by the ACS, using the
automated identification of vehicles in Google Street View data.

Although our city-level estimates serve as a proof-of-principle,
zip code-level ACS data provide a much more fine-grained por-
trait of constituencies. To investigate the accuracy of our meth-
ods at zip code resolution, we compared our zip code-by-zip code
estimates to those generated by the ACS, confirming a close cor-
respondence between our findings and ACS values. For instance,
when we looked closely at the data for Seattle, we found that
our estimates of the percentage of people in each zip code who
were Caucasian closely matched the values obtained by the ACS
(r =0.84, p< 2e − 7). The results for Asians (r =0.77, p=1e −
6) and African Americans (r =0.58, p=7e − 4) were similar.
Overall, our estimates accurately determined that Seattle, Wash-
ington is 69% Caucasian, with African Americans mostly residing
in a few Southern zip codes (Fig. 2 i and ii). As another exam-
ple, we estimated educational background in Milwaukee, Wis-
consin zip codes, accurately determining the fraction of the pop-
ulation with less than a high school degree (r =0.70, p=8e−5),
with a bachelor’s degree (r =0.83, p< 1e − 7), and with post-
graduate education (r =0.82, p< 1e − 7). We also accurately
determined the overall concentration of highly educated inhabi-
tants near the city’s northeast border (Fig. 2 iv and v). Similarly,
our income estimates closely match those of the ACS in Tampa,
Florida (r =0.87, p< 1e−7). The lowest income zip code, at the
southern tip, is readily apparent.

13110 | www.pnas.org/cgi/doi/10.1073/pnas.1700035114 Gebru et al.

D
ow

nl
oa

de
d 

by
 g

ue
st

 o
n 

S
ep

te
m

be
r 

29
, 2

02
0 

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1700035114/-/DCSupplemental/pnas.1700035114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1700035114/-/DCSupplemental/pnas.1700035114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1700035114/-/DCSupplemental/pnas.1700035114.sapp.pdf
http://www.pnas.org/cgi/doi/10.1073/pnas.1700035114


CO
M

PU
TE

R
SC

IE
N

CE
S

i. Actual  Percent of Voters for Obama in 2008 B

iii. Ratio of Sedans to Extended-cab Trucks

Republican
Democrat

A

0% 100%

0% 100%

0.7 0.4

ii. Predicted Percent of Voters for Obama in 2008

Los Angeles, California

Casper, Wyoming

Milwaukee, Wisconsin

Gilbert, Arizona

Garland, Texas

Lexington, Kentucky

Birmingham, Alabama

Fig. 3. Actual and inferred voting patterns. A,
i and ii map the actual and predicted percent-
age of people who voted for Barack Obama
in the 2008 presidential election (r = 0.74).
iii maps the ratio of detected pickup trucks
to sedans in the 165 cities in our test set. As
can be seen from the map, the ratio is very
low in Democratic cities such as those in the
East Coast and high in Republican cities such as
those in Texas and Wyoming. (B) Shows actual
vs. predicted voter affiliations for various cities
in our test set at the precinct level using our
full model. Democratic precincts are shown in
blue, and Republican precincts are shown in
red. Our model correctly classifies Casper, WY
as a Republican city and Los Angeles, CA as a
Democratic city. We accurately predict that Mil-
waukee, WI is a Democratic city except for a
few Republican precincts in the southern, west-
ern, and northeastern borders of the city.

While the ACS does not collect voter preference data, our
automated machine-learning procedure can infer such prefer-
ences using associations between vehicles and the voters that
surround them. To confirm the accuracy of our voter pref-
erence estimates, we began by comparing them with the vot-
ing results of the 2008 presidential election, city-by-city, across
all 165 test set cities. We found a very strong correlation
between our estimates and actual voter preferences (r =0.73,
p<< 1e − 7). See SI Appendix, Fig. S5. These results con-
firm the ability of our approach to accurately estimate voter
behavior.

While city-level data provide a general picture, precinct-level
voter preferences identify patterns within a particular city. By
comparing our precinct-by-precinct estimates to the 2008 presi-
dential election results, we found that our estimates continued to
closely match the ground truth data. For instance, in Milwaukee,
Wisconsin, a very Democratic city with 311 precincts, we cor-
rectly classify 264 precincts [85% accuracy (Fig. 3B)]. Most
notably, we accurately determine that there are a few Republi-
can precincts in the South, West, and Northeastern borders of
the city. Similarly, in Gilbert, Arizona, a Republican city, we cor-
rectly classify 58 out of 60 precincts (97% accuracy), identifying
one out of the two small Democratic precincts in the city (Fig.
3B). And in Birmingham, Alabama, a city that is 23% Republi-
can, we correctly classify 87 out of the 105 precincts (83% accu-
racy). Overall, there was a strong correlation between our esti-

mates and actual electoral outcomes at the single-precinct level
(r = 0.57, p < 1e − 7).

These results illustrate the ability of our machine-learning algo-
rithm to accurately estimate both demographic statistics and voter
preferences using a large database of Google Street View images.
They also suggest that our demographic estimates are accurate
at higher spatial resolutions than those available for yearly ACS
data. Using our approach, zip code- or precinct-level survey data
collected for a few cities can be used to automatically provide
up-to-date demographic information for many American cities.

Thus, we find that the application of fully automated com-
puter vision methods to publicly available street scenes can inex-
pensively determine social, economic, and political patterns in
neighborhoods across America. By collecting surveys for a few
cities—the type of data routinely obtained via ACS—and infer-
ring data for other regions using our model, we can quickly deter-
mine demographic patterns.

As self-driving cars with onboard cameras become increasingly
widespread, the type of data we use—footage of neighborhoods
from vehicle-mounted cameras—are likely to become increas-
ingly ubiquitous. For instance, Tesla vehicles currently take as
many images as were studied here every single day. It is also
important to note that similar data can be obtained, albeit at
a slower pace, using low-tech methods: for instance, by walk-
ing around a target neighborhood with a camera and a notepad.
Thus, street scenes stand in contrast to the massive textual
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corpora presently used in many computational social science
studies, which can be constrained by privacy and copyright con-
cerns that prevent individual researchers from obtaining the raw
data underlying published analyses.

The automated method we present could be substantially
improved by expanding our object recognition beyond vehicles
(17, 18) and incorporating global image features (7, 19–21).
For instance, our experiments show that global image features
extracted from CNN can also be used to infer demographics. But
this approach requires more data—at least 50% of our dataset—
rather than the 12% to 15% we use using our current method
(see SI Appendix). The model could also be improved by inte-
grating other types of data, such as satellite images (22), social
networks (4), and economic data pertaining to local consumer
behavior in particular geographic regions. Nevertheless, there
are many characteristics that our methodology—which relies
on publicly available data—may not be able to infer (see SI
Appendix). For instance, the age of children in a neighborhood
can be estimated with moderate accuracy (r =0.54), while the
percentage of farmers in a neighborhood was not successfully
inferred using our method (r =0.0).

Although automated methods could be powerful resources
for both researchers and policymakers, their progress will raise
important ethical concerns; it is clear that public data should not
be used to compromise reasonable privacy expectations of indi-
vidual citizens, and this will be a central concern moving forward.
In the future, such automated methods could lead to estimates
that are accurately updated in real time, dramatically improving
upon the time resolution of a manual survey.

Materials and Methods
Here, we describe our methodology for data collection, car detection, car
classification, and demographic inference. Some of these methods were par-
tially developed in an earlier paper (12), which served as a proof of concept
focusing on a limited set of predictions (e.g., per capita carbon emission,
Massachusetts Department of Vehicles registration data, income segrega-
tion). Our work builds on these methods to show that income, race, educa-
tion levels, and voting patterns can be predicted from cars in Google Street
View images. In the sections below, we discuss our dataset and methodology
in more detail.

Dataset. While learning to recognize automobiles, a model needs to be
trained with many images of vehicles annotated with category labels. To
this end, we used Amazon Mechanical Turk to gather a dataset of labeled
car images obtained from edmunds.com, cars.com, and craigslist.org. Our
dataset consists of 2,657 visually distinct car categories, covering all com-
monly used automobiles in the United States produced from 1990 onward.
We refer to these images as product shot images. We also hired experts
to annotate a subset of our Google Street View images. The annotations
include a bounding box around each car in the image and the type of car
contained in the box. We partition the images into training, validation,
and test sets. In addition to our annotated images, we gathered 50 mil-
lion Google Street View images from 200 cities, sampling GPS points every
25 miles. We captured 6 images per GPS point, corresponding to different
camera rotations. Each Street View image has dimensions 860 by 573 pixels
and a horizontal field of view of ∼90◦. Since the horizontal field of view is
larger than the change in viewpoint between the 6 images per GPS point,
the images have some overlapping content. In total, we collected 50,881,098
Google Street View images for our 200 cities. They were primarily acquired
between June and December of 2013 with a small fraction (3.1%) obtained
in November and December of 2014. See SI Appendix for more detail on the
data collection process.

Car Detection. In computer vision, detection is the task of localizing objects
within an image and is most commonly framed as predicting the x, y, width,
and height coordinates of an axis-aligned bounding box around an object of
interest. The central challenge for our work is designing an object detector
that is fast enough to run on 50 million images within a reasonable amount
of time and accurate enough to be useful for demographic inference. Our
computation resources consisted of 4 T K40 graphics processing units and
200 2.1 GHz central processing unit cores. As we were willing to trade a cou-
ple of percentages in accuracy for efficiency (12), we turned to the previous

state-of-the-art in object detection, DPMs (11), instead of recent algorithms
such as ref. 23.

For DPMs, there are two main parameters that influence the running time
and performance, which are the number of components and the number of
parts in the model. SI Appendix, Table S3 provides an analysis of the perfor-
mance/time tradeoff on our data, measured on the validation set. Based on
this analysis, using a DPM with a single component and eight parts strikes
the right balance between performance and efficiency, allowing us to detect
cars on all 50 million images in 2 wk. In contrast, the best performing param-
eters would have taken 2 months to run and only increased average preci-
sion (AP) by 4.5.

As discussed in ref. 12, we also introduce a prior on the location and size
of predicted bounding boxes and use it to improve detection accuracy. Incor-
porating this prior into our detection pipeline improves AP on the validation
set by 1.92 at a negligible cost. SI Appendix, Fig. S6B visualizes this prior. The
output of our detection system is a set of bounding boxes and scores where
each score indicates the likelihood of its associated box containing a car.

We converted these scores into estimated probabilities via isotonic
regression (24) (see SI Appendix for details). We report numbers using a
detection threshold of −1.5 (applied before the location prior). At test time,
after applying the location prior (which lowers detection decision values),
we use a detection threshold of −2.3. This reduces the average number
of bounding boxes per image to be classified from 7.9 to 1.5 while only
degrading AP by 0.6 (66.1 to 65.5) and decreasing the probability mass of
all detections in an image from 0.477 to 0.462 (a 3% drop). SI Appendix,
Fig. S8 shows examples of car detections using our model. Bounding boxes
with cars have high estimated probabilities, whereas the opposite is true for
those containing no cars. The AP of our final model is 65.7, and its precision
recall curve is visualized in SI Appendix, Fig. S7B. We calculate chance per-
formance using a uniform sample of bounding boxes greater than 50 pixels
in width and height.

Car Classification. Our pipeline, described in ref. 12, classifies automobiles
into one of 2,657 visually distinct categories with an accuracy of 33.27%.
We use a CNN (25) following the architecture of ref. 14 to categorize cars.
CNNs, like other supervised machine-learning methods, perform best when
trained on data from a similar distribution as the test data (in our case,
Street View images). However, the cost of annotating Street View photos
makes it infeasible to collect enough images to train our CNN only using
this source. Thus, we used a combination of Street View and the more plen-
tiful product shot images as training data. We modified the traditional CNN
training procedure in a number of ways.

First, taking inspiration from domain adaptation, we approximated the
WEIGHTED method of Daumé (26) by duplicating each Street View image 10
times during training. This roughly equalizes the number of training Street
View and product shot images, preventing the classifier from overfitting on
product shot images.

Product shot and Street View images differ significantly in image resolu-
tion: Cars in product shot images occupy many more pixels in the image.
To compensate for this difference, we first measured the distribution of
bounding box resolutions in Street View images used for training. Then,
during training, we dynamically downsized each input image according to
this distribution before rescaling it to fit the input dimensions of the CNN.
Resolutions are parameterized by the geometric mean of the bounding box
width and height, and the probability distribution is given as a histogram
over 35 different such resolutions. The largest resolution is 256, which is the
input resolution of the CNN (see SI Appendix for additional details).

At test time, we input each detected bounding box into the CNN and
obtain softmax probabilities for each car category through a single for-
ward pass. We only keep the top 20 predictions, since storing a full 2, 657-
dimensional floating point vector for each bounding box is prohibitively
expensive in terms of storage. On average, these top 20 predictions account
for 85.5% of the softmax layer activations’ probability mass. After extensive
code optimization to make this classification step as fast as possible, we
are primarily limited by the time spent reading images from disk, espe-
cially when using multiple GPUs to perform classification. At the most fine-
grained level (2, 657 classes), we achieve a surprisingly high accuracy of
33.27%. We classify the car make and model with 66.38% and 51.83% accu-
racy respectively. Whether it was manufactured in or outside of the United
States can be determined with 87.71% accuracy.

We show confusion matrices for classifying the make, model, body type,
and manufacturing country of the car (SI Appendix, Fig. S9 A–D). Body
type misclassifications tend to occur among similar categories. For exam-
ple, the most frequent misclassification for “coupe” is “sedan,” and the
most frequent misclassification for trucks with a regular cab is trucks with an
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extended cab. On the other hand, there are no two makes (such as Honda
and Mercedes-Benz) that are more visually similar than others. Thus, when
a car’s make is misclassified, it is mostly to a more popular make. Similarly,
most errors at the manufacturing country level occur by misclassifying the
manufacturing country as either “Japan” or “USA,” the two most popular
countries. Due to the large number of classes, the only clear pattern in the
model-level confusion matrix is a strong diagonal, indicative of our correct
predictions.

Demographic Estimation. In all of our demographic estimations, we use the
following set of 88 car-related attributes: the average number of detected
cars per image; average car price; miles per gallon (city and highway); per-
cent of total cars that are hybrids; percent of total cars that are electric;
percent of total cars that are from each of seven countries; percent of total
cars that are foreign (not from the USA); percent of total cars from each of
11 body types; percent of total cars whose year (selected as the minimum
of possible year values for the car) fall within each of 5 year ranges (1990–
1994, 1995–1999, 2000–2004, 2005–2009, and 2010–2014); and percent of
total cars whose make is each of 58 makes in our dataset.

Socioeconomic data were obtained from the ACS (2) and were collected
between 2008–2012. See SI Appendix for more detail on ground truth data
used in our analysis (e.g., census codes). Data for the 2008 US presidential
election were provided to us by the authors of ref. 27 and consist of precinct-
level vote counts for Barack Obama and John McCain. We ignore votes cast
for any other person; that is, the count of total votes is determined solely by
votes for Obama and McCain.

To perform our experiments, we partitioned the zip codes, precincts, and
cities in our dataset into training and test sets as discussed in the main text,
training a model on the training set and predicting on the test set. We used
a ridge regression model for income and voter affiliation estimation. For
race and education, we used logistic regression to use structure inherent in
the data. Specifically, for each region, summing the percentage of people
with each of the 5 possible educational backgrounds (or each race) should
yield 100%. In all cases, we trained 5 models using fivefold cross-validation
to select the regularization parameter and averaged the trained models. We
normalize the features to have zero mean and unit SD (parameters deter-
mined on the training set). We also clip predictions to stay within the range
of the training data, preventing our estimates from having extreme values.
The geographical regions of interest are restricted to be ones with a popu-
lation of at least 500 and at least 50 detected cars.

We compute the probability of voting Democrat/Republican conditioned
on being in a city with more pickup trucks than sedans as follows. Let
r be the ratio of pickup trucks to sedans. We would like to estimate
P(Democrat|r > 1) and P(Republican|r < 1):

P(Democrat|r > 1) =
P(Democrat, r > 1)

P(r > 1)
[1]

P(Republican|r < 1) =
P(Republican, r < 1)

P(r < 1)
[2]

We estimate P(Democrat, r > 1), P(Republican, r < 1), P(r > 1), and
P(r < 1) as follows. Let Sd = {ci} be the set of cities with more votes for
Barack Obama than John McCain. Let Ss = {cj} be the set of cities with more
sedans than pickup trucks. Let ns be the number of elements in Ss and let
nds be the number of elements in Sd ∩ Ss. Similarly, let Sp be the set of cities
with more pickup trucks than sedans, Sr the set of cities with more votes
for John McCain than Barack Obama, and nrp the number of elements in
Sr ∩ Sp. Finally, let C be the number of cities in our test set:

P(Democrat, r > 1) ≈
nds

C
[3]

P(Republican, r < 1) ≈
nrp

C
[4]

P(r > 1) ≈
ns

C
[5]

P(r < 1) ≈
np

C
[6]

Using these estimates, we calculate P(Democrat|r > 1) and P(Republican|r <

1) according to Eqs. 1 and 2.
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to Measure Labor Market Flows (National Bureau of Economic Research, Cambridge,
MA), Technical Report 20010.

5. Michel JB, et al. (2011) Quantitative analysis of culture using millions of digitized
books. Science 331:176–182.

6. Blumenstock J, Cadamuro G, On R (2015) Predicting poverty and wealth from mobile
phone metadata. Science 350:1073–1076.

7. Naik N, Philipoom J, Raskar R, Hidalgo C (2014) Streetscore–Predicting the perceived
safety of one million streetscapes. 2014 IEEE Conference on Computer Vision and
Pattern Recognition Workshops (IEEE, New York), pp 793–799.

8. Naik N, Kominers SD, Raskar R, Glaeser EL, Hidalgo CA (2017) Computer vision
uncovers predictors of physical urban change. Proc Natl Acad Sci USA 114:7571–
7576.

9. American Association of State Highway and Transportation Officials (2013) Vehicle
and Transit Availability. Commuting in America 2013 (American Association of State
Highway and Transportation Officials, Washington, DC), Report 7.

10. Choo S, Mokhtarian PL (2004) What type of vehicle do people drive? The role of
attitude and lifestyle in influencing vehicle type choice. Transport Res Pol Pract 38:
201–222.

11. Felzenszwalb P, Girshick R, McAllester D, Ramanan D (2010) Object detection with
discriminatively trained part based models. IEEE Trans Pattern Anal Mach Intell 32:
1627–1645.

12. Gebru T, et al. (2017) Fine-grained car detection for visual census estimation in AAAI,
in press.

13. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to
document recognition. Proc IEEE 86:2278–2324.

14. Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convo-
lutional neural networks. Advances in Neural Information Processing Systems. Avail-

able at papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-
neural-networks.pdf. Accessed November 9, 2017.

15. Bland M (2012) Asian consumers and the automotive market. Available at app.
compendium.com/uploads/user/a33eed35-8a44-4da7-84c4-16f3751fe303/9855ee60-
f764-43b4-84c4-40950ff36307/File/3e1e2e5d8d20fad49eaac919e38abc8e/polk 3af 05
17 2012 presentation.pdf. Accessed November 6, 2017.

16. Auto Remarketing Staff (2011) Which brands most attract African-American buyers?
Available at www.autoremarketing.com/content/trends/which-brands-most-attract-
african-american-buyers. Accessed October 24, 2016.

17. Simo-Serra E, Fidler S, Moreno-Noguer F, Urtasun R (2015) Neuroaesthetics in fashion:
Modeling the perception of beauty. Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (IEEE, New York), pp 869–877.

18. Matzen K, Bala K, Snavely N (2017) Streetstyle: Exploring world-wide clothing styles
from millions of photos. arXiv:1706.01869.

19. Ordonez V, Berg TL (2014) Learning high-level judgments of urban percep-
tion. European Conference on Computer Vision (Springer, Boston), pp 494–
510.

20. Khosla A, An B, Lim JJ, Torralba A (2014) Looking beyond the visible scene. 2014 IEEE
Conference on Computer Vision and Pattern Recognition (IEEE, New York), pp 3710–
3717.

21. Zhou B, Liu L, Oliva A, Torralba A (2014) Recognizing city identity via attribute analysis
of geo-tagged images. European Conference on Computer Vision (Springer, Boston),
pp 519–534.

22. Jean N, et al. (2016) Combining satellite imagery and machine learning to predict
poverty. Science 353:790–794.

23. Ren S, He K, Girshick R, Sun J (2017) Faster r-CNN: Towards real-time object detec-
tion with region proposal networks. IEEE Trans Pattern Anal Mach Intell 39:1137–
1149.

24. Barlow RE, Bartholomew DJ, Bremner J, Brunk HD (1972) Statistical Inference
under Order Restrictions: The Theory and Application of Isotonic Regression (Wiley,
New York).

25. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to
document recognition. Proc IEEE 86:2278–2324.

26. Daumé H III (2007) Frustratingly easy domain adaptation. Conference of the Associ-
ation for Computational Linguistics (ACL, Prague, Czech Republic).

27. Ansolabehere S, Palmer M, Lee A (2014) Precinct-Level Election Data. Available at
hdl.handle.net/1903.1/21919. Accessed January 13, 2015.

Gebru et al. PNAS | December 12, 2017 | vol. 114 | no. 50 | 13113

D
ow

nl
oa

de
d 

by
 g

ue
st

 o
n 

S
ep

te
m

be
r 

29
, 2

02
0 

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1700035114/-/DCSupplemental/pnas.1700035114.sapp.pdf
http://www.osec.doc.gov/bmi/budget/fy13cbj/Census_FY2013_CongressionalJustification-FINAL.pdf
http://www.osec.doc.gov/bmi/budget/fy13cbj/Census_FY2013_CongressionalJustification-FINAL.pdf
https://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?src=bkmk
https://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?src=bkmk
https://www.census.gov/data/developers/data-sets/decennial-census.html
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://app.compendium.com/uploads/user/a33eed35-8a44-4da7-84c4-16f3751fe303/9855ee60-f764-43b4-84c4-40950ff36307/File/3e1e2e5d8d20fad49eaac919e38abc8e/polk_3af_05_17_2012_presentation.pdf
http://app.compendium.com/uploads/user/a33eed35-8a44-4da7-84c4-16f3751fe303/9855ee60-f764-43b4-84c4-40950ff36307/File/3e1e2e5d8d20fad49eaac919e38abc8e/polk_3af_05_17_2012_presentation.pdf
http://app.compendium.com/uploads/user/a33eed35-8a44-4da7-84c4-16f3751fe303/9855ee60-f764-43b4-84c4-40950ff36307/File/3e1e2e5d8d20fad49eaac919e38abc8e/polk_3af_05_17_2012_presentation.pdf
http://app.compendium.com/uploads/user/a33eed35-8a44-4da7-84c4-16f3751fe303/9855ee60-f764-43b4-84c4-40950ff36307/File/3e1e2e5d8d20fad49eaac919e38abc8e/polk_3af_05_17_2012_presentation.pdf
http://www.autoremarketing.com/content/trends/which-brands-most-attract-african-american-buyers
http://www.autoremarketing.com/content/trends/which-brands-most-attract-african-american-buyers
http://hdl.handle.net/1903.1/21919

