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Meeting the global food demand of roughly 10 billion people by
the middle of the 21st century will become increasingly challeng-
ing as the Earth’s climate continues to warm. Earlier studies sug-
gest that once the optimum growing temperature is exceeded,
mean crop yields decline and the variability of yield increases even
if interannual climate variability remains unchanged. Here, we use
global datasets of maize production and climate variability com-
bined with future temperature projections to quantify how yield
variability will change in the world’s major maize-producing and
-exporting countries under 2 °C and 4 °C of global warming. We
find that as the global mean temperature increases, absent changes
in temperature variability or breeding gains in heat tolerance, the
coefficient of variation (CV) of maize yields increases almost every-
where to values much larger than present-day values. This higher
CV is due both to an increase in the SD of yields and a decrease in
mean yields. For the top four maize-exporting countries, which ac-
count for 87% of global maize exports, the probability that they
have simultaneous production losses greater than 10% in any given
year is presently virtually zero, but it increases to 7% under 2 °C
warming and 86% under 4 °C warming. Our results portend rising
instability in global grain trade and international grain prices, affect-
ing especially the ∼800 million people living in extreme poverty
who are most vulnerable to food price spikes. They also underscore
the urgency of investments in breeding for heat tolerance.

climate change | food security | price volatility

Global cereal markets have been highly volatile during the
past decade, and this pattern of volatility is likely to persist

well into the future. Between 2007 and 2017, nominal prices for
maize, wheat, and rice varied widely, with peak monthly prices
200–300% higher than low monthly prices (1). Such volatility
creates great uncertainty for cereal farmers, livestock producers,
and the agribusiness sector, and it reduces food access for poor
consumers when production falls and prices spike. While there
are many factors contributing to the recent pattern of cereal
market volatility [e.g., biofuel policies, trade policies, grain
stocking policies, fluctuating international financial conditions
(2, 3)], climate-induced production shocks have played a signif-
icant role. Here, we build on existing literature quantifying the
impact of climate change on crop yields over the course of the
21st century and examine how the rising mean global tempera-
ture is likely to increase crop yield variability worldwide.
Numerous studies have concluded that unabated warming will

lead to substantial declines in mean crop yields by the mid-21st
century, and that the most serious agricultural impacts will occur
in the tropics, where the majority of the world’s food-insecure
population resides (4–8). High temperatures negatively impact
plant development in multiple ways, including reduced spikelet
fertility, reduced grain filling, and increased respiration (9, 10).
Generally, crops have an optimal temperature for performance,
beyond which yields rapidly decline (11, 12) (Fig. 1). With con-
tinued warming under business-as-usual greenhouse gas emis-
sions, global crop yields are expected to decline significantly: For
every degree increase in global mean temperature, yields are
projected to decrease, on average, by 7.4% for maize, 6.0% for
wheat, 3.2% for rice, and 3.1% for soybean (5). Although rainfall

variability and resulting changes in soil moisture also affect crop
yields, the negative effects of future warming are expected to out-
weigh those of precipitation changes due to the large magnitude of
projected warming compared with historical variability (13).
An increase in the mean temperature beyond the optimum

growing temperature also results in greater yield variability, even
if interannual temperature variability remains the same (Fig. 1).
Regional studies of climate change impacts on staple crops, such
as maize in the United States (14–16) and wheat (17), maize
(18), and rice (19) in China, project that an increase in mean
temperature will lead to rising yield variability and incidences of
crop failure (4). Our study extends these regional analyses to the
global scale by aggregating climate impacts on yield variability
across the world’s largest producing and exporting countries. Spe-
cifically, we quantify the likelihood of multiple large-producing and
-exporting countries facing simultaneous crop shortfalls in the fu-
ture, with implications for global cereal trade, prices, and food
security. Our analysis focuses on maize production, as maize is the
world’s most grown and heavily traded cereal crop in international
markets, and the relationship between maize yields and climate is
fairly well established.

Changes in Mean Yields
Present-day maize yields vary widely across the globe, depending
on the regional climate and crop management system. Yields are
highest in intensive, temperate-zone production systems, such as
the US Corn Belt and western Europe, followed by regions in
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China, Argentina, and South Africa. Maize research and devel-
opment organizations, such as the International Maize and
Wheat Improvement Center and the Australian Center for In-
ternational Agricultural Research (ACIAR), have previously used
the different growing conditions of maize to define so-called
“maize mega-environments” across which maize cultivars perform
similarly (20, 21). The response of maize yields to climate vari-
ability and climate change will differ between these different en-
vironments and will also depend on management characteristics,
such as cropping intensity and irrigation. We therefore use climate
(growing season mean temperature, growing season total pre-
cipitation, and latitude) and cropping (mean yield and level of
irrigation) data as input for a K-means cluster analysis in which
we divide the globe into seven growing regions that correspond
closely to the maize mega-environments (SI Appendix, Figs.
S1 and S2). For each of these seven regions, we develop statistical
models relating changes in yield to climate variability (Materials
and Methods).
Empirical models of climate-crop relationships use a variety of

indicators to capture the effects of climate variability on crop
yields (10). Growing season mean temperature and precipitation
are easily calculated and commonly used metrics. However,
these season-mean variables smooth out the opposing contribu-
tions of early season warming and extreme summer heat on plant
development. Alternative model formulations therefore make
use of growing and killing degree days (GDDs and KDDs, re-
spectively) to distinguish between thermal time to development
and the harmful effects of high temperatures (11, 12). Using
temperatures of individual months rather than temperatures
averaged over the growing season is another way to capture the
differential effect of temperatures on plant development by
phenological phase. For each growing region, we test a number
of model formulations and select the one providing the best fit
(Materials and Methods). In six of seven clusters, this is a model
using a degree day formulation. The estimated model coefficients
(SI Appendix, Table S8) are consistent with well-understood bi-
ological constraints (SI Appendix).
In all but the most draconian emission reduction scenario,

global annual mean temperature rises by about 2 °C by the mid-
21st century compared with the 1980–1999 average. We evaluate
the effect of this common temperature target on crop yields
by normalizing the monthly multimodel mean patterns of end-
of-century temperature changes from the Coupled Model
Intercomparison Project Phase 5 (CMIP5) Representative

Concentration Pathway 8.5 (RCP8.5) simulations by the global
annual mean temperature and adding the temperature anomaly
pattern to present-day temperature fields (Materials and Methods
and SI Appendix, Fig. S4). We thus create a future climate history
that features identical variability as in the historical record but
acting on top of an annual cycle in temperature associated with
global annual mean warming of 2 °C. Additionally, we assess the
risk of failing to reduce carbon emissions by quantifying the
potential impacts of 4 °C global annual mean warming (SI Ap-
pendix, Fig. S4). Under business-as-usual emissions (RCP8.5),
the global mean temperature is projected to increase by 2 °C as
early as 2042, with a median prediction of 2055, and by 4 °C
between 2075 and 2132. Even in an emissions scenario aiming to
stabilize greenhouse gas concentrations by the mid-21st century
(RCP4.5), global mean temperature could rise by 2 °C as early as
2052 (SI Appendix, Table S1). We do not consider the effect of
changes in the annual cycle of rainfall on future crop yields be-
cause of the high uncertainties in the magnitude and pattern of
future precipitation changes, and the comparatively higher
signal-to-noise ratio in temperature changes (13).
With the exception of a few locations in western Europe and

China, maize yields decline everywhere in response to 2 °C of
warming, with particularly strong declines in the southeastern
United States, eastern Europe, and southeastern Africa (Fig. 2).
In the midlatitudes, an increase in GDDs contributes positively
to crop yields, while more KDDs lead to yield declines. At 4 °C
warming, the negative contribution of additional KDDs far
outweighs the positive effect of increased GDDs, so that sub-
stantial changes in mean maize yields of >40% are predicted in
many places, most notably in the United States, Mexico, eastern
Europe, and southern Africa. These values are within the range
of response to warming found in previous empirical and crop
modeling studies (5). The magnitude of projected yield changes
is comparable between the three linear regression models that
we test (SI Appendix, Fig. S5). When including quadratic terms in
the models, the model fit is generally equivalent or slightly bet-
ter, and the projected yield reductions are even greater than
those projected using the linear models, especially for the 4 °C
warming scenario (SI Appendix, Fig. S5). The same is true when
we use yield ratios as the dependent variable rather than abso-
lute yield anomalies. Our predictions may therefore be on the
conservative side.
Global maize production is highly concentrated within a few

locations: Just four countries (United States, China, Brazil, and
Argentina) produce 68% of the world’s maize, and the top four
maize-exporting countries combined (United States, Brazil,
Argentina, and Ukraine) account for 87% of global maize ex-
ports (22) (SI Appendix, Table S2). In the United States, China,
Brazil, and Argentina (the top four producing countries), mean
total production is projected to decline by 18% (17.4–18.3), 10%
(10.1–10.7), 8% (7.6–8.1), and 12% (11.3–11.9), respectively,
under 2 °C of global warming and by 46% (45.4–47.5), 27%
(26.7–28.0), 19% (19.0–19.9), and 29% (27.9–29.0) with 4 °C of
warming (mean and 90% confidence intervals; SI Appendix,
Table S6). Averaged over the 2012–2017 period, global annual

Fig. 1. Schematic representation of temperature-yield relationship. In the
absence of breeding for heat tolerance, an increase in mean temperature
beyond the optimum temperature (♦) will lead to a decrease in mean yield
and an increase in yield variability, assuming interannual temperature vari-
ability stays the same.

Fig. 2. Warming-induced changes in mean yield. Relative change in average
yield (%) following annual mean global warming of 2 °C (Left) and 4 °C (Right).
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maize exports were 125 million tons and global maize production
was 986 million tons (22). In response to 2 °C of global warming,
total production in the top four maize-exporting countries is
projected to decline by 53 million tons (51.9–54.8), equivalent to
43% (41.5–43.8) of global maize export volume. For 4 °C of
warming, projected production declines in these top-exporting
countries increase to 139 million tons (135.5–142.0), which
amounts to 14% (13.7–14.4) of current global production and
exceeds present-day exports.

Changes in Yield Variability
Not all variability in yields is a result of variability in weather and
climate. Socioeconomic drivers, plant breeding, pests and path-
ogens, and other agronomic variables also contribute to yield and
production variance. In highly managed, high-yield cropping
systems, such as those in the United States, Europe, and China,
climate variability accounts for a relatively large share of the
total yield variance compared with low-yield environments (Fig.
3 A and B and SI Appendix, Table S3). Irrigation generally re-
duces sensitivity to changes in temperature (23), lowering the
climate-driven share of yield variability in intensive, highly
managed environments (SI Appendix, Table S3). In this study, we
do not consider future changes in precipitation and, as such, do
not quantify changes in future yield variance that result from the
covariance between temperature and rainfall variability. Depending
on the growing region, the covariance between temperature and
precipitation currently explains, on average, 2% of the total yield
variance and 17% of the climate-driven variance.
A commonly used measure of yield variability is the coefficient

of variation (CV) (24), which captures both changes in the SD
and mean. In our yield projections, climate warming causes the
CV to increase in most places, especially in the United States,
eastern Europe, and southern Africa (Fig. 3 C and D), to values
many fold higher than present-day values (Fig. 3 A and B). A
decomposition of CV changes into contributions from changes in
the mean and SD (SI Appendix, Fig. S6) shows that both factors
contribute to this increase: Not only will mean maize yields decrease
with warming (Fig. 2), leading to an increase in CV, but absolute
variability is also projected to increase, including in the major
maize-producing regions of the United States, Europe, China, and
Argentina (SI Appendix, Fig. S6). The increase in CV due to in-
creased yield variability is comparable to or greater than the in-
crease due to decreasing mean yields. In locations where crop failures

become the norm under high (4 °C) warming (mostly in tropical, low-
yield environments), the SD of yields ultimately decreases.
An increase in yield variability has implications both for

farmers, who rely on their crops for income stability, and for
global markets, where crop availability influences food prices (2,
16, 25). Six countries, the United States, China, Brazil, Argen-
tina, Ukraine, and France, collectively account for 73% of global
production and 93% of total exports, and in all of these coun-
tries, mean yields decrease and yield variability increases under
higher temperatures compared with present-day values (Fig. 4
and SI Appendix, Figs. S7 and S9 and Table S7). In line with the
theoretical prediction that yield losses will decline precipitously
above an optimum temperature (Fig. 1), our results show that
extreme yield losses become increasingly likely under global
warming. For Ukraine, in particular, yield losses of up to 100%
become a possibility under 4 °C warming, where the losses are
compared with the mean yield baseline for the period 1999–2008
(Materials and Methods).
Extreme crop losses in large-producing areas are presently rare

because of the highly controlled environments in which maize is
grown in these regions. Yields are tightly constrained around their
mean (Fig. 4), and climate-induced yield losses of >10% only
occur every 15 to 100 y (Table 1). Climate-induced yield losses
of >20% are virtually unseen. In a warming climate, however,
these extreme crop failures become increasingly likely. With a 2 °C
warming, the probability of a >10% yield loss in any given year in
the world’s top four producing countries (United States, China,
Brazil, and Argentina) rises to 69%, 46%, 39%, and 50%, re-
spectively. Assuming that weather varies independently between
our regional clusters, the probability that maize production will fall
by more than 10% in the high-productivity areas of all four
countries in the same year is 0% today but increases to 6% under
2 °C warming and 87% under 4 °C warming. Given that these four
countries alone account for almost 70% of global maize pro-
duction, such synchronized production shocks are likely to have
tremendous impacts on global cereal markets. This pattern is even
more pronounced for the top four exporting countries (United
States, Brazil, Argentina, and Ukraine). With a 2 °C warming, the
probability of a >10% yield loss in any given year for each of these
four countries is 69%, 39%, 50%, and 52%, respectively. Collec-
tively, the probability that these large-exporting countries will in-
cur simultaneous production losses greater than 10% in any given
year is virtually zero under present-day climate conditions but rises
to 7% under 2 °C warming and 86% under 4 °C warming. The
projected changes in variability are robust to statistical uncertainty
in model coefficients (SI Appendix, Fig. S9 and Table S7).

Implications for Food Security
The projected increase in maize yield variability across major pro-
ducing and exporting countries has important implications for
global food security, as defined by the ability to provide adequate
and affordable food supplies to all people at all times and to ensure
economic access to a nutritious diet for all. Meeting this food se-
curity goal will become increasingly difficult as the world’s pop-
ulation grows from 7.5 billion today to ∼10 billion by 2050, a 30%
increase (26). Virtually all of this growth will occur in developing
countries, most notably within sub-Saharan Africa, and over half the
global population will reside in urban areas, where international
trade plays a key role in ensuring affordable food supplies.
Temperature-induced volatility in global maize prices results

from production shocks in both exporting and importing coun-
tries. When rising temperatures affect yields in large maize-
exporting countries, such as the United States, Brazil, Argentina,
and Ukraine, global export supply falls. Similarly, when shocks
affect large maize-producing countries that also import, such as
China and Mexico, global import demand rises. Synchronous
production shocks across multiple large trading countries is
therefore expected to lead to a higher frequency in international
price spikes. Our analysis indicates that the probability of a
synchronous decline in yield of >10% for the world’s three
largest maize exporters and three largest maize importers is

Fig. 3. Warming-induced changes in yield variability. (Top) Present-day CV
due to all sources of variability (Left) and climate variability (Right). (Bottom)
Ratio of changes in climate-driven CV following annual mean global
warming of 2 °C (Left) and 4 °C (Right).
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virtually zero today but jumps to 69% under 4 °C warming (Table
1). Simultaneous production shocks among these large trading
countries will have a direct impact on urban consumers, as well
as on agribusiness, grain producers, and poor households that
spend a large share of their income on staple foods. The degree
to which these groups in any given country is affected by in-
ternational market volatility depends importantly on trade poli-
cies designed to insulate domestic markets from international
price fluctuations. From a global dataset of 82 countries for the
period 1985–2010, the price transmission coefficient for maize is
estimated to be 0.63 (27), meaning that, on average, domestic
markets experience about two-thirds of the price volatility seen
in international markets.
Recent experience from the 2006–2008 global food crisis

suggests that if food prices spike and urban consumers become
discontent, governments become vulnerable to collapse, partic-
ularly in developing countries where consumer food safety nets
(e.g., the US Supplemental Nutrition Assistance Program) do
not exist (2). As a result, many governments restrict cereal trade
to stabilize domestic food markets, resulting in even greater in-
ternational market instability (27–29). During the 2006–2008
crisis, large maize-exporting countries, including Brazil, Argen-
tina, and Ukraine, imposed export bans on maize, and thus
further reduced global export supply, while maize-importing
countries introduced trade incentives to lower the price of im-
ported grain, and thus raised import demand. Together, these
policies accounted for about one-ninth of the 83% increase in the

international maize price over the short period (29). Similar trade
policies were implemented for rice and wheat, with even greater
contributions to international price spikes (27–29).
The combination of global crop yield variability and disruptive

government trade intervention in staple grain markets suggests
that the pattern of high price volatility experienced over the past
decade (SI Appendix, Fig. S8) will likely persist, or even intensify
in the future, with rising temperatures. Maize is an important
crop to examine in this context, as it accounts for roughly one-
third of both global cereal production and trade, and it is closely
connected to other cereal and oil crops through its versatile role
in food, animal feed, and fuel markets (30). Grain and oil crop
prices are highly correlated over time as a result of substitu-
tions in consumption and production (SI Appendix, Table S5).
The impact of rising mean temperatures on maize yields and
maize yield variability thus has far-reaching consequences for
the stability of global food systems overall as well as for global
food security.

Conclusion
Our work suggests that global cereal yields and markets will
become increasingly variable throughout the 21st century, even if
temperature variability remains the same. In our analysis, we
assume constant technology and management in global maize
systems, which is abstracted from real-world adaptations and
investments in agriculture. In low-productivity maize regions
where substantial yield gaps remain, closing those gaps would
offset some of the projected yield losses shown in our study.
However, most of the world’s maize volume is currently grown in
highly intensified, high-productivity agricultural systems, such as
the United States and China, where the gap between yield and
potential yield is narrow (31). For these regions, the two ways to
avoid a low-yield, high-volatility future while retaining maize
systems are to mitigate CO2 emissions aggressively or to breed
for improvements in heat tolerance: in effect, breeding to stay on
the temperature for optimum yield (Fig. 1) in the face of a
rapidly warming climate. Indeed, breeders are well aware of the
importance of heat stress for yield. Unfortunately, the mecha-
nisms for heat tolerance in maize (and other major grains) are

Table 1. Probability that in any given year, the relative yield in
a country’s most productive region (Materials and Methods) will
decline by 10% or 20% of the present-day mean yield for the
10 top-producing countries individually and combinations of
the countries that produce or trade the most maize

Country

Present-day
climate, %

2 °C
warming,

%
4 °C warming,

%

>10 >20 >10 >20 >10% >20

United States 3.8 0.0 68.6 29.5 100.0 96.9
China 6.6 0.0 46.2 16.8 98.8 89.2
Brazil 1.4 0.0 38.7 9.4 90.5 64.1
Argentina 3.4 0.1 50.0 9.9 96.9 86.9
Ukraine 2.5 0.3 51.8 19.2 98.2 85.0
Mexico 1.0 0.0 18.5 1.7 79.6 44.0
India 0.8 0.0 7.4 1.6 50.9 10.4
France 0.9 0.0 21.1 2.3 81.7 52.3
Canada 0.3 0.0 12.0 1.1 70.0 40.6
South Africa 16.6 6.9 79.2 59.8 97.5 94.5
Top four producing* 0.0 0.0 6.1 0.0 86.6 48.1
Top four exporting† 0.0 0.0 6.9 0.1 86.1 45.8
Top export + import‡ 0.0 0.0 1.1 0.0 68.9 21.2

The magnitude and share of production and trade for the top-producing
maize countries are shown in SI Appendix, Table S2.
*United States, China, Brazil, Argentina.
†United States, Brazil, Argentina, Ukraine.
‡United States, China, Brazil, Argentina, Mexico.

Fig. 4. Warming-induced changes in yield variability in top-producing re-
gions of the six largest maize-producing and -exporting countries (SI Ap-
pendix, Table S2): Probability density functions of yield anomalies with
respect to present-day mean yield for present-day climate (black), following
2 °C of annual mean global warming (blue), and following 4 °C of annual
mean global warming (red). The vertical gray line denotes a relative yield
reduction of 20%, and boxed values indicate mean present-day yield in
these areas for present-day climate (1999–2008; black) and for 2 °C (blue)
and 4 °C (red) warming.
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extremely complex and poorly understood, and progress in this
area has been modest despite the innovation of techniques to
accelerate breeding (32–35). The development of heat-tolerant
varieties will likely require advanced genetic techniques, in-
cluding genetic modification, which raises issues of social ac-
ceptance. Without significant genetic advances in heat tolerance,
however, and the successful dissemination of heat-tolerant va-
rieties throughout these high-productivity systems, there may be
little opportunity to increase maize production and stabilize
grain markets in the face of projected yield declines. Breeding
for heat tolerance is thus a high-priority, but an as-of-yet unat-
tained, goal in maize development (7).

Materials and Methods
Datasets.
Crop data. We obtained annual maize yield and harvested area data from a
global gridded dataset at 0.5° resolution that synthesizes ∼2.5 million census
observations and spans the period 1961–2008 (31, 36–38). Plant and harvest
dates of maize were derived from a global gridded dataset at 0.5° resolu-
tion, which represents average planting conditions in roughly the year 2000
(39). The Monthly Irrigated and Rainfed Crop Areas around the year 2000
(MIRCA2000) dataset contains monthly growing areas and annual harvested
areas for 26 different crops at 0.5° resolution (40). We calculate percent ir-
rigated area by dividing the irrigated area in each grid cell by the total
harvested area in that cell. Data on country-level production of individual
crops and total agricultural output of each country were obtained from the
Food and Agriculture Organization Corporate Statistical Database (1). Based
on these data, we excluded grid cells if their harvested area was less than 1%
of the grid cell area, if a country’s maize production was not at least 5% of
its total agricultural production or greater than 3 million tons in total, or if
yield data appeared to be erroneous (>17 tons per hectare).
Climate data. Monthly temperature and precipitation data derive from the
Climatic Research Unit Time-Series Version 3.23 dataset, which presents data
from the period 1901–2014 on a 0.5° global grid (41). Daily mean, minimum,
and maximum temperatures are obtained from the European Centre for
Medium-Range Weather Forecast ReAnalysis Interim (ERA-Interim) dataset
(42), which is available from 1979 to 2015. Mean temperature at 2-m height
is output four times daily, so daily mean is calculated as the mean over those
four daily values. Minimum (maximum) temperatures at 2-m height are
output eight times daily as the minimum (maximum) over the preceding 3 h,
so the daily minimum, Tmin,d, (maximum, Tmax,d) is calculated by finding the
minimum (maximum) over those eight time steps. The ERA-Interim data are
available on a 0.75° resolution grid and are interpolated using bilinear in-
terpolation to the 0.5° resolution grid on which the crop and monthly cli-
mate data are available. For the temperature threshold years in SI Appendix,
Table S1, global annual mean temperature projections for all CMIP5 models
in three emission scenarios (RCP4.5, RCP6.0, and RCP8.5) were pulled from
the Royal Netherlands Meteorological Institute (KNMI) Climate Explorer (43).

We develop several empirical cropmodels (below) that incorporate various
climate indices. Growing season means (temperature, Tseas) and sums (pre-
cipitation, Pseas) are calculated by linearly interpolating the monthly mean
temperature and precipitation data over 365 d and taking the average over
the days between plant and harvest dates (39). For the linear regression
model that includes the temperature of individual months, the middle
3 mo of the growing season at each location are selected (TM1, TM2, and
TM3; 3 mo is the minimum growing season length for maize). GDDs and
KDDs are calculated following earlier work (44). GDDs are defined for each
day as follows:

GDDd =
T*min,d + T*max,d

2
− Tlow, [1]

where,

T*max,d =

8<
:

Tmax,d if   Tlow < Tmax,d < Thigh,
Tlow if   Tmax,d ≤ Tlow,
Thigh if   Tmax,d ≥ Thigh.

[2]

T*min,d is defined analogously. KDDs for each day are defined as follows:

KDDd =
�
Tmax,d − Thigh if   Tmax,d > Thigh,
0 if   Tmax,d ≤ Thigh.

[3]

Tlow is set to 9 °C, and Thigh is set to 29 °C. Yearly GDDs and KDDs are obtained
by summing the daily values (GDDd and KDDd) over the growing season.

Future climate projection data were obtained from the CMIP5 database
(45) for the business-as-usual scenario of RCP8.5. First, we constructed the
canonical global warming temperature pattern (46) for each of the RCP8.5
CMIP5 models by taking the difference in monthly climatology between the
2080–2099 and 1980–1999 time periods, normalized by the global annual
mean temperature change. We then take the multimodel mean over these
spatial patterns and scale them to get the global warming pattern associ-
ated with a 2 °C or 4 °C global warming model. The future climate is then
calculated by adding the change in the (2 °C or 4 °C warmer) climatology to
the observed (1979–2008) climate history, thus preserving the present-day
interannual and daily temperature variability.

Clustering. It is expected that the sensitivity of maize to climate variability is
similar within regions of similar mean climate and management character-
istics. Based on the definition of maize mega-environments as defined by, for
example, the ACIAR (20), the following variables are used as input for a K-
means cluster analysis: growing season mean temperature, growing season
mean precipitation, percent irrigated area in each grid cell, mean yield, and
latitude. For all time-varying quantities, averages over the period 1989–
2008 are calculated. Variables are standardized before the clustering. Be-
cause there is no objective means of determining the optimal number of
clusters, we rather arbitrarily select seven. Results are found to be insensitive
to whether 5, 7, or 10 clusters are used (SI Appendix, Table S9). A map of the
cluster division is shown in SI Appendix, Fig. S1, with the corresponding
statistics shown in SI Appendix, Fig. S2. A description of each of the seven
clusters is given in SI Appendix, Table S3. There is a close correspondence
between the clusters and the commonly defined maize mega-environments
(SI Appendix).

Linear Models. The regression models are calculated using yield and climate
anomalies with respect to a time-changing mean. Because technology-driven
trends in maize yields are substantial and nonlinear, we calculate yield
anomalies with respect to a time trend by subtracting a third-order poly-
nomial fit through the yield data at each grid cell. Climate anomalies are
calculated by removing a linear trend, which is generally small over this
period. The results are therefore insensitive to the climate detrending.

The performance of three different empirical crop models is compared:

Y ′
t,i = β0,c + β1,cT

′
seas  t,i + β2,cP

′
seas  t,i + et,i ,

Y ′
t,i = β0,c + β1,cT

′
M1  t,i + β2,cT

′
M2  t,i + β3,cT

′
M3  t,i + β4,cP

′
seas  t,i + et,i ,

Y ′
t,i = β0,c + β1,cGDD

′
t,i + β2,cKDD

′
t,i + β3,cP

′
seas  t,i + et,i ,

where Y is yield; prime symbols indicate anomalies; β values are the various
regression coefficients; e is the residual; and the subscripts t, i, and c indicate
year, location, and cluster, respectively. For each cluster, all data points are
strung together and the model is fitted to the entire dataset. In each cluster,
we select the model that maximizes variance in a 10-fold cross-validation (SI
Appendix, Table S3). In all but one of the clusters, this is the same model as
the model that maximizes the variance explained of the cluster-averaged
annual yield anomalies; in six of seven of the clusters, the degree day model
performs best. Because yield anomalies are used as the dependent variable,
the intercept coefficients β0 are all zero, within statistical uncertainty. As
daily data are only available since 1979, the fitted models span the period
1980–2008. Because of strong trends in maize yields and harvested area over
the past three decades, we use mean yield and harvested area over only the
last 10 y of the dataset (1999–2008) as the baseline to compare future
yields against.

It should be noted that the mean summer temperature with 4 °C of global
warming is well outside the present-day range of interannual temperature
variability in many locations, and that our statistical models thus have not
been tested for these temperature regimes. Similarly, however, this level of
warming is also outside the validation range of field experiments and pro-
cess-based crop models.

Calculating Changes in Mean and Variability. Before applying the regression
models to the future climate data, we first check each grid point to see
whether the projected change in growing season mean temperature under
2 °C and 4 °C global warming warrants assignment to a different cluster (SI
Appendix, Fig. S3). The number of grid points that change cluster (or
“adapt”) in response to the warming is small compared with total number of
grid boxes, so that associated adaptation costs (spread out over several
decades of gradual warming) can be assumed to be negligible. Future yield
anomalies are calculated by applying the best model for each cluster to the
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future climate data. If the projected yield is less than zero, it is set to equal
zero. For Fig. 4 and Table 1, relative yield anomalies are calculated compared
with the present-day (1999–2008) mean; for SI Appendix, Fig. S7, they are
compared with the future mean.

Measures of future yield variability represent only the component of yield
variability that is due to climate variability. For the density plots in Fig. 4 and
SI Appendix, Fig. S7, we pick a roughly 5° × 5° area (∼100 grid cells) in the
highest producing region of the six highest producing countries (Argentina,
Brazil, China, France, Ukraine, and United States) and select the 25 highest
producing grid boxes.

Factors Not Considered. This study isolates the effects of future temperature
change on maize yields, primarily because of the high uncertainty in pre-
cipitation projections. In all models and clusters, the linear precipitation term
is positive. This means that in locations where drying is projected, future
rainfall reductions will amplify the predicted yield losses. Because interannual
and daily temperature variability is currently poorly represented in climate

models, this study also assumes no changes in temperature variability, thus
ignoring a possible additional contributor to yield variability changes (14). It
is possible that fertilization from elevated CO2 levels could offset these yield
losses to some extent. However, as a C4 plant, maize benefits less from el-
evated CO2 concentrations than C3 plants like rice and wheat, and there is
no conclusive evidence that CO2 fertilization will lead to substantial yield
gains in maize, except during periods of drought (47). We have therefore
excluded CO2 fertilization effects from our analysis.

Data Availability. Yield projections can be downloaded from https://mtigchelaar.
github.io/maize-variability/.
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