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Modern molecular genetic datasets, primarily collected to study
the biology of human health and disease, can be used to directly
measure the action of natural selection and reveal important fea-
tures of contemporary human evolution. Here we leverage the
UK Biobank data to test for the presence of linear and nonlin-
ear natural selection in a contemporary population of the United
Kingdom. We obtain phenotypic and genetic evidence consistent
with the action of linear/directional selection. Phenotypic evi-
dence suggests that stabilizing selection, which acts to reduce
variance in the population without necessarily modifying the pop-
ulation mean, is widespread and relatively weak in comparison
with estimates from other species.

natural selection | stabilizing selection | complex traits

Natural selection can strongly affect patterns of phenotypic
variation. This fact has led to considerable interest in under-

standing how natural selection and other evolutionary forces
combined to shape the allelic spectrum underlying variation
within and between populations. Most of this work has focused
on searching the genome for signatures of past selective events
(1). Yet selection fundamentally acts on phenotypes, not geno-
types. Therefore, the relationships between phenotypes and fit-
ness must be studied in contemporary populations to observe
natural selection directly. In doing so, we can gain insights about
the direction and magnitude of phenotypic evolution. Theo-
retically, such observations allow one to predict future evolu-
tionary change, and they can serve as points of comparison
with inferences of selection obtained from other sources of
data. Here we report observational evidence that is consistent
with the action of natural selection in a contemporary human
population.

Directional selection results in a covariance between the trait
and fitness and can lead to changes in the mean value of a trait
in a population (2–4). Further, if phenotypic variation for the
trait is caused by genetic factors, then directional selection can
result in changes in the genetic composition of a population.
Phenotypes may also be subject to stabilizing selection or dis-
ruptive selection, which are both nonlinear forms of selection.
The key distinction between stabilizing and disruptive selection
is whether the relationship between fitness and a phenotype is
concave down or up, respectively. Stabilizing selection, which is
commonly invoked in theoretical studies of quantitative traits
(5–9), will tend to reduce phenotypic variation while disruptive
selection will tend to increase it. In a seminal paper on the
direct study of natural selection, Lande and Arnold (10) put forth
a statistical framework by which the magnitude of both direc-
tional and nonlinear selection could be estimated from observa-
tional data via regression of fitness onto phenotypes and their
squared values.

Application of the Lande and Arnold (10) framework to
human populations has yielded evidence consistent with the
action of directional selection on physiology, life-history, and
body-size traits in both pre- and postindustrial societies (11).

While important differences between the studied populations
exist (12, 13), a few interesting trends have emerged. Multiple
studies have suggested that directional selection has acted to
lower the age at first birth in females (14–19), increase the age
at menopause (14, 17), increase weight in females (17, 18, 20),
and decrease height in females (13, 17, 18, 20, 21) in contempo-
rary postindustrial populations.

Direct evidence for the action of stabilizing selection in
humans is scarcer. Birth weight is one reported example of a
human trait under stabilizing selection (22), although the inten-
sity of selection has decreased in postindustrial societies (23).
A twin study of female reproductive life-history traits showed
evidence for a phenotypic optimum for age at menarche (14).
Additionally, phenotypic evidence has been presented that is
indicative of the simultaneous action of directional and stabi-
lizing selection on height in the Dutch (24). However, a recent
study in the contemporary United States found no evidence
for any nonlinear selection (25)—although sample size may
have limited the power to detect such effects. While selection
acts on phenotypes, evolution requires genetic variation. The
genetic covariance between a phenotype and fitness determines
the expected evolutionary change (2–4) of that phenotype in
a population. Genetic covariances between traits can be esti-
mated from pedigree information or directly from molecular
genetic data (26).

The use of molecular genetic data has multiple advantages
over traditional sources of data for the study of contemporary
selection (19, 25, 27). The most obvious advantage is the avail-
ability of data; genetic data from large samples of unrelated
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individuals are increasingly accessible to many researchers.
Another advantage comes from the ability to control for possi-
ble cultural transmission of traits, which is generally confounded
with genetics in observational studies because parents pass both
on to their offspring (11). This issue can be partially mitigated by
accounting for population structure (28) and geography in sam-
ples of unrelated individuals.

In the first attempt to use SNP-array data to study contem-
porary natural selection on complex traits, Tropf et al. (19)
found a negative genetic correlation between relative lifetime
reproductive success (rLRS)—the individual lifetime reproduc-
tive success divided by the mean—and age at first birth, using
a bivariate linear mixed-modeling approach (26, 29). How-
ever, Beauchamp (25) noted that the bivariate analyses are
underpowered with modest sample sizes and chose to analyze
genetic predictors derived from the results of independent large
genome-wide association studies (GWAS). Significant negative
correlations between polygenic prediction scores for female edu-
cational attainment and rLRS have been found in the popula-
tions of the contemporary United States (25) and Iceland (27).
But reliance on external GWAS summary statistics limits analy-
ses to traits that have already been thoroughly characterized at
the genetic level.

Here, we analyze the phenotypic and genetic correlates of
rLRS in the UK Biobank (UKB). The UKB is a large population-
based prospective study of the genetic and environmental deter-
minants of aging-related disease (30). The dataset consists of
over 500,000 individuals from the United Kingdom who have
been genotyped at common SNPs and clinically phenotyped
for many different traits. These data provide paired genotype
and phenotype samples large enough to accurately measure
additive genetic correlation between many heritable complex
traits (31).

First, we apply the Lande and Arnold (10) framework through
regression analyses of the relationship between a suite of phe-
notypes and a proxy for fitness, rLRS, in 217,728 females and
158,638 males. Then, the genetic data available from 157,807
female and 115,902 male unrelated samples are used to estimate
genetic correlations between the phenotypes and rLRS through
linkage disequilibrium (LD)-score regression analysis (32, 33).
This analysis was supported by the observation that rLRS had a
low, but measurable heritability. Our analyses replicate the main
results of other recent studies (19, 25, 27) and uncover a host of
other significant genetic correlations with rLRS. We also report
estimates of quadratic relationships with rLRS, which may be
interpreted as evidence consistent with stabilizing or disruptive
selection, informing efforts to model the processes that maintain
heritable variation in human complex traits (34–43). Our obser-
vations are consistent with the action of weak directional and
stabilizing selection and limited disruptive selection in the UK
Biobank population.

Phenotypic Observations
We estimate linear (β) and quadratic (γ) selection gradients
by regressing rLRS onto phenotypes and squared phenotypes
(10). Because of possible heterogeneity in selection pressures
and rLRS measurement precision—documented number of live
births in females vs. self-reported number of children fathered
in males—all analyses were performed on a sex-specific basis. In
total, we analyzed 37 traits in females and 33 traits in males; the
traits and results are listed in Dataset S1. The histogram of β̂ (SI
Appendix, Fig. S1A) shows that the observed signals of directional
selection are weaker than what has been found in other species
(44). Such weak selection gradients are unlikely to lead to large
changes in phenotypic distributions over clinically or socially rel-
evant timescales (25, 27). However, it is important to note that
the measured rLRS may be biased because it is conditional on

survival to postreproductive age and may not be completed rLRS
for males. Despite the weak signal, we find that 23 female traits
and 21 male traits have significant nonzero directional selection
gradients (β̂) at a family-wise error rate (FWER) ≤ 0.05. How-
ever, many of these traits are highly correlated (SI Appendix,
Figs. S4 and S5) and should not be viewed as separable axes of
selection.

The β̂ estimates for traits with a significant estimate in at least
one sex are shown in Fig. 1A. Overall, the β̂ estimates were
not highly correlated between sexes. This implies that there is
some sex-specific selection acting on these phenotypes, consis-
tent with recent work on the genetic and phenotypic correlates
of viability (45). In many instances, the difference between sexes
is driven by a large difference in the magnitude, not the sign, of β̂.
For example, the estimate for educational attainment in females
is β̂EA,F =−0.0612± 0.0022 (P < 10−172) while the estimate
in males is β̂EA,M =−0.0086± 0.003 (P ≈ 10−2.3). Conversely,
the estimate for birth weight in males, β̂BW ,M =0.021 ±
0.0038 (P < 10−7), is much larger than the estimate in females
of β̂BW ,F =0.0047± 0.0027 (P =0.084). Height is the only trait
we studied for which the data indicate sexually antagonistic selec-
tion. In females β̂HT ,F =−0.028± 0.0021 (P < 10−39), while in
males β̂HT ,M =0.022 ± 0.0025 (P < 10−18). Fig. 2 further illus-
trates that the predicted phenotypic optimum is above and below
the population mean height for males and females, respectively,
consistent with multiple previous studies showing a difference in
contemporary selection pressures on height between males and
females (13). Further, the empirical relationship between LRS
and height, illustrated in SI Appendix, Fig. S2, is very similar
to that predicted by a Gaussian stabilizing selection model (SI
Appendix, Fig. S3).

In contrast to a recent study (25), 12 traits in females and 14
traits in males have a significant nonlinear selection gradient esti-
mate (γ̂). It is important to note that the sample size available in
ref. 25 was nearly two orders of magnitude smaller than that of
the present study. The histogram of γ̂ values in SI Appendix, Fig.
S1B shows a skew toward negative values. Specifically, 47 of the
64 sex–trait combinations examined show a negative quadratic
selection gradient (median γ̂=−0.0059), of which 26 were sig-
nificant. Twenty-four sex–trait pairs had a nonzero β̂ and a sig-
nificant negative γ̂, which is indicative of the simultaneous action
of directional and stabilizing selection.

Fig. 1B shows that, unlike many of the β̂ estimates, the esti-
mates of γ̂ were quite similar in both sexes. For example, the
estimates for height are γ̂HT ,F =−0.0189± 0.0014 (P < 10−37)
in females and γ̂HT ,M =−0.015 ± 0.0017 (P < 10−17) in males,
respectively. Fig. 1B shows that among traits with significant γ̂ in
both sexes the male estimate tends to be farther from zero (with
height being an exception). We find no traits with significant γ̂ in
both sexes with opposite signs.

Fig. 1B shows that age at menopause, fluid intelligence score,
and age at first birth (AFB) all have a positive γ̂ in females.
In addition, the γ̂ for educational attainment is positive in both
sexes. A positive value of γ can be interpreted as evidence of
disruptive selection. However, our results for AFB are more
indicative of a plateauing of directional selection toward the
upper phenotypic extreme rather than true disruptive selection
(SI Appendix, Fig. S6). The situation is somewhat less clear for
the other phenotypes with a significant positive γ̂ (SI Appendix,
Figs. S7, S9, and S10) and these results should be followed up
more closely in future work.

A multiple-regression analysis provided a more conservative
perspective on the phenotypic correlates of rLRS. Due to mul-
ticollinearity (SI Appendix, Figs. S4 and S5) and nonoverlap-
ping missing data, we had to choose only a subset of traits for
the multiple regression. The full multiple-regression results are
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Fig. 1. (A and B) Scatterplot showing the magnitude of (A) linear selection gradients β̂ and (B) quadratic selection gradients γ̂ for a selection of traits in
females and males. Traits were selected on the basis of being significant (FWER≤ 0.05) in at least one sex. Estimates are on the z-score scale for theoretical
interpretation and consistency across traits. Points are labeled with the following abbreviated trait descriptions: age at menarche (AAM), age at first birth
(AFB), age at menopause (AMP), body-fat percentage (BFP), bone mineral density (BMD), body-mass index (BMI), basal metabolic rate (BMR), birth weight
(BW), diastolic blood pressure (DBP), educational attainment (EA), forced expiratory volume (FEV), fluid intelligence score (FIS), forced vital capacity (FVC),
hip circumference (HC), hand grip strength (HGS), height (HT), mean time to correctly identify matches (MTM), neuroticism score (NS), peak expiratory flow
(PEF), pulse rate (PR), pulse-wave arterial stiffness index (PWA), pulse-wave peak-to-peak time (PWP), pulse-wave reflection index (PWRI), systolic blood
pressure (SBP), speech reception threshold (SRT) estimate, waist circumference (WC), waist-to-hip ratio (WHR), and weight (WT). Note that data on AFB,
AMP, and AAM are not available for males and their regression values were set to zero.

included in Dataset S1 and are summarized in SI Appendix, Table
S1. In males, the estimates of β for hand-grip strength, pulse
rate, body-mass index (BMI), and systolic blood pressure are sig-
nificant in the multiple regression and retain their direction of
association from the single-trait regression models. In females,
the estimates of β for educational attainment (EA), AFB, age
at menarche, bone mineral density, systolic blood pressure,
and waist-to-hip ratio are significant in the multiple-regression
model. However, the direction of the association between EA
and rLRS in females is positive in the multiple-regression set-
ting. This stands in sharp contrast to the separate regression
results and strongly points away from a simple linear relation-
ship between EA and increased rLRS. Rather, it appears that
correlated factors, such as AFB, drive the apparent selection (46)
on EA.

To further explore the relationship between AFB, EA, and
rLRS we fitted a reduced multiple-regression model with EA,
AFB, and their interaction. In the reduced model, all three

Fig. 2. Predicted relative fitness as a function
of height. Linear and quadratic selection gradi-
ents were converted into parameters of a Gaussian
fitness function. Using the parameterized Gaus-
sian fitness function, relative fitness values across
the observed phenotypic range are predicted and
shown by solid red (female) and dashed black
(male) lines. The population means are indicated by
vertical solid red (female) and dashed black (male)
lines. Histograms of female (red) and male (gray)
phenotypes are overlaid with an axis on the right-
hand side. The horizontal dashed line indicates a
relative predicted fitness of 1.

terms (two linear and one interaction) were highly significant
(SI Appendix, Table S1). As in the initial multiple regression,
the direction of association for EA is positive in the reduced
model. In addition, the interaction term between EA and AFB is
strongly positive ( ˆβAFB:EA =0.03 ± 0.0016 (P < 10−112)). One
hypothesis consistent with this observation is that the effect of
EA on rLRS becomes more positive as AFB increases and that
the negative regression coefficient in the EA-alone model can be
fully explained by the strong negative association between AFB
and rLRS. In simpler terms these results suggest that among
females who have children later in life, those individuals with
higher EA will tend to have more children. This is despite the
fact that people with higher EA tend to have fewer children
overall and is consistent with prior work in the Icelandic popu-
lation (27).

The estimates of γ were much less significant in the mul-
tiple regression compared with the separate regressions. For
females, the estimates of γ for age at first live birth and
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BMI were significant—with the BMI estimate reversing direc-
tion to be positive. In males, the estimates of γ for EA and
BMI were significant—with both retaining their direction of
association.

Genetic Correlations with rLRS
The phenotypic results are consistent with the action of natu-
ral selection, but for adaptation to occur there must be effects
on the genetic level. To this end, we analyzed genetic data
from 157,807 female and 115,902 male unrelated samples. Esti-
mates of the genetic correlations between several traits and
rLRS, rg,rLRS , were obtained from the data, using LD-score
regression (32, 33). LD-score regression uses the regression of
the cross-products of z statistics onto a measure of LD in a
genomic window (the LD score), assuming a polygenic architec-
ture, to estimate genetic covariance components from GWAS
results. We also analyzed the UKB interim data release, using
a linear mixed-modeling (LMM) approach. This approach was
not computationally feasible on the full dataset; we report the
results on the full dataset using LD-score regression in the main
text, but see SI Appendix for a discussion of the LMM results.
All genetic variance and covariance estimates are contained in
Dataset S2.

Theory predicts that traits highly correlated with fitness will
have low heritability (47). As expected, rLRS has a low but sig-
nificant SNP heritability in the UKB dataset, which means that
we have power to detect strong genetic correlations. Specifically,
the LD-score regression estimates of h2

SNP,rLRS were 0.056 and
0.033 in females and males, respectively, with respective stan-
dard errors of 0.0046 and 0.0054. Fig. 3 shows r̂g,rLRS for the
subset of traits for which an estimate was marginally significant
(P ≤ 10−3) in at least one sex.

The estimated genetic correlation with rLRS was significant
for several anthropometric traits. For example, the estimates of
r̂g,rLRS for height are −0.1278 ± 0.0274 (P < 10−5) in females
and −0.0074 ± 0.0412 (P =0.18) in males. Recall that we esti-
mated a significant negative selection gradient in females with
a small but significant positive selection gradient in males. The
phenotypic results are in agreement with prior studies in Western
populations (13), suggesting that selection on reproductive suc-
cess favors shorter females and taller males. However, because
we see no evidence for a genetic correlation between height and
rLRS in males, we do not predict that the observed phenotypic
selection in males would induce a response to selection (in a sin-
gle generation).

BMI provides another important example of evidence for
directional selection on an anthropometric trait. We estimate
that the r̂g,rLRS for BMI is 0.104 ± 0.0344 (P =10−2.6) in
females and 0.31 ± 0.046 (P < 10−10) in males. These results
are qualitatively similar to our phenotypic results which indicated
positive directional selection in both sexes with a larger estimate
in males. Although the genetic result for females did not pass
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Fig. 3. Bar plots showing genetic correlations
between a selection of traits and rLRS for females
(red) and males (blue). Traits were selected on the
basis of being marginally significant (P ≤ 0.001)
in at least one sex and were sorted in ascending
order of the estimate for each sex. Data are dis-
played as the correlation estimate plus or minus the
SE (∼ P ≤ 0.001, *FWER ≤ 0.05). Bars are labeled
with the following abbreviated trait descriptions:
age at menarche (AAM), age at first birth (AFB),
age at menopause (AMP), body-fat percentage
(BFP), body-mass index (BMI), basal metabolic rate
(BMR), educational attainment (EA), fluid intelli-
gence score (FIS), hip circumference (HC), height
(HT), waist circumference (WC), waist-to-hip ratio
(WHR), and weight (WT).

our study-wise significance threshold, the results are consistent
with the hypothesis that contemporary selection on reproduction
favors higher BMI in males and support exploration of the same
hypothesis in females.

The genetic correlation estimate for AFB in females was the
strongest observed in our study. We estimate that the r̂g,rLRS

for AFB is −0.593 ± 0.035 (P < 10−16). This result is con-
sistent both with our phenotypic observations and with prior
pedigree-based results (17). EA is also strongly negatively corre-
lated with rLRS; we estimate the r̂g,rLRS for EA to be −0.316±
0.037 (P < 10−16) in females and −0.2539 ± 0.052 (P < 10−5)
in males. However, the most likely explanation for these genetic
results is something very similar to what we observed on
the phenotypic level for these two traits, which would agree
with work on contemporary selection in an Icelandic popu-
lation (27).

Another interesting aspect of the observed negative direc-
tional selection on AFB is that it would suggest selection for
increased female reproductive lifespan. However, the evidence
is less clear when we compare the results on AFB to other
female reproductive life-history traits such as the age at menar-
che (AAM) and age at menopause (AMP). In fact, we esti-
mate that the genetic correlation with rLRS is positive for AAM
(r̂g,rLRS = 0.133 ± 0.032 (P < 10−4.4)) and negative for AMP
(r̂g,rLRS =−0.168 ± 0.045 (P < 10−3.7)). The genetic result for
AMP is particularly unexpected because it is inconsistent with
both our phenotypic result (even though the phenotypic corre-
lation is very small, 0.02) and a prior result obtained in a pedi-
gree study (17). Further, we estimate that the genetic correla-
tion between AAM and AFB is strongly positive despite the
fact that signs of the r̂g,rLRS estimates for the two traits are
opposite. We intuitively expect a positive relationship between
AAM and AFB because the latter requires the former. However,
the positive genetic correlation between rLRS and AAM is less
explicable.

Estimation of the genetic evidence of nonlinear selection was
not performed because of lack of statistical power. Theory pre-
dicts that the additive genetic variance for a squared pheno-
type is likely to be very small and, when present, is confounded
with genetic control of phenotypic variability. In addition, the
empirical heritability estimates for squared phenotypes are small
(SI Appendix, Fig. S19). Despite the lack of power, a poly-
genic predictor for height, constructed from a meta-analysis of
the Genetic Investigation of Anthropometric Traits (GIANT)–
UKB joint dataset, did show a marginally significant negative
quadratic regression coefficient in females (see SI Appendix for
details).

Discussion
Estimates of linear and quadratic selection gradients were
obtained via simple linear regression of a broad set of pheno-
types onto a proxy for fitness. The results suggest that many traits
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measured in the UKB are under the influence of directional and
stabilizing selection. However, many of the selection gradient
estimates were not significant in a multiple-regression setting,
implicating apparent selection (46). However, the population
genetic architecture of a trait may still be modified by apparent
selection.

For example, the direction of association between female EA
and rLRS is positive in the multiple regression, which opposes
results from our single-trait regressions, genetic correlation
analyses, and multiple other published results (16, 25, 27, 48–
50). Our findings lead to the prediction that variants with a
positive effect on female EA would decrease in frequency over
time even if variance in EA itself does not directly cause vari-
ance in reproductive success. Consistent with this prediction,
recent work demonstrated that the mean polygenic score for
EA has declined over time in the Icelandic population (27), but
also suggest that this trend may be explained by factors like
female AFB.

Consistent with previous studies, our results support a hypoth-
esis of strong negative selection on female AFB (14–19, 51–54).
We also observed a small but positive relationship between AMP
in females and rLRS on the phenotypic level, which agrees with
previous results (11, 14, 17, 54). However, we find support for
a negative genetic relationship between rLRS and AMP. Fur-
ther, both genetic and phenotypic data suggest a positive corre-
lation between AAM and rLRS. Thus, it is unclear whether the
total reproductive lifespan is positively or negatively correlated
with rLRS in our data. As larger samples from diverse popula-
tions become available, we may gain a more clear view of the
selective forces acting on reproductive traits in contemporary
humans.

There is clear evidence for correlation between rLRS and sev-
eral anthropometric traits. Our findings are consistent with previ-
ous reports of selection for increased BMI (17, 25). Additionally,
the data suggest that the relationship between rLRS and height is
more negative in females than in males, which agrees with other
results in the literature (18, 24, 25).

Our estimates are conditional on survival to postreproductive
ages, so the intensity of selection could be different for traits
that strictly influence survival. Birth weight is a classic exam-
ple of a trait under strong stabilizing selection, where high and
low birth weights are correlated with reduced survival in both
males and females (22). Yet we find no evidence for stabiliz-
ing selection on birth weight in males and only a mrginally
significant estimate of γ̂=−0.0057 ± 0.0019 (P < 10−2) in
females.

There are a few other important caveats and limitations to our
present analyses. All of our results are conditional on the suite
of phenotypes that we have measured; there is a real possibility
that there are unmeasured phenotypes that drive or confound
some of our results. This issue is related to the phenomenon
of apparent selection and should always be kept in mind when
studying phenotypic selection (46). In addition, the genetic corre-
lations are estimated using common SNP markers (minor allele
frequency > 0.01), which may be a source of bias because the
genetic variants with deleterious effects on fitness are likely to
be rare and thus absent from our analyses. However, this should
simply reduce the power of our analyses. Further, there is evi-
dence that the population of the UKB may not be perfectly
representative of the whole population of the United Kingdom
(55). The potential ascertainment bias (heathy participant bias)
in the UKB is important to consider and may have a quantita-
tive effect on our estimates, but the bias is not likely to be large
enough (55) to disrupt the conclusions of our work in a quali-
tative way.

The distributions of β̂ and γ̂ provide a useful context for
considering the types and strengths of selective forces at play
in contemporary human populations (44). These insights sup-

port ongoing efforts to use theoretical evolutionary models to
understand the maintenance of heritable variation for complex
traits in humans (5–9, 34–43). The estimates of β and γ are
qualitatively consistent with estimates from other species (44),
but the quantitative range is an order of magnitude smaller.
However, the selection gradients from our study are estimated
with much more precision than those in other species, where
the sampling variance may have inflated the range of esti-
mated coefficients. So, while the signal of selection appears
to be statistically significant, we do not expect that selection
can explain the observed secular trends in the phenotypes we
studied.

Stabilizing selection appears to be the more common form
of nonlinear selection. The most common model of stabilizing
selection used in evolutionary quantitative genetics is the Gaus-
sian stabilizing selection model (56). One of the most impor-
tant parameters of the Gaussian stabilizing selection model is
the inverse selection intensity normalized by the phenotypic vari-
ance, VS

VP
. This ratio quantifies how fast fitness, modeled by a

Gaussian function, decreases as a function of distance to the the-
oretical fitness optimum. VS

VP
can be estimated by the negative

reciprocal of the quadratic selection gradient (46). Based on the
first and third quartile values of γ̂, we estimate that a reason-
able range for human phenotypes is VS

VP
∼ 28−173 with a median

of 65, which would be considered weak, but nontrivial in a the-
oretical context (9). Theoretical arguments suggest that a thor-
ough characterization of the effects of stabilizing at the genetic
level will require larger sample sizes and/or methods of interro-
gating nonadditive genetic variance to directly observe stabilizing
selection acting on genetic variation in a population sample like
the UKB.

We have shown the power of combining high-throughput
molecular genetic data with extensive phenotyping to study the
ongoing dynamics of human evolution (11). Our work supports
further study of a dynamic moving-optimum model for the evo-
lution of complex traits in humans. Presently, we do not know
whether the genetic architectures of complex traits are com-
mensurate with equilibrium models parameterized by their con-
temporary selection gradients. If they are not, further research
is needed to better understand how contemporary evolutionary
forces differ from the ones that shaped the genetic architecture
of the trait.

Materials and Methods
Phenotypic and genetic data were obtained from the UKB and may be
accessed by all bona fide researchers from the UKB Access Management Sys-
tem. Only data from samples of self-reported white-British ancestry over
the ages of 45 y for females and 50 y for men were used in all anal-
yses, unless otherwise noted. Phenotypic analyses were performed using
linear regression in R (57). Genetic correlations were calculated using LD-
score regression software according to the protocol developed in ref. 33.
Statistical significance was determined using Bonferroni-corrected P values
at a family-wise error rate of 0.05. The Northwest Multicentre Research
Ethics Committee approved the study and all participants in the UKB
study provided written informed consent. For detailed descriptions of the
data preparation and analyses, see SI Appendix, Supporting Materials and
Methods.
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