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Proteomics holds great promise for understanding human physi-
ology, developing health biomarkers, and precision medicine.
However, how much the plasma proteome varies with time of day
and is regulated by themaster circadian suprachiasmatic nucleus brain
clock, assessed here by the melatonin rhythm, is largely unknown.
Here, we assessed 24-h time-of-day patterns of human plasma
proteins in six healthy men during daytime food intake and nighttime
sleep in phase with the endogenous circadian clock (i.e., circadian
alignment) versus daytime sleep and nighttime food intake out of
phase with the endogenous circadian clock (i.e., circadian misalign-
ment induced by simulated nightshift work). We identified 24-h time-
of-day patterns in 573 of 1,129 proteins analyzed, with 30 proteins
showing strong regulation by the circadian cycle. Relative to circadian
alignment, the average abundance and/or 24-h time-of-day patterns
of 127 proteins were altered during circadian misalignment. Altered
proteins were associated with biological pathways involved in immune
function, metabolism, and cancer. Of the 30 circadian-regulated pro-
teins, the majority peaked between 1400 hours and 2100 hours, and
these 30 proteins were associated with basic pathways involved in
extracellular matrix organization, tyrosine kinase signaling, and signal-
ing by receptor tyrosine-protein kinase erbB-2. Furthermore, circadian
misalignment altered multiple proteins known to regulate glucose
homeostasis and/or energy metabolism, with implications for altered
metabolic physiology. Our findings demonstrate the circadian clock, the
behavioral wake–sleep/food intake–fasting cycle, and interactions be-
tween these processes regulate 24-h time-of-day patterns of human
plasma proteins and help identify mechanisms of circadian misalign-
ment that may contribute to metabolic dysregulation.
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The circadian system regulates ∼24-h physiological cycles. At
the cellular level, core clock genes generate circadian

rhythms through self-sustained transcriptional translational
feedback loops (1, 2), and self-sustained metabolic oscillations
are also reported to contribute to circadian rhythmicity (3, 4). In
mammals, the environmental light–dark cycle is the primary
synchronizer of the master clock located in the suprachiasmatic
nucleus (SCN) (2, 5), and this SCN clock drives rhythms in
hormones, body temperature, and food intake, all of which in
turn can synchronize peripheral clocks in tissues such as the liver,
muscle, adipose tissue, pancreas, and brain regions outside the
SCN (6). In humans, the circadian system promotes wakefulness,
physical activity, and food intake during the biological day and
sleep, physical inactivity, and fasting during the biological night
(7). Circadian misalignment in humans often occurs when 24-h
behavioral cycles (e.g., sleep–wake/fasting–food intake) are
misaligned with the timing of the endogenous master circadian
SCN clock. Thus, by definition, during circadian misalignment
behavioral processes such as food intake or sleep occur at in-
appropriate endogenous circadian times. Worldwide, ∼20% of
people in the workforce are shift workers and therefore work and

eat during hours typically reserved for sleep. Circadian mis-
alignment is prevalent among shift workers as they undergo abrupt
changes in their behavioral cycles (8, 9). In nocturnal rodents,
findings show such behaviorally induced circadian misalignment
results in metabolic disease (10–12). Furthermore, epidemiologi-
cal findings show shift work is associated with elevated metabolic
disease risk (13, 14), and findings from controlled laboratory
studies indicate circadian misalignment contributes to metabolic
dysregulation (15), including reduced insulin sensitivity (16–18),
reduced glucose tolerance (19), and risk of weight gain (20).
Findings from studies in mice suggest the circadian system

regulates thousands of protein-coding genes (21, 22), and up to
half of these proteins are regulated in an organ-specific manner
(23–25). Furthermore, findings show many phosphoproteins (26)
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and nuclear proteins (27) in mouse liver exhibit diurnal rhythms.
The rhythmicity of the human whole-blood transcriptome was
investigated in two studies, and findings indicated ∼6–9% of
transcripts assessed had ∼24-h rhythmicity under circadian-
aligned conditions at the 5% false discovery rate (FDR) level
(28, 29). However, during circadian misalignment, 97% of these
transcripts were arrhythmic (28) using a 5% FDR, suggesting
many rhythmic transcripts under circadian alignment are regu-
lated, in part, by the behavioral cycle. Moreover, many rate-
limiting steps in metabolic pathways implicated in metabolic
disease are under circadian regulation (22, 28), further implicating
circadian misalignment in metabolic dysregulation. Whether such
changes in gene expression result in changes in protein levels re-
mains to be determined. Here we studied 24-h time-of-day pat-
terns of the plasma proteome, which includes proteins derived
from circulating cells, the endothelium, and most peripheral tis-
sues and therefore reflects a broad range of physiological pro-
cesses and states (30, 31). As most studies to date have examined
the human plasma proteome at only a few or one time of day, a
primary aim of the current effort was to examine changes in the
proteome across the 24-h day and assess the contribution of the
circadian versus the behavioral cycle in 24-h time-of-day patterns
in protein levels. We also aimed to examine alterations in protein
levels during circadian misalignment induced by simulated night-
shift work (20) that may contribute to altered physiological func-
tion (Fig. 1A).

Results
Circadian Timing and Total Sleep Time. In humans, the biological day
and night are defined by low and high melatonin levels, respectively
(32). As reported previously in a larger sample from this study (20),
timing of the biological day and night as measured by the endog-
enous melatonin rhythm was similar (Fig. 1B) between circadian
alignment (study day 2; daytime wakefulness and food intake with
nighttime sleep) and circadian misalignment (study day 4; night-
time wakefulness and food intake with daytime sleep). Further-
more, total sleep time was lower (P < 0.05) during circadian
misalignment (6 h 38 min ± 13 min) versus circadian alignment
(7 h 19 min ± 10 min) in the current subsample.

Proteins That Increased or Decreased During Circadian Misalignment.
Using Significance Analysis of Microarray (SAM) (33), we found
that 62 of the 1,129 proteins analyzed had increased or decreased
average 24-h plasma levels during circadian misalignment versus
alignment at the 10% FDR level. Of these 62 proteins, the levels of
38 were increased, and the levels of 24 were decreased during
circadian misalignment versus alignment. Gene Ontology (GO;
DAVID v6.8) (34, 35) analyses identified multiple biological pro-
cesses, including response to cytokines, erythrocyte differentiation,
peptide hormone processing, and cell adhesion, associated with
these increased or decreased proteins (Fig. 2 A and B). Pathways
associated with proteins that increased during circadian mis-
alignment include multiple pathways linked to PI3K subunit alpha
isoform signaling, signaling by receptor tyrosine kinases, and sig-
naling by interleukins (Fig. 2C). PI3K signaling is a key component
of the insulin-signaling pathway, and aberrant PI3K signaling is
reported to be implicated in cancer. Pathways associated with
proteins that decreased during circadian misalignment include
multiple pathways linked to antigen presentation and processing
and IFN signaling (Fig. 2D). As IFNs are known to increase an-
tigen presentation (36), these findings suggest the adaptive immune
system may be altered during circadian misalignment. Follow-up
studies are required to specifically investigate the impact of circa-
dian misalignment on PI3K, interleukin signaling, and the adaptive
immune system in humans.

Proteins with 24-H Time-of-Day Patterns and with Alterations During
Circadian Misalignment. Proteins were assessed for 24-h time-of-
day patterns when circadian aligned and misaligned using the R
package MetaCycle (37) and by fitting mixed-effects models with
a cubic time component (SI Appendix). Resulting P values from

these analyses for the circadian alignment and misalignment days
were combined using the minP method (38) and were considered
statistically significant at P < 0.05 and 10% FDR level. We used
multiple approaches for this analysis, as biological rhythms are
not expected to all fit one single model of rhythmicity (39).
Supporting this concept, the results of these two approaches
overlapped for just 40 of the 573 proteins that met the statistical
significance criteria on at least one of the circadian alignment or
misalignment study days (Dataset S1). This indicates that the
majority of proteins with a significant 24-h time-of-day pattern
were detected by only one of these algorithms. The mixed-effects
cubic model detected more proteins with 24-h time-of-day pat-
terns when circadian aligned (391 proteins) versus misaligned
(107 proteins), whereas MetaCycle detected fewer proteins with
24-h time-of-day patterns when aligned (24 proteins) versus
misaligned (202 proteins) at the P < 0.05 level (SI Appendix, Figs.
S8 and S9). These 573 proteins were further analyzed for dif-
ferential 24-h time-of-day patterns between circadian alignment
and misalignment using the Extraction of Differential Gene
Expression (EDGE) (40) and Detection of Differential Rhyth-
micity (DODR) R packages (41). Resulting DODR and EDGE
P values were corrected for multiple comparisons (SI Appendix);
and at the corrected P < 0.05 significance level EDGE detected
27 proteins and DODR detected 55 proteins with significantly
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Fig. 1. Protocol and circadian melatonin timing (n = 6). (A) In-laboratory
protocol with time of day plotted as relative clock hour with scheduled
waketime arbitrarily assigned a value of 0800 h and all other times refer-
enced to this. The open rectangle represents room light (<40 lx), black
rectangles represent scheduled sleep, and gray rectangles represent sched-
uled wakefulness in dim light (<1 lx). On study day 2 subjects were circadian
aligned, and on study day 4 subjects were circadian misaligned. Red circles
represent the timing of blood collection for proteomics analyses. B, break-
fast; D, dinner; L, lunch; S, snack. (B) Melatonin levels during circadian
alignment (black line) and misalignment (red line). Gray shading represents
the average fitted melatonin values across circadian alignment and mis-
alignment conditions. Black- and red-outlined rectangles represent sched-
uled sleep opportunities during circadian alignment (habitual sleep) and
circadian misalignment (daytime sleep), respectively. Data are mean ± SEM.
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different 24-h time-of-day patterns during circadian mis-
alignment versus alignment. As six proteins overlapped between
EDGE and DODR outcomes, we identified 76 total proteins with
significantly different 24-h time-of-day patterns between circadian
misalignment and alignment (Fig. 3 and Dataset S1). Hierarchical
cluster analyses were used to assess 24-h time-of-day patterns for
these 76 proteins. At the P < 0.05 level, we identified seven sta-
tistically significant clusters (Fig. 3 and SI Appendix, Fig. S1). GO
analyses identified biological processes associated with each clus-
ter (Fig. 3). Cluster 1, consisting of five proteins, peaked in the
biological night during scheduled sleep when circadian aligned; in

general, this peak was lost when circadian misaligned (Fig. 3A).
Cluster 2, consisting of five proteins, peaked during scheduled
sleep when both circadian aligned and misaligned (Fig. 3B). While
clusters 1 and 2 were not associated with any specific biological
processes, insulin-like growth factor-binding proteins (IGFBPs)
4 and 7 were in clusters 1 and 2, respectively; a detailed dis-
cussion of the IGFBPs as they relate to metabolism is shown in
SI Appendix, Fig. S2. Similar to the pattern for cluster 2, cluster
3, consisting of nine proteins, was lowest during scheduled
wakefulness and peaked during scheduled sleep when both cir-
cadian aligned and misaligned (Fig. 3C). Cluster 3 was associated
with multiple biological processes related to cellular catabolic
process. The specific definition of the term with the lowest P
value, negative regulation of cellular catabolic process, is any
process that stops, prevents, or reduces the frequency, rate, or
extent of the chemical reactions and pathways resulting in the
breakdown of substances, carried out by individual cells. Our
findings that clusters 2 and 3 peaked during scheduled sleep
when both circadian aligned and misaligned suggest that the
behavioral sleep–wake/fasting–food intake cycle strongly regu-
lates these proteins and related biological processes, including
reducing cellular catabolism. Cluster 4, consisting of eight
proteins, peaked in the biological night during scheduled sleep
when circadian aligned, and levels were high over the 24 h when
circadian misaligned (Fig. 3D). Cluster 4 was not associated with
any biological processes. Cluster 5, consisting of 23 proteins,
peaked during the middle of scheduled wakefulness when cir-
cadian aligned, and this peak was delayed when circadian mis-
aligned (Fig. 3E). Cluster 5 was associated with biological
processes related to inflammatory response and response to ex-
ternal stimuli. The term response to external stimuli is a broad
GO term defined as any process that results in a change in state
or activity of a cell or an organism as a result of an external
stimulus. As such, proteins that respond to the external envi-
ronment may be expected to change with the altered behavioral
cycle in our protocol. These findings also suggest some in-
flammatory processes, notably acute inflammation, may be under
regulation by the behavioral sleep–wake/fasting–food intake cy-
cle. Cluster 6, consisting of 10 proteins, peaked during scheduled
wakefulness when circadian aligned, and this peak was lost when
circadian misaligned (Fig. 3F). Cluster 6 was associated with the
biological process creatine metabolic response. Cluster 7, con-
sisting of 13 proteins, peaked during the biological daytime fol-
lowing scheduled sleep when circadian aligned, and this peak was
lost when circadian misaligned (Fig. 3G). Cluster 7 was associ-
ated with biological processes related to defense response and
responses to external biotic stimuli/stress.
Overall, proteins that gained or lost 24-h time-of-day patterns

when circadian misaligned, such as those in clusters 4, 6, and 7, are
likely regulated by an interaction between circadian and behav-
ioral sleep–wake/fasting–food intake cycles. For example, thyroid-
stimulating hormone (TSH) from cluster 4 has well-established
regulation by sleep and circadian rhythms (42). Specifically,
TSH is circadian regulated and peaks during the biological night,
whereas sleep has an inhibitory effect that reduces TSH levels
(42). Consistent with previous findings (42), here, TSH levels
peaked in the biological night during both circadian alignment and
misalignment (SI Appendix, Fig. S3A). During circadian alignment,
when sleep occurred during the biological night and therefore was
expected to blunt the circadian-driven TSH peak, raw TSH levels
in relative florescence units (RFU) were ∼10.0% lower versus
circadian misalignment with daytime sleep, although this reduc-
tion was not statistically significant (P = 0.25). Additionally, the
reduction in total sleep time that occurs during circadian mis-
alignment may have also contributed to the gain or loss of 24-h
time-of-day patterns and to changes in average 24-h levels.

Proteins Primarily Regulated by the Circadian Clock. As the master
human circadian clock did not adapt rapidly to the simulated
nightshift schedule in dim light, strongly circadian-regulated
proteins remain, by definition, synchronized to the endogenous
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Fig. 2. Proteins increased and decreased during circadian misalignment (n =
6) as identified with two-way ANOVA. (A) GO biological processes associated
with proteins with increased protein levels when circadian misaligned versus
circadian aligned. (B) GO biological processes associated with proteins with
decreased protein levels when circadian misaligned versus aligned. (C)
Pathways associated with proteins with increased protein levels when cir-
cadian misaligned versus aligned. (D) Pathways associated with proteins with
decreased protein levels when circadian misaligned versus aligned. Bi-
ological processes and pathways are ranked by P value. Enriched biological
processes and pathways were nominally statistically significant at the P <
0.05 level.
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master circadian SCN clock. To identify strongly circadian-
regulated proteins, we first selected proteins with statistically
significant (P < 0.05, 15% FDR level) 24-h time-of-day patterns
during both circadian alignment and misalignment days based on
the MetaCycle and the mixed-effects models noted above. Fifty-
seven proteins met these criteria. Next, we used MetaCycle to
estimate the phase of these 57 proteins when circadian aligned
and misaligned (SI Appendix). As strongly circadian-regulated
proteins remain synchronized to the master circadian SCN
clock, given our limited sampling frequency of 4 h, only proteins
with less than a 4-h difference in phase estimate (peak abun-
dance) when circadian aligned versus misaligned were defined
here as strongly circadian regulated. The difference in phase
estimates during circadian alignment versus misalignment
is <0.5 h for three proteins, <1.0 h for seven proteins, <2.0 h for
12 proteins, <3.0 h for 21 proteins, and <4.0 h for 30 proteins
(Dataset S1). Depending on the difference in phase-estimate
cutoff used, up to 30 proteins meet our criteria (Fig. 4 and SI
Appendix, Fig. S4) for being strongly circadian regulated. The
average phase difference (±SEM) between circadian alignment
and misalignment of these 30 strongly circadian-regulated pro-
teins is 2.2 h ± 0.2 h. Of these 30 circadian-regulated proteins,
23 have not previously been identified as being circadian regu-
lated (Dataset S1), and previous findings suggest two of the
circadian-regulated proteins, Lamin-B1 (43) and cyclin-
dependent kinase-5 (44), interact with the molecular circadian
clock and more specifically that cyclin-dependent kinase-5 can
phosphorylate the CLOCK protein (44). When circadian
aligned, 20 of these 30 circadian-regulated proteins peaked be-
tween 1400 h and 1900 h (relative clock hour), and, similarly,
when circadian misaligned, 19 of these 30 circadian-regulated
proteins peaked between 1400 h and 2100 h (Fig. 4 A and B).
However, the phase of these 30 circadian-regulated proteins was
more spread out across the day when circadian misaligned than
when aligned (Fig. 4 A and B). As noted, the latter analysis is
limited by our sampling rate, and future protocols with more
frequent sampling rates are needed to verify the circadian regula-
tion of these proteins. GO analyses using the 30 circadian-regulated
proteins identified several associated biological processes, including
serine phosphorylation of STAT3 protein, taxis, cell chemotaxis,
response to follicle-stimulating hormone, regulation of response to

stimulus, and response to gonadotropin (Fig. 4C). In general, the
biological processes associated with these circadian-regulated
proteins do not overlap with specific biological processes asso-
ciated with proteins that showed either increased or decreased
levels (Fig. 2 A and B) or with the clusters of proteins with al-
tered 24-h time-of-day patterns (Fig. 3). The biological process
terms positive chemotaxis, macrophage chemotaxis, neutrophil
chemotaxis, and positive regulation of monocyte chemotaxis
were all associated with proteins whose levels were decreased
when circadian misaligned versus aligned (Fig. 2B), and these
biological processes are child terms of taxis, chemotaxis, and cell
chemotaxis that are associated with the 30 circadian-regulated
proteins (Fig. 4C). While these biological processes are related,
the terms associated with proteins whose levels decreased are
more specific to inflammatory cells or positive chemotaxis,
whereas the terms associated with the circadian-regulated pro-
teins are broad taxis terms. Similarly, the biological process
terms response to external stimuli and response to external biotic
stimuli are associated with proteins in clusters 5 and 7, respectively
(Fig. 3 E and G), and these are child terms of cellular response to
stimulus that is associated with the 30 circadian-regulated pro-
teins (Fig. 4C). These findings support the concept that some
biological processes are likely regulated by an interaction between
the circadian and behavioral cycles. Fig. 4D presents the top
10 pathways (ranked by P value) associated with the 30 circadian-
regulated proteins. Similar to the biological processes, only one
pathway associated with circadian-regulated proteins, signaling
by receptor tyrosine kinases, overlapped with pathways associ-
ated with altered proteins when circadian misaligned versus
aligned. Six of the top 10 pathways are related to the extracel-
lular matrix (ECM): crosslinking of collagen fibrils, anchoring
fibril formation, laminin interactions, integrin cell-surface in-
teractions, nonintegrin membrane ECM interactions, and ECM
proteoglycans; thus our findings suggest a potential role of the
circadian clock in regulating the ECM. Previous findings derived
from mouse macrophages also suggest a role of the circadian
clock in regulating ECM homeostasis (45), representing a po-
tential link between the circadian clock and the immune system.
Outside the top 10 pathways ranked by P value, the 14th pathway
associated with circadian-regulated proteins is G2/M DNA damage
checkpoint (P = 0.0002), and this is consistent with prior findings
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suggesting the cell cycle and circadian cycle are coupled (46).
Overall, desynchronization between these strongly circadian-
regulated proteins and the behavioral cycle may contribute
to physiological dysregulation associated with circadian
misalignment.

Targeted Data Analyses on Proteins and Physiological Outcomes
Implicated in Metabolic Function. Subjects consumed identical
breakfast meals 1.5 h after the scheduled waketime following >10-h
fasts on study days 2 and 4 (Fig. 1A). Based on findings from our
group (18) and others (19), we hypothesized the postprandial
glucose and insulin responses to the breakfast would be elevated
during circadian misalignment versus alignment. Before breakfast,
fasting plasma glucose and insulin were similar during circadian
misalignment versus alignment (Fig. 5 A and B), whereas glucose
levels at 60 min and 90 min postbreakfast were ∼26% and ∼68%
higher, respectively, (all P < 0.05) when circadian misaligned versus

aligned (Fig. 5A). Furthermore, insulin levels were ∼172% higher
(P < 0.05) at 90 min postbreakfast during circadian misalignment
versus alignment (Fig. 5B). Collectively, these changes suggest that
circadian misalignment results in lower glucose tolerance and im-
paired insulin sensitivity, as is consistent with prior findings of
disrupted glucose metabolism during circadian misalignment (16,
47). No statistically significant differences in blood glucose and in-
sulin responses to lunch and dinner meals were detected (SI Ap-
pendix, Fig. S5 A–D). Follow-up studies using more sensitive
metabolic tests (e.g., glucose tolerance tests and hyperinsulinemic/
euglycemic clamps) are needed to examine insulin sensitivity dur-
ing circadian misalignment.
We next examined proteins involved in glucose metabolism:

insulin (SI Appendix, Fig. S5F), glucagon (Fig. 5C), ectonucleo-
side triphosphate diphosphohydrolase 5 (ENTP5) (Fig. 5D),
lipocalin-2 (SI Appendix, Fig. S6A), kallikrein-7 (SI Appendix, Fig.
S6B), adiponectin (SI Appendix, Fig. S6C), phosphatidylinositol
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4,5-bisphosphate 3-kinase catalytic subunit alpha isoform (SI
Appendix, Fig. S6D), erythropoietin (SI Appendix, Fig. S6E),
FGF receptor 4 (FGFR4) (SI Appendix, Fig. S6F), hepcidin (SI
Appendix, Fig. S6G), insulin-like growth factor-1 (SI Appendix,
Fig. S2A), and IGFBPs 1–7 (SI Appendix, Fig. S2 B–H).
In response to low blood glucose, pancreatic alpha cells nor-

mally secrete glucagon, leading to increased hepatic glucose
production. However, excess glucagon is a key factor contribut-
ing to diabetes risk (48) and therefore must be tightly regulated.
Findings from studies of nocturnal rodents show a day/night
rhythm of plasma glucagon with regulation by the master SCN
clock and the behavioral food-intake cycle (49). Here, plasma
glucagon had significantly different 24-h time-of-day patterns
when circadian misaligned versus aligned (Fig. 5C), showing
plasma glucagon is strongly regulated by the behavioral cycle in
humans. Furthermore, glucagon levels were increased when food
intake occurred during the biological night. Related, previous
findings show human pancreatic alpha cells express melatonin
receptor MT1, and exogenous melatonin stimulates glucagon
secretion in perfused human islets (50). Thus, food intake during
the biological night when melatonin levels are elevated may
contribute to higher plasma glucagon levels and dysregulated
glucose metabolism in humans. In addition to directly regulating
glucose metabolism, findings from animal studies suggest glu-
cagon regulates hepatic circadian clock timing (10, 51, 52). Thus,
in humans the elevated plasma glucagon when eating during the
biological night may contribute to misalignment between the
master SCN clock and peripheral liver clocks. Collectively, these
findings indicate future studies should investigate the impact of
circadian misalignment on glucagon regulation in chronic shift
workers. Metformin, the drug most widely used to manage type
2 diabetes, targets glucagon regulation of hepatic glucose output
(53), and thus if our findings translate to chronic shift workers,
future trials investigating the use of metformin in chronic shift
workers with risk factors for diabetes may be warranted.
ENTP5 is an endoplasmic reticulum enzyme reportedly up-

regulated by protein kinase B (AKT) activation and is a key
component of an ATP hydrolysis cycle that elevates AMP levels
(54). Previous findings show elevated ENTP5 promotes glycol-
ysis, likely through AMP allosteric activation of the glycolytic
enzyme phosphofructokinase (54). Our findings show plasma
ENTP5 had significantly different 24-h time-of-day patterns
when circadian misaligned versus aligned (Fig. 5D), indicating
ENTP5 is strongly regulated by the behavioral cycle. Thus,
changes in the 24-h time-of-day pattern of ENTP5 may con-
tribute to altered glucose metabolism during circadian mis-
alignment; investigation in future studies is warranted.
We next examined proteins involved in energy expenditure, as

total daily energy expenditure was ∼185 ± 94.9 kJ lower (Fig. 6A)
and per-minute sleeping energy expenditure was 10% lower (Fig.
6B) (all P < 0.05) when circadian misaligned versus aligned, as is
consistent with our previously reported findings from the larger
sample from this study (20). FGF-19 (Fig. 6C) and creatine kinase
(CK) M-type (CK-MM) (Fig. 6E), the CK M-B heterodimer (CK-
MB) (Fig. 6F), and CK B-type (CK-BB) (Fig. 6G) levels were
significantly altered when circadian misaligned. Transgenic mice
overexpressing FGF-15, the mouse ortholog of human FGF-19,
have elevated energy expenditure, weigh less than their wild-type
littermates, and remain lean when fed high-fat diets (55). Fur-
thermore, administration of recombinant FGF-19 increases energy
expenditure and protects mice from high-fat diet–induced weight
gain (56). We hypothesized that FGF-19 levels would therefore be
lower in the current study during sleep versus wakefulness and
when sleep occurred during the biological day versus the biological
night. Plasma FGF-19 showed significantly different 24-h time-of-
day patterns when circadian misaligned versus aligned (Fig. 6C),
such that, in parallel to lower daytime sleeping energy expenditure
when circadian misaligned (Fig. 6 A and B), plasma FGF-19 was
∼34% lower (P < 0.05) during the approximate midpoint of sleep
during circadian misalignment (daytime sleep) versus alignment
(nighttime sleep) (Fig. 6C). Additionally, across both circadian

alignment and misalignment, higher FGF-19 protein levels were
associated (P < 0.001) with higher hourly energy expenditure (Fig.
6D). FGFR4, the primary FGF-19 receptor, levels were similar
during circadian misalignment and alignment (SI Appendix, Fig.
S6F), suggesting changes in FGF-19 signaling are not due to al-
tered FGFR4 levels. Collectively, these findings suggest altered
FGF-19 protein levels may contribute to lower sleeping and total
daily energy expenditure during circadian misalignment, elevating
the risk of weight gain (20).
CK is a critical enzymatic component of the CK/phosphocrea-

tine system responsible for connecting subcellular sites of ATP
production (mitochondria and glycolysis) with sites of ATP utili-
zation (ATPases) (57). Our findings show CK-MM and CK-MB
had significantly different 24-h time-of-day patterns when circadian
misaligned versus aligned (Fig. 6 E and F). Based on results from
individual mixed-model ANOVAs for each CK isoform, only CK-
BB had a statistically significant (P < 0.05) effect of study day, with
a small effect size (η2G = 0.10) (Fig. 6G). Further highlighting the
changes in CK during circadian misalignment, creatine metabolic
response is the biological process associated with cluster 6 (Fig.
3F). As such, altered levels of the CK isoforms during circadian
misalignment may contribute to our finding of reduced energy
expenditure. However, unlike FGF-19, across all time points, levels
of all CK isoforms analyzed were not associated (all P ≥ 0.60) with
hourly energy expenditure. Findings for additional metabolic pro-
teins are provided in SI Appendix, Fig. S6.

Discussion
Our findings identify human plasma proteins that are regulated
across the 24-h day by the endogenous circadian SCN clock,
by the behavioral sleep–wake/fasting–food intake cycle, and by
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Fig. 5. Effects of circadian misalignment on glucose homeostasis and as-
sociated proteins (n = 6). (A and B) Postprandial plasma glucose (study day,
P = 0.01; study day × time, P = 0.00003; mixed-model ANOVA) (A) and
postprandial plasma insulin (study day × time, P = 0.02; mixed-model
ANOVA) (B) following fixed breakfast meals. White rectangles represent
the time (30 min) allocated to ingest the breakfast meal. (C) Plasma gluca-
gon measured from the proteomics platform. (D) Plasma ENTP5 measured
from the proteomics platform. Gray shading and black and red boxes and
lines are as in Fig. 1. *P < 0.05 versus circadian alignment at same time point
for glucose and insulin (one-tailed t test). Glucagon (EDGE; FDR = 0.002) and
ENTP5 (EDGE; FDR = 0.002) have significantly different 24-h time-of-day
patterns when circadian misaligned versus aligned. Data are mean ± SEM.
The difference from mean (DFM) was calculated for each subject individually
using the grand mean of all samples within each individual subject. Data for
relative clock hour 0900 are as in Fig. 3.
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interactions between the circadian and behavioral cycles. Un-
derstanding such regulation is critical for the development of
health and disease biomarkers, precision medicine, and bio-
markers of circadian misalignment. Our findings also show that
acute circadian misalignment, induced by simulated nightshift
work, can have rapid and wide-reaching impacts on 24-h time-of-
day protein patterns and protein levels. Overall, 62 proteins had
altered 24-h average levels, and 76 had altered 24-h time-of-day
patterns with 11 proteins overlapping between these two cate-
gories, resulting in 127 total proteins being altered during cir-
cadian misalignment. Disease processes associated with these
altered proteins, such as heart disease and cancer, are commonly
found in shift workers (SI Appendix, Fig. S7). Our protocol was
designed to simulate shift work and the associated circadian
misalignment. Similar to shift workers in the real world, our
subjects had less total sleep time during circadian misalignment
versus circadian alignment, and thus reduced total sleep time
may contribute to our findings. Additionally, as the timing of
food intake and the sleep–wake cycle were altered in parallel, we
cannot separate the effects of mistimed food intake versus mis-
timed sleep or interactions between the two on our outcomes.
Circadian misalignment impacted proteins implicated in glucose

and energy metabolism and in immune and other basic physiolog-
ical functions. Previous findings consistently show glucose tolerance
decreases across the 24-h day and is under circadian regulation (47,
58). Here, since the endogenous circadian SCN clock did not
change across study days, subjects consumed breakfast at a later
circadian time during circadian misalignment versus alignment. The
majority of cycling metabolic proteins in our analyses showed reg-
ulation by the behavioral sleep–wake/fasting–food intake cycle.
From an evolutionary perspective, humans developed under con-
ditions of intermittent food availability, and under such conditions it
is likely advantageous for our metabolic physiology to adapt rapidly
to periods of food intake and fasting (59), as is consistent with our
findings showing behavioral cycle regulation of many key metabolic
proteins such as glucagon and peptide YY (SI Appendix, Fig. S3B).
Alternatively, many of the proteins we identify as strongly circadian
regulated are involved in immune and blood coagulation functions.
Our findings are consistent with prior human transcriptomics find-
ings suggesting transcripts that are robustly rhythmic and are
unaffected by circadian misalignment are related to intrinsic blood-
specific functions (28). Importantly, our current findings identify
some immune- and inflammatory-related proteins that appear to be
regulated by the circadian cycle and some that appear to be regu-
lated by the behavioral cycle. Thus, circadian misalignment disrupts
the normal phase relationship in these two groups of immune- and
inflammatory-related proteins. Findings are also consistent with the
idea that both sleep and circadian rhythms influence immune
function (60–62).
Since messenger RNA expression does not always predict protein

abundance, our proteomics assessment in humans more closely re-
flects functional physiological changes during circadian mis-
alignment, building on previous transcriptomics findings (21, 28, 29)
and highlighting the need for cross-omics studies. In general, we
cannot identify the specific tissue of origin for the plasma proteins
we analyzed, as most of the proteins are expressed in multiple tis-
sues. In some cases, such as glucagon being produced in pancreatic
alpha cells, we can identify the tissue of origin. It is well established
that peripheral tissues have local circadian clocks, and 24-h time-of-
day patterns are likely regulated locally within tissues by tissue-
specific clocks to varying degrees. Findings from nocturnal rodent
models show clocks in peripheral tissues have different rates of re-
entrainment to phase shifts (63, 64), with mice requiring 8 d to fully
re-entrain to a 6-h phase advance (63). Different rates of re-
entrainment between peripheral tissues disrupt the normal phase
relationships between tissues during circadian misalignment. Poten-
tially, some of the differential changes in 24-h time-of-day patterns
reported here represent desynchrony between clocks in peripheral
tissues. Since the endogenous SCN circadian clock did not change
during circadian misalignment in our study, strongly behaviorally
driven metabolic protein hormones were out of phase with the

master SCN clock and potentially were out of phase with proteins
regulated by clocks in other peripheral tissues. During shift-work
schedules, chronic recurrent internal desynchronization between
peripheral tissue clocks and misalignment between the circadian and
behavioral cycle likely contribute to the risk of disease.
Our findings have implications for studying the plasma proteome,

indicating that future human proteomics studies should account for
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circadian- and behavioral cycle-regulated time-of-day changes in
protein levels. Such knowledge is especially important for de-
veloping biomarkers of overall sleep health and circadian mis-
alignment and alignment and for identifying therapeutic targets in
the era of precision medicine, especially for shift workers, patients
with circadian rhythm sleep–wake disorders, and others with circa-
dian disruption. More specifically, our findings suggest studies
sampling at one or a few times per day may miss the peak timing of
many proteins and important mechanistic changes underlying
physiology, disease risk, or treatment responses. A key strength of
our study design is that we utilized a sample of extensively screened
and phenotyped healthy subjects in a highly controlled laboratory
trial. However, follow-up studies investigating populations with
chronic circadian misalignment, including shift workers, those with
circadian rhythm sleep–wake disorders, and those with chronic sleep
loss (18), targeting a larger number of known proteins as the
technology develops, and including men and women, are needed, as
the current study included only a small sample of healthy men. A
related issue is that our sample size likely results in detecting the
largest effects, and thus we may underestimate the number of al-
tered proteins or proteins with 24-h time-of-day patterns. Future
trials using protocols such as the constant routine with more fre-
quent sampling rates will be needed to precisely determine the
circadian amplitude and phase of the detected circadian-driven
proteins reported here. The human circadian system regulates the
timing of behavioral and physiological events across the 24-h day.
Our findings highlight that the human plasma proteome is impacted
by the behavioral and circadian cycles and by interactions between
these two processes. These findings suggest that under circadian-
entrained conditions when the circadian clock promotes the oc-
currence of behaviors such as food intake, physical activity, and
sleep at optimal internal biological times, the composition of the
human plasma proteome promotes healthy physiological function.
Overall, greater precision and knowledge focused on the timing of
assessing omics health biomarkers is likely to improve our un-
derstanding of healthy physiology and disease processes and the
specificity of personalized medicine.

Materials and Methods
Subjects. The current analyses utilized all themale subjects from a larger dataset
in which subjects completed a 6-d in-laboratory protocol simulating nightshift
work (20). In the larger dataset of 14 subjects, females (n = 8) were studied
under different menstrual cycle phases, and thus we chose to study males (n =
6) for this initial analysis. Plasma from six healthy young males aged 26.2 ± 5.6 y
(mean ± SD), with a normal body mass index (BMI) (22.5 ± 1.6), percent body fat
(21.2 ± 5.1), and fasting blood glucose (82.8 ± 3.7 mg/dL) was analyzed using
proteomics. Procedures were approved by the scientific and advisory review
committee of the Colorado Clinical and Translational Sciences Institute, the
Colorado Multiple Institutional Review Board (IRB), and the University of Col-
orado Boulder IRB. After providing written informed consent, subjects un-
derwent health screening consisting of medical, psychological, and sleep
histories, a semistructured clinical psychiatric interview, a physical examination,
a complete blood cell count and a comprehensive metabolic panel, urine tox-
icology, a 12-lead electrocardiogram, and a polysomnographic sleep disorders
screen (20). Based on these tests, subjects were deemed free of medical and
psychological disorders. Inclusion criteria were age 18–39 y; BMI 18.5–24.9;
habitual nightly sleep duration >7 h and <9.25 h; low to moderate caffeine use
(<500 mg/d); average alcohol use (fewer than two drinks per day and fewer
than five drinks per week), and nonsmokers (20). Exclusion criteria were current
or chronic medical/psychiatric conditions; working a shift-work schedule,
dwelling below the Denver altitude (1,600 m above sea level) in the year
before study, travel across more than one time zone in the 3 wk before study,
recent self-reported weight loss, and a positive urine toxicology screen (20).

Protocol. Subjects were minimally physically active before the in-laboratory
segment of the study to reduce the effects of detraining. For 1 wk before
admission to the University of Colorado Hospital Clinical Translational Research
Center (CTRC), subjects discontinueduse of caffeine, alcohol, nicotine, and over-
the-counter medication and maintained a consistent ∼8 h per night sleep
schedule based on habitual sleep and circadian timing (20). Sleep timing was
verified via wrist actigraphy with light-exposure monitoring (Actiwatch-L;
MiniMitter/Respironics), sleep logs, and call-ins to a time-stamped voice re-
corder to report sleep and wakefulness times. Urine toxicology screen and

breath alcohol assessments (model FC10; Lifeloc Technologies) verified the
drug- and alcohol-free status of subjects upon CTRC admission. Three days
before CTRC admission, exercise was proscribed, and subjects were provided a
3-d outpatient diet designed to meet individual daily caloric needs determined
from the resting metabolic rate with a 1.5 activity factor (20), ensuring subjects
were in energy balance upon entering the CTRC. All protocol events were
scheduled relative to each subject’s habitual sleep and wake times based on
the week of prestudy monitoring. The in-laboratory segment for the current
analyses included study days 1–4 from the protocol (Fig. 1A) (20). Subjects were
provided an 8-h sleep opportunity at habitual bedtime on day 1 for poly-
somnographic screening to ensure subjects were free from sleep disorders (20).
Following scheduled sleep on day 1, subjects were awakened at habitual
waketime and maintained a constant posture protocol with brief breaks:
seated semirecumbent posture in a hospital bed with the head raised to ∼35°,
room temperature maintained at 22–24 °C, and dim lighting (<1 lx in the
angle of gaze, <5 lx maximum) during scheduled wakefulness and 0 lx during
scheduled sleep. Day 2 served as circadian alignment, with an 8-h nighttime
sleep opportunity at habitual bedtime. Day 3 served as transition to nightshift
work with subjects awakened at habitual waketime and then provided a 2-h
afternoon nap opportunity leading into the simulated nightshift work. Study
day 4 served as circadian misalignment with subjects provided an 8-h daytime
sleep opportunity beginning 1 h after habitual waketime followed by a second
simulated nightshift on day 4. Blood samples were analyzed for proteomic and
glucose assessments every 4 h for 24 h on study days 2 (circadian alignment)
and 4 (circadian misalignment) with the first blood collection occurring 1 h
after habitual waketime (represented as relative clock hour 0800 h in all fig-
ures). All blood samples were immediately centrifuged (2,000–3,000 × g); then
plasma was collected and subsequently stored at −80 °C until assayed.

Subjects were provided scheduled meals (percent daily caloric intake: 30%
breakfast, 30% lunch, 30% dinner, 10% snack) at 1.5, 5.5, 10.5, and 14.5 h post-
awakening on study days 2 and 4 (20). Meals were identical (total caloric and
macronutrient composition) across study days (e.g., the food served for breakfast
was the same each day), and subjects were required to consume all food provided.

Circadian Phase Assessment. Plasma melatonin was initially assessed every 2 h
during scheduledwakefulness and every 1 h starting at 13 h after the habitual
waketime as a marker of internal circadian timing (20).

Energy Expenditure.Whole-room indirect calorimetry was used to assess daily
energy expenditure on all study days as previously described (20).

Proteomics Platform. Proteomics were performed by SomaLogic, Inc. utilizing a
modified aptamer-based proteomics platform as previously described (65–67).
Briefly, each of the 1,129 proteins analyzed has its own binding reagent made
from chemically modified ssDNA, termed “modified aptamers” (65). Themodified
aptamers are fluorescently labeled, allowing quantification. Plasma samples were
incubated with the modified aptamers generating protein–aptamer complexes.
Unbound aptamers, proteins, and nonspecifically bound proteins were washed
away using two bead-based immobilization steps, leaving only aptamer–protein
complexes. Aptamers were then eluted from target proteins and directly quan-
tified on an Agilent hybridization array (Agilent Technologies). Calibrators were
included so the degree of fluorescence quantitatively represented the relative
protein abundance of each protein corresponding to the specific aptamer.

Plasma Glucose. Plasmaglucosewas assessedwithaYSI 2900autoanalyzer (Yellow
Springs Instrument Co.) at the same time points used for proteomics assessments.

Glucose and Insulin Responses to Test Meals. On study days 2 (circadian
alignment) and 4 (circadian misalignment), subjects consumed identical break-
fast, lunch, and dinnermeals (total caloric andmacronutrient composition). Each
meal was ∼55% carbohydrate, 30% fat, and 15% protein. Subjects were pro-
vided 30 min to consume the meals (minutes 0–30). To assess glucose (Beckman
Coulter) and insulin (Beckman Coulter) responses to test meals, blood was
collected 30 min before (−30 min) and at 30 min, 60 min, 90 min, and 210 min
following the start of food intake (minute 0). Due to other protocol events,
baseline glucose and insulin levels were analyzed 90 min before (−90 min) the
start of food intake for the dinner meal on study day 2 (circadian alignment).

Statistics. The glucose and insulin meal responses and targeted data analyses of
specific proteins were analyzed by mixed-model ANOVAs with study day and
relative clock hour as fixed factors and subject as a random factor using Statistica
version 10.0 (Statsoft). One-tailed a priori directional planned comparison-
dependent t tests examined the hypothesized changes in glucose and insulin
responses to test meals, FGF-19, and adiponectin. The hypothesized changes in

Depner et al. PNAS | vol. 115 | no. 23 | E5397

PH
YS

IO
LO

G
Y

PN
A
S
PL

U
S



these outcomes were based on both preliminary data and previously published
findings as noted in Results. Two-tailed comparisons for other measures
without directional hypotheses were calculated. Trapezoidal area under the
curve (AUC) analyses were performed using OriginPro version 92E (OriginLab
Corporation).

For the proteomic data, all samples were normalized and calibrated using
standard hybridization and median normalization procedures defined in the
good laboratory practice quality system of SomaLogic, Inc. (68). Hybridization
normalization was performed using elution probes on a per-sample basis.
Hybridization scale factors are expected to be within the range 0.4–2.5, and all
samples passed. Median normalization was applied on a per-sample basis,
within each dilution, to control for bulk differences in protein concentration
and other potential sources of variation such as pipetting errors. Median
normalization scale factors are derived from the overall magnitude of the
median signal from each sample and can be indicative of study bias. We also
examined median normalization scale factors for bias introduced as a function
of time. Based on these analyses, we did not detect any indications of study
bias. Scale factors are expected to be within the range of 0.4–2.5, and only one
sample failed these criteria. This sample was excluded from all data analyses.

To detect proteins with significantly different average 24-h levels during
circadian misalignment versus alignment, we used the nonparametric SAM
method using the R package SAMR v2.0 (33) with statistical significance set at
the 10% FDR level. See SI Appendix for detailed parameters.

Because not all physiologically derived rhythmicity or time-of-day patterns are
expected to fit one single model, we used two independent approaches to an-
alyze proteins for ∼24-h patterns. A linear mixed effects (LME) model was used
to determine which proteins have a time-dependent component. LME models
are extensions of linear regression models, where the fixed effects terms are the
conventional linear regression terms and the random effects are associated with
subject-specific variation from individuals drawn at random from a population.
LME models were fit for each protein target, treating study day 2 (circadian
alignment) and 4 (circadian misalignment) data separately. Each subject was
allowed a random intercept to account for subject-specific baseline differences in
RFU levels. Mixed models assume the random intercept term follows a Gaussian
distribution. To control for violation of this assumption by large baseline dif-
ferences in RFU signal, the time series for each subject was individually mean-
centered using the grand mean (i.e., the entire time series across both days for
an individual subject) of all samples from each study day. Change in RFUs as a
function of time was modeled using a cubic fit (y = t + t2 + t3), constraining the
fit to a maximum of two critical points. Second, we used the meta3d function
within the MetaCycle package (37) for R (v3.3.1) to detect rhythmicity in large-
scale time-series datasets. Within MetaCycle, we utilized individually mean-
centered data and the Lomb–Scargle, JTK, and Arser approaches to detect pro-
teins with significant ∼24-h patterns. P values from the Lomb–Scargle, JTK, and
Arser analyses were combined using Fisher’s method (69).

To detect proteins with significantly different 24-h time-of-day patterns be-
tween study day 2 (circadian alignment) and 4 (circadian misalignment), we used
EDGE and DODR packages for R (v3.3.1) (40, 41). The EDGE analysis incorporates
data from each subject individually and amounts to fitting a B-spline to mean-
centered data (treating each data point as independent) for each day separately
and determining if this is a better fit to the data than a single B-spline fit for both

days (see SI Appendix for details). P values are calculated from a simulated null
distribution using a novel bootstrapping technique developed and described by
Storey et al. (70, 71). Alternatively, the DODR analysis detects differences in
phase, amplitude, and signal-to-noise ratios between two datasets. Here, we
applied the DODR package to identify proteins with different 24-h time-of-day
patterns when circadian misaligned versus aligned (see SI Appendix for details).
Since EDGE and DODR analyses use different approaches to detect differential
rhythmicity and are likely to identify proteins with different patterns of differ-
ential rhythmicity, we applied both approaches to our analyses. Resulting P values
from EDGE and DODR analyses were combined using the minP method (38).

For GO disease association and biological process analyses, UNIPROT ac-
cession numbers were submitted to DAVID (https://david.ncifcrf.gov/
summary.jsp) (34, 35). The background gene set consisted of all 1,129 pro-
teins in our proteomics platform, and default settings within DAVID were
used. Pathway analyses were conducted using Reactome (v64) (72, 73). For
each pathway analysis, protein interactions with the set of proteins for each
analysis were identified using the IntAct database (v4.2.10) (74). Default set-
tings for IntAct were used, and spoke-expanded protein interactions were
excluded. All pathway analyses included the set of proteins identified for each
analysis and the protein interactors as identified by IntAct. The human pro-
teome was set as the background for all pathway analyses.

Cluster analyses to identify common profile patterns among the 76 proteins
with significantly different 24-h time-of-day patterns between circadian
alignment and misalignment (Fig. 3 and SI Appendix, Fig. S1) were performed
in R (v3.3.1) using Ward hierarchical clustering (see SI Appendix for details) on
mean z-scored data. For the cluster analyses, RFU data for each subject and
protein were z-scored using the grand mean and SD from all time points on
study day 2 (circadian alignment) and study day 4 (circadian misalignment)
together. Statistically significant clusters were identified using a multiscale
bootstrap resampling approach in the R package pvclust (75). Within pvclust we
used 10,000 bootstrap replications to calculate the approximately unbiased P
values for all clusters. P values < 0.05 were considered statistically significant.
Clusters meeting statistical significance criteria are presented in Fig. 3 as the mean
z-score of all proteins within a given cluster at each time-point on each study day.

Linear mixed model analysis using R (v.3.3.1) was used to test the asso-
ciation between protein levels (FGF-19, CK-MM, CK-MB, and CK-BB) and
hourly energy expenditure. Hourly energy expenditure was derived from the
corresponding hour for each of the proteomics blood-collection time points.
Protein levels as RFUs, study day, and time were entered as fixed factors, and
subject was entered as a random factor in each model.
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