










parameters (46, 47) or by postmortem histology (48), but neither
approach clearly reveals the dynamic nature of endolymph vol-
ume. Another strength of this study is that a single blast exposure
created the trauma, permitting us to follow the time course of the
cochlear response. This is also a weakness, because blast trauma is
not necessarily comparable to a lower level of chronic noise ex-
posure like most people experience. Additionally, we did not de-
tect ABR improvements after treatment because the blast caused
more than just cochlear synaptopathy. It also caused variable de-
grees of mechanical damage that affected the traveling wave, as
demonstrated by our cochlear vibrometry measures. Therefore, we
do not believe that the wave 1 ABR amplitude is a meaningful way
to assess for cochlear synaptopathy in this mouse model, where
there is significant variability in cochlear mechanics. Nevertheless,
both blast and noise exposure produced endolymphatic hydrops.
Furthermore, as assessed by immunolabeling, the degree of syn-
aptopathy found after blast exposure was similar to that found with
common noise protocols (11, 49).

After loud noise exposure, it is common to experience a sense
of aural fullness, which is probably endolymphatic hydrops. Pre-
sumably, endolymphatic hydrops resolves as the mechanoelectrical
transduction apparatus recovers in surviving OHCs. It is reasonable
to assume that the period of endolymphatic hydrops defines the
optimal time frame for treatment to minimize long-term sequelae.
However, endolymphatic hydrops may simply be a surrogate marker
for swelling of the auditory nerve dendrites, and hyperosmotic
treatment shrinks both endolymph volume and dendrite volume. In
addition, the idea that some dendrites might not be lost, but just
temporarily swollen and dysfunctional, is important. Nevertheless, it
is clear that permanent cochlear synaptopathy also results (50–52).
Osmotically stabilizing the inner ear after noise exposure may offer
an important novel therapeutic approach to preserve function.
Blockade of damage pathways within the hair cells upstream of
synapse loss may also prevent synaptopathy. We show that treatment
is efficacious using a middle ear injection technique that is com-
monly used in the clinic and which could be used on the battlefield.

Fig. 5. Osmotic treatment of endolymphatic hydrops partially rescues synaptic ribbon loss after blast exposure. (A–C) Perilymph osmolality modulates en-
dolymph volume. Perfusion of hypotonic (A), normotonic (B), or hypertonic (C) artificial perilymph dynamically shifted the position of Reissner’s membrane
(arrowheads). This occurred rapidly (<3 min). (D) Simple model of noninvasive osmotic challenge via the round window membrane (RWM) to alter the volume
of endolymph and shift Reissner’s membrane (RM). Hypotonic solution applied to the middle ear causes endolymphatic hydrops, whereas hypertonic solution
reduces endolymphatic volume. (E–I) The application of solutions of varying osmotic loads into the middle ear adjacent to the round window modulates
endolymph volume. Representative OCT images were taken before and 30 min after applying the osmotic challenge. Hypotonic challenge (E) increased
endolymph volume, normotonic saline (F) caused no change in endolymph volume, and hypertonic challenges (G–I) decreased endolymph volume. (J and K)
Representative mice were treated with normotonic or hypertonic challenge 3 h after blast exposure. Repeat images were taken 30-min later. (L) Normotonic
artificial perilymph had no impact on posttraumatic endolymphatic hydrops, whereas hypertonic artificial perilymph normalized endolymphatic volume. (M–

O) The cochlear epithelium from representative mice 2 mo after blast exposure. Mice had either no treatment (M), normotonic artificial perilymph application
to the middle ear after the blast (N), or hypertonic artificial perilymph application to the middle ear after the blast (O). Immunolabeling was done to visualize
synaptic ribbons in hair cells (CtBP2), hair cells (myosin VIIa), and auditory neurons (Tuj1). (P–R) Quantification of OHC loss and synaptic ribbons per OHC and
IHC. Hypertonic artificial perilymph reduced the loss of synaptic ribbons but did not affect the degree of OHC loss. **P < 0.01, ***P < 0.001.
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Similarly, this approach may be an alternative treatment for
Meniere’s disease, in which endolymphatic hydrops causes episodic
vertigo, fluctuating hearing loss, and roaring tinnitus (21, 53–56),
and dramatically impacts a patient’s quality of life.

Materials and Methods
All details are fully described in SI Materials and Methods.

In Vivo OCT Imaging and Vibrometry. Under anesthesia, we surgically opened
left middle ear bulla to access the apical turn of the cochlea without dis-
turbing the otic capsule bone. The design of our OCT system has been
previously reported (20). All studies were carried out according to the pro-
tocols that were approved by the Institutional Animal Care and Use Com-
mittee at Stanford University (APLAC-23785).

Intracochlear Perilymphatic Perfusion. For “rapid” perfusion (Figs. 3 and 5 A–
C), the instillation rate was 50 μL/min over 3 min; for “slow” perfusion (Fig. 6
M–O), the instillation rate was 8 μL/min over 1 h. Hypotonic artificial peri-
lymph (294 mOsm/kg) was composed of 140 mM NaCl, 2 mM KCl, 2 mM
MgCl2, 2 mM CaCl2, and 20 mM Hepes. The osmolality of the perilymph was
increased as desired by adding additional Hepes to create normotonic
(304 mOsm/kg) and hypertonic (314 mOsm/kg) perilymph.

Application of Solutions to the Round Window Membrane. Normotonic saline
(304 mOsm/kg) was composed of 150mMNaCl and 20mMHepes. Hypertonic
saline (1,504 mOsm/kg) was composed of 800 mM NaCl and 20 mM Hepes.
Normotonic artificial perilymph (304 mOsm/kg) was composed of 140 mM
NaCl, 4 mM KCl, 2 mMMgCl2, 2 mM CaCl2, 10 mMHepes, and 10 mM glucose.
Hypertonic artificial perilymph (1,532 mOsm/kg) was created by adding
990 mM glucose to the normotonic artificial perilymph. Hypotonic saline or
artificial perilymph was simply distilled water (0 mOsm/kg). Other solutions
tested included glycerol (∼3,500 mOsm/kg) or 0.9% saline with glucose
added to create (1,434 mOsm/kg). For all solutions, the pH was adjusted to
7.4 and the osmolality was verified using a freezing pressure osmometer
(Advanced Instruments).

ABR and DPOAE Measurements. ABR potentials were measured with a bio-
amplifier (Tucker-Davis Technologies) using three needle electrodes posi-
tioned in the ventral surface of the tympanic bulla, the vertex of the skull, and
the hind leg (57).

DPOAEs were measured by a probe tip microphone in the external au-
ditory canal (57). We used the sound stimuli, two sine wave tones of dif-
fering frequencies (F2 = 1.2 × F1, F2: 4 ∼ 46 kHz), for eliciting DPOAEs.

Statistical Analysis. All statistical tests not specifically provided in the text are
listed in Table S1.

Fig. 6. Endolymphatic hydrops correlates with cochlear synaptopathy, but not loss of hair cells or cochlear amplification. (A–C) A representative control mouse
with a normal amount of endolymph had normal nonlinear vibratory responses measured from the BM and TM. (D–F) A representative mouse with endo-
lymphatic hydrops (arrowhead) induced by 2 h of noise exposure. Vibratory responses were linear, consistent with loss of cochlear amplification. (G–I) A rep-
resentative mouse with endolymphatic hydrops (arrowhead) induced by the application of hypotonic challenge to the middle ear. Vibratory responses for both
the BM and TM were normal. (J) The cochlear epithelium harvested from a mouse with endolymphatic hydrops induced by hypotonic challenge to the middle
ear. (K and L) Endolymphatic hydrops caused a loss of synaptic ribbons similar to that found after blast exposure. *P < 0.05, **P < 0.01, ***P < 0.001. (M–O) The
cochlear epithelium harvested from representative mice perfused for 1 h with 304 mOsm (M), 294 mOsm (N), or 294 mOsm + 100 μM CNQX (O) artificial
perilymph. Immunolabeling was done to visualize presynaptic ribbons in IHCs (CtBP2) and postsynaptic auditory nerve boutons (Homer). Colocalization of the
pre- and postsynaptic terminals is shown (Insets). (P) Hypotonic challenge reduced CtBP2 and Homer counts. Blocking glutamate with CNQX preserved both the
pre- and postsynaptic terminals. *P < 0.05; ns, not significant. (Q) Hypotonic challenge reduced the rate of CtBP2 and Homer colocalization; this effect was also
inhibited with CNQX. (R) Flowchart detailing our postulated pathophysiological sequence of cochlear damage after blast exposure. The colored text reflects pre-
viously published findings [blue (4, 5), violet (6–8)]. Hypertonic challenge blocks both endolymphatic hydrops and swelling of the synaptic boutons (red arrows).
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