Causes of ice age intensification across the Mid-Pleistocene Transition

Thomas B. Chalkab,1,2, Mathis P. Hainb,1,2, Gavin L. Fostera, Elco J. Rohlingac, Philip F. Sextond, Marcus P. S. Badgerde, Soraya G. Cherryf, Adam P. Hasenfratzf, Gerald H. Haugg, Samuel L. Jaccardh,i, Alfredo Martinez-Garcíag, Heiko Pälikei,j, Richard D. Pancostb, and Paul A. Wilsona

aOcean and Earth Science, University of Southampton, National Oceangraphy Centre Southend, Southampton SO14 3ZH, United Kingdom; bDepartment of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, MA 02543; Research School of Earth Sciences, The Australian National University, Canberra 2601, Australia; cSchool of Environment, Earth and Ecosystem Sciences, The Open University, Milton Keynes MK7 6AA, United Kingdom; dOrganic Geochemistry Unit, School of Chemistry, The Cabot Institute, University of Bristol, Bristol BS8 1TS, United Kingdom; eGeologisches Institut, Eidgenössische Technische Hochschule Zürich, 8092 Zürich, Switzerland; fMax Planck Institut für Chemie, 55128 Mainz, Germany; gInstitute of Geological Sciences, University of Bern, 3012 Bern, Switzerland; hOeschger Center for Climate Change Research, University of Bern, 3012 Bern, Switzerland; and iCenter for Marine Environmental Sciences (MARUM), University of Bremen, 28359 Bremen, Germany

Edited by Maureen E. Raymo, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, and approved September 7, 2017 (received for review February 9, 2017)

During the Mid-Pleistocene Transition (MPT; 1,200–800 kya), Earth’s orbitally paced ice age cycles intensified, lengthened from ∼40,000 to ∼100 ky, and became distinctly asymmetrical. Testing hypotheses that implicate changing atmospheric CO2 levels as a driver of the MPT has proven difficult with available observations. Here, we use orbitally resolved, boron isotope CO2 data to show that the glacial to interglacial CO2 difference increased from ∼43 to ∼75 μatm across the MPT, mainly because of lower glacial CO2 levels. Through carbon cycle modeling, we attribute this decline primarily to the initiation of substantive dust-borne iron fertilization of the Southern Ocean during peak glacial stages. We also observe a twofold steepening of the relationship between sea level and CO2-related climate forcing that is suggestive of a change in the dynamics that govern ice sheet stability, such as that expected from the removal of subjacial regolith or interhemispheric ice sheet phase-locking. We argue that neither ice sheet dynamics nor CO2 change in isolation can explain the MPT. Instead, we infer that the MPT was initiated by a change in ice sheet dynamics and that longer and deeper post-MPT ice ages were sustained by carbon cycle feedbacks related to dust fertilization of the Southern Ocean as a consequence of larger ice sheets.

Significance

Conflicting sets of hypotheses highlight either the role of ice sheets or atmospheric carbon dioxide (CO2) in causing the increase in duration and severity of ice age cycles ~1 Mya during the Mid-Pleistocene Transition (MPT). We document early MPT CO2 cycles that were smaller than during recent ice age cycles. Using model simulations, we attribute this to post-MPT increase in glacial-stage dustiness and its effect on Southern Ocean productivity. Detailed analysis reveals the importance of CO2 climate forcing as a powerful positive feedback that magnified MPT climate change originally triggered by a change in ice sheet dynamics. These findings offer insights into the close coupling of climate, oceans, and ice sheets within the Earth System.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

Data deposition: The data reported in this paper have been deposited in the Pangaea database (https://doi.pangaea.de/10.1594/PANGAEA.882551).

1T.B.C. and M.P.H. contributed equally to this work.

2To whom correspondence may be addressed. Email: T.chalk@noc.soton.ac.uk or M.P.Hain@soton.ac.uk.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1702143114/-/DCSupplemental.
evidence that CO2 decline was most pronounced during glacial stages. Here, we build on that work with the aim to resolve the coupling of CO2 and climate on orbital timescales to address major unanswered questions regarding the role of CO2 change in the MPT.

To better quantify the role of CO2 during the MPT, we present two orbitally resolved, boron isotope-based CO2 records generated using the calcite tests of surface-dwelling planktonic foraminifera from Ocean Drilling Program (ODP) Site 999 in the Caribbean (Fig. 3 and Figs. S1 and S2). Boron isotopes (δ^{11}B) in foraminifera have proven to be a reliable indicator of past ocean pH (18, 19) and with appropriate assumptions regarding a second carbonate system parameter (Materials and Methods and Fig. S3), allow reconstruction of atmospheric CO2 levels. Site 999 likely remained near air–sea CO2 equilibrium through time (20), and this is further supported by agreement of our data (blue and red in Figs. L4 and 3) with published low-resolution δ^{11}B-derived CO2 data from ODP Site 668 in the equatorial Atlantic (11) (purple squares in Figs. L4 and 3B) and with the ice core CO2 compilation (14).

Fig. 1. Climate records across the MPT. (A) CO2 records are shown as follows: black line, ice core compilation (14); blue, our δ^{11}B-based LP260 data; red, our δ^{11}B-based eMPT data; and purple squares, low-resolution MPT δ^{11}B record of ref. 11 (all with 2σ error bars/envelopes). The range of ice core CO2 measurements (17) from stratigraphically disturbed blue ice and their approximate ages are indicated. (B) SL records, where orange indicates the Red Sea record (21), dark blue represents Mg/Ca-based deconvolution of deep sea benthic foraminiferal oxygen isotope data (3), and pink shows a record from the Mediterranean Sea (4). (C) Dust mass accumulation rate (MAR) in a sub-Antarctic site ODP 1090 on the southern flank of the Agulhas Ridge (24). (D) LR04 benthic foraminiferal oxygen isotope stack (28). Warm intervals are highlighted by gray bars.

Fig. 2. Changing relationship between CO2 climate forcing and ice sheet size. Three scenarios (A–C) for the MPT intensification of glacial cycles compared with observations (D). Reconstructed SL is taken here to reflect continental ice sheet size in relationship to CO2 climate forcing (ΔRCO2) calculated (33) from our orbitally resolved CO2 data. In all panels, red and blue represent conditions during our two sampling intervals before and after the MPT (i.e., eMPT and LP260), respectively. The end member scenarios posit (A) a change in ice sheet dynamics, causing ice volume to become more sensitive to unchanged G-IG climate forcing, and (B) an unchanged sensitivity of ice sheet size to forcing, with glacial intensification driven by additional CO2 drawdown. Neither one of these two scenarios adequately describes both observed changes of increased ice sheet sensitivity (greater slope) and additional glacial CO2 drawdown (more negative climate forcing). Here, we argue for a hybrid scenario with a change in ice sheet dynamics (possibly caused by regolith removal of ref. 10), allowing ice sheets to grow larger and to trigger a positive ice–dust–CO2 feedback that promotes additional glacial intensification. In D, the regression confidence intervals account for uncertainty in both SL and ΔRCO2 (SI Forcing to SL Relationship), but to avoid clutter, we only display the regression based on the Mediterranean SL reconstruction (4) and the uncertainty on the slope rather than the individual data points. We refer the reader to SI Forcing to SL Relationship and Fig. S7 for other SL records and full treatment of data uncertainties.
Our two datasets span an early portion of the Mid-Pleistocene Transition (eMPT) from 1,080 to 1,250 kya (n = 51) and for validation against the ice core CO2 record, the Pleistocene interval from 0 to 260 kya (LP260; n = 59, including 32 recalculated data points from ref. 18), yielding a similar median sampling interval of ∼3.5–4.5 ky for both records. Our LP260 CO2 dataset has a confidence interval of ±20 μatm (2σ) and is offset by a mean of +7 μatm from the ice core CO2 data when accounting for both CO2 and age uncertainties (21) (Fig. 3B and SI Methodology). Comparison between our two CO2 records reveals that eMPT glacial on average experienced higher CO2 levels during eMPT than LP260 (eMPT: 241 ± 21 μatm vs. LP260: 203 ± 14 μatm; 2σ), whereas interglacial levels were indistinguishable between the two time slices (eMPT: 284 ± 17 μatm vs. LP260: 277 ± 18 μatm; 2σ).

Results

Fig. 3. Reconstructed ice age CO2 cycles before and after MPT. (A) Boron isotope data from ODP 999 (Fig. S1) shown in blue (LP260) and red (eMPT) along with the LR04 deep sea benthic foraminiferal oxygen isotope stack (black) (26). (B) CO2 levels calculated from boron isotopes (same colors as above) compared with ice core (black) (14) and previous low-resolution boron-derived CO2 data (purple) (11). Probabilistic assessments are shown as the colored bands, with the probability maximum shown within a dark band that represents its 95% probability envelope (±6 μatm) and a lighter band that represents the full 95% envelope of the sampled distribution. As illustrated by B, Inset, comparison between our (red) eMPT and (blue) LP260 records reveals that glacials on average experienced higher CO2 levels during eMPT than LP260 (eMPT: 241 ± 21 μatm vs. LP260: 203 ± 14 μatm; 2σ), whereas interglacial levels were indistinguishable between the two time slices (eMPT: 284 ± 17 μatm vs. LP260: 277 ± 18 μatm; 2σ).

Ocean and Atlantic mechanisms thought to have contributed to the most recent Late Pleistocene G-IG CO2 cycles (22). For this, we force the CYCLOPS carbon cycle model (23) with ODP 1090 sedimentary iron mass accumulation rates (24), ODP 1094 Ba/Fe ratios (25), and ODP 982/U1313 (Fig. S1) benthic Δ513C variations (26, 27) to represent, respectively, (i) sub-Antarctic dust-borne iron fertilization; (ii) combined changes in polar Antarctic stratification, nutrient drawdown, and export production; and (iii) transitions in the geometry and depth structure of the Atlantic Meridional Overturning Circulation (AMOC) (Fig. S5). These mechanisms and their model sensitivities have been documented elsewhere (23). Here, we invert the model and the forcing to minimize the mismatch between simulated atmospheric CO2 levels and the ice core CO2 record of the last 800 ky (residual rms error of 12.3 μatm) (SI Carbon Cycle Modeling) and then, to predict atmospheric CO2 levels back to 1,500 ky (Fig. S5) for comparison with our data.

We find that changes in the periodicity of simulated CO2 levels closely match those in the ice core CO2 record, in the benthic foraminiferal oxygen isotope record, and in our δ13B-based CO2 reconstruction (Fig. S6). Within the relative age uncertainty between the model forcing and our δ13B record, we find that the model explains more than 60% of the variance observed in our eMPT CO2 reconstruction, in line with model and reconstruction uncertainties. The model inversion does not include any secular change in the silicate weathering cycle (11) (SI Carbon Cycle Modeling), so that simulated CO2 change is exclusively related to carbon redistribution within the ocean–atmosphere system and associated CaCO3 compensation dynamics (22, 23).

Fig. 4. CO2 change since the MPT. Quantified from different datasets: boron isotope data from ODP 999 (this study) and ODP 668 (11), CO2 directly measured on stratigraphically disturbed ~1-My-old blue ice from the Allan Hills (17), and CYCLOPS model inversion (this study). For each dataset, we quantify the change in (Top) interglacial and (Middle) glacial CO2 level as well as (Bottom) the change in the magnitude of interglacial–glacial CO2 cycles. For this analysis, we define glacial and interglacial subsets of the datasets based on a 25% cutoff criterion, subsampling the data with the 25% lowest/highest δ18O (marine records) or CO2 (ice core; model). As further discussed in SI Quantification of δ13CO2, δ18OCO2, and δ13CaCO3, the results are robust for a wide range of cutoff values (Fig. S4). Thick black bars denote 1σ uncertainty of the estimated CO2 change, while thin black bars denote the one-sided test of the sign of CO2 change at 95% significance level. We note that the ODP 668 uncertainties do not encompass the underlying alkalinities and seawater boron isotope composition assumptions, which are included in the uncertainty propagation for our ODP 999 data. The Allan Hills ice may not capture the full range of CO2 levels (17).

Fig. 4. CO2 change since the MPT. Quantified from different datasets: boron isotope data from ODP 999 (this study) and ODP 668 (11), CO2 directly measured on stratigraphically disturbed ~1-My-old blue ice from the Allan Hills (17), and CYCLOPS model inversion (this study). For each dataset, we quantify the change in (Top) interglacial and (Middle) glacial CO2 level as well as (Bottom) the change in the magnitude of interglacial–glacial CO2 cycles. For this analysis, we define glacial and interglacial subsets of the datasets based on a 25% cutoff criterion, subsampling the data with the 25% lowest/highest δ18O (marine records) or CO2 (ice core; model). As further discussed in SI Quantification of δ13CO2, δ18OCO2, and δ13CaCO3, the results are robust for a wide range of cutoff values (Fig. S4). Thick black bars denote 1σ uncertainty of the estimated CO2 change, while thin black bars denote the one-sided test of the sign of CO2 change at 95% significance level. We note that the ODP 668 uncertainties do not encompass the underlying alkalinities and seawater boron isotope composition assumptions, which are included in the uncertainty propagation for our ODP 999 data. The Allan Hills ice may not capture the full range of CO2 levels (17).
In good agreement with the δ^{11}B-based CO$_2$ reconstructions and the ice core CO$_2$ measurements, the model inversion yields (i) insignificant (-1 ± 3 ppm; 2σ) eMPT to LP260 interglacial CO$_2$ change and (ii) a -22 ± 5 ppm (2σ) eMPT to LP260 decline in glacial-stage CO$_2$ levels (Fig. 4 and Fig. S4). In the model, we can attribute most of the additional glacial CO$_2$ drawdown to MPT intensification of glacial dust-borne iron fertilization of biological productivity and nutrient utilization in the Sub-Antarctic Zone of the Southern Ocean (24, 28–30) (Fig. S5). AMOC shoaling also seems to have become more prevalent after ~1,200 ky but contributes less to simulated CO$_2$ change (23). The model reproduces relatively low reconstructed interglacial CO$_2$ from 400 to 800 ky, because use of ODP 1094 Ba/Fe in the model inversion results in persistent polar Southern Ocean stratification as suggested previously (25). Through our eMPT sample interval, the model reproduces the ~80-ky CO$_2$ periodicity that is evident in our eMPT δ^{11}B data (Fig. S6), mainly because of an ~80-ky periodicity in eMPT polar Antarctic stratification and nutrient cycling recorded in ODP 1094 Ba/Fe (25). While all three forcings (iron fertilization, Atlantic circulation, coupled polar Antarctic changes) contribute to the simulated changes in CO$_2$ periodicities that are highly coherent with the MPT change in rhythm of the climate system, the iron fertilization influence dominates the MPT intensification of ice age CO$_2$ drawdown (Fig. S5).

Discussion
MPT intensification of glacial-stage CO$_2$ drawdown is consistent with stabilization of continental ice sheets during increasing orbital obliquity by reduced greenhouse gas forcing, thereby helping ice sheets to grow larger and for periods longer than one obliquity cycle (scenario 2 in Fig. 2). However, when we directly compare changes in SL as a measure for ice volume against CO$_2$ climate forcing (ΔR_{CO2}) from our records (Fig. 2D), we find that, between eMPT and LP260, ice sheet mass increased progressively more per CO$_2$ lowering, thereby increasing the SL–ΔR_{CO2} slope in Fig. 2. This suggests an increase in ice sheet sensitivity to CO$_2$ forcing across the MPT, with the caveat that eMPT may not fully capture pre-MPT conditions, although it agrees with the longer-term record of Hönisch et al. (11). This finding is robust, regardless of which SL reconstruction is used (Fig. S7). In all cases, the SL to ΔR_{CO2} relationships appear to be linear, with increasing slopes from eMPT to LP260. The steepening relationship is also evident when regressing δ^{11}B to δ^{10}B relationships, with both isotope ratios measured on the same sample material (Fig. S8). Using the SL record with the best coverage of both intervals, relative SL from the Mediterranean Sea (4), we estimate 25 ± 3 and 45 ± 5 m of SL lowering for each 1-Wm$^{-2}$ reduction in radiative forcing during eMPT and LP260, respectively. Such a pronounced increase in sensitivity implicates a change in ice sheet dynamics as predicted by the regolith hypothesis (8, 9) or the establishment of marine-based ice sheet margins in East Antarctica (10) (scenario 1 in Fig. 2).

The observed changes in the SL to ΔR_{CO2} relationships contain elements of both end member scenarios shown in Fig. 2 A and B, in which a greater slope is possibly related to changes internal to the ice sheets (scenario 1) and amplified glacial to interglacial CO$_2$ climate forcing is linked (this study) to increased glacial dustiness that causes enhanced Southern Ocean iron fertilization (scenario 2). Therefore, we propose a hybrid scenario (Fig. 2C) that incorporates both heightened ice sheet sensitivity to CO$_2$ forcing and dust-driven ocean sequestration of CO$_2$ to represent the observed system change across the MPT.

First, we propose that—indepenedent of orbital and CO$_2$ forcing—a process internal to the climate system yielded greater glacial build-up of ice sheets [e.g., regolith removal (8) or ice sheet phase-locking (10)]. Second, we infer that larger ice sheets led to increased glacial atmospheric dustiness (31, 32), either directly through SL lowering or indirectly because of atmospheric cooling, drying, and/or changes in surface winds. This, in turn, induced glacial iron fertilization of the Sub-Antarctic Zone of the Southern Ocean, thereby effecting the 20- to 40-μm decrease in the amplitude of the G-IG CO$_2$ cycles documented here (Fig. 4) (11). In our hybrid scenario, the positive climate—dust—CO$_2$ feedback is required to (i) drive additional ice sheet growth and (ii) stabilize those ice sheets during the critical orbital phase of rising obliquity, ensuring the survival of ice sheets beyond single obliquity cycles. Therefore, regardless of the mechanism that served as the initial MPT trigger, our findings further illustrate the exquisite coupling that exists in the Earth System between climate change, ice sheet mass, and the polar ocean mechanisms that regulate G-IG CO$_2$ change.

Materials and Methods
Globigerinoides ruber white sensu stricto (300–355 μm) were picked from sediments from ODP 999A (Fig. S1), and the age model was constructed by benthic oxygen isotopes from the same samples and X-ray fluorescence scanning data. Samples were measured for boron isotope composition using a Thermo Scientific Neptune multicollector inductively coupled plasma mass spectrometer at the University of Southampton according to methods described elsewhere (18). Analytical uncertainty is given by the external reproducibility of repeat analyses of Japanese Geological Survey Porites coral standard at the University of Southampton and is typically <0.2% (at 95% confidence). Metal element–calcium ratios (Mg, B, Al) were analyzed using Thermo Scientific 2XR inductively coupled plasma mass spectrometry, with a Thermo Scientific Neptune multicollector inductively coupled plasma mass spectrometer at the University of Southampton. Here, these data are used to assess adequacy of clay removal (Al/Ca < 100 μmol/mol) and to generate down core temperature estimates. CO$_2$ was calculated using a Monte Carlo approach (10,000 replicates) with estimates of salinity and alkalinity using a flat probability spanning a generous range (34–37 psu and 2,100–2,500 μmol/kg, respectively). A normal distribution around proxy data was used for all other input variables (temperature, pH, respectively). A normal distribution around proxy data was used for all other input variables (temperature, pH, respectively). A normal distribution around proxy data was used for all other input variables (temperature, pH, respectively). A normal distribution around proxy data was used for all other input variables (temperature, pH, respectively). A normal distribution around proxy data was used for all other input variables (temperature, pH, respectively).

Inverse carbon cycle modeling was carried out using the CYCLOPS model (23), with the forward model forcing derived from pertinent paleoceanographic records (25–27) and the forcing scaling parameters inverted to minimize model misfit with respect to the ice core CO$_2$ record of the last 800 ky. Significant linear correlation with and matching spectral content to our boron isotope-based CO$_2$ data confirm the skill of the model inversion (Fig. S6). Detailed statistical analysis is carried out to identify and quantify changes in absolute glacial and interglacial CO$_2$ as well as the G-IG CO$_2$ range from the model inversion results, our high-resolution CO$_2$ data, and some previous datasets (11, 17) that are not well dated or lack the required temporal resolution for comparison in the time and/or frequency domains. This analysis is based on estimation of the population means of cumulative probability density of glacial and interglacial subsamples, which were selected based on both available benthic foraminiferal δ^{18}O or CO$_2$ rank (Fig. 4). Factorial analysis of the validated model allows for the mechanistic attribution to sub-Antarctic iron fertilization of glacial stage-specific CO$_2$ reduction associated with the MPT interval (Fig. S5, Bottom), which is the pattern that we identified as common between model and all three empirical datasets. More detailed descriptions of inverse modeling and model/data cross-validation and statistical quantification of CO$_2$ change can be found in SI Carbon Cycle Modeling and SI Quantification of 12CO$_2$, 13CO$_2$, and 14CO$_3$ respectively.

Acknowledgments: We thank J. A. Milton, M. Cooper, A. Michalk, M. Spencer, and members of the “boron-team” at the University of Southampton.