Lysosome inhibition sensitizes pancreatic cancer to replication stress by aspartate depletion

Irina A. Elliott¹, Amanda M. Dann¹, Shili Xu¹, Stephanie S. Kim¹, Evan R. Abt²,³, Woosuk Kim²,³, Soumya Poddar²,³, Alexandra Moore⁶, Lei Zhou²,³, Jennifer L. Williams⁶, Joseph R. Capri³, Rufazik Ghukasyan⁴, Cynthia Matsumura⁵, D. Andrew Tucker⁴,⁵, Wesley R. Armstrong²,³, Anthony E. Calebè²,³, Nanping Wu⁶, Luyi Li⁷, Thuc M. Le²,³, Caius G. Radu²,³,⁴,⁵, and Timothy R. Donahue²,³,⁴,⁵


*Department of Surgery, University of California, Los Angeles, CA 90095; ²Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095; ³Ahmanson Translational Imaging Division, University of California, Los Angeles, CA 90095; ⁴Department of Pancreatic and Thyroidal Surgery, Shengjing Hospital, China Medical University, Shenyang 110003, China; ⁵Department of Surgery, Harbor–UCLA Medical Center, Torrance, CA 90020; ⁶David Geffen School of Medicine, University of California, Los Angeles, CA 90095; and ⁷Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095

Edited by David Tuveson, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, and accepted by Editorial Board Member Rakesh K. Jain February 28, 2019 (received for review July 23, 2018)

Functional lysosomes mediate autophagy and macropinocytosis for nutrient acquisition. Pancreatic ductal adenocarcinoma (PDAC) tumors exhibit high basal lysosomal activity, and inhibition of lysosome function suppresses PDAC cell proliferation and tumor growth. However, the codependencies induced by lysosomal inhibition in PDAC have not been systematically explored. We performed a comprehensive pharmacological inhibition screen of the protein kinome and found that replication stress response (RSR) inhibitors were synthetically lethal with chloroquine (CQ) in PDAC cells. CQ treatment reduced de novo nucleotide biosynthesis and induced replication stress. We found that CQ treatment caused mitochondrial dysfunction and depletion of aspartate, an essential precursor for de novo nucleotide synthesis, as an underlying mechanism. Supplementation with aspartate partially rescued the phenotypes induced by CQ. The synergy of CQ and the RSR inhibitor VE-822 was comprehensively validated in both 2D and 3D cultures of PDAC cell lines, a heterotypic spheroid culture with cancer-associated fibroblasts, and in vivo xenograft and syngeneic PDAC mouse models. These results indicate a codependency on functional lysosomes and RSR in PDAC and support the translational potential of the combination of CQ and RSR inhibitors.

Significance

Pancreatic cancer is notoriously treatment resistant. These tumors rely on lysosome-dependent recycling pathways to generate substrates for metabolism, which are inhibited by chloroquine (CQ) and its derivatives. However, clinical efficacy of CQ as a monotherapy or combined with standard-of-care regimens has been limited. Using an unbiased kinome screen, we identify replication stress as an induced vulnerability of CQ due to impaired de novo nucleotide biosynthesis and find that combination treatment with CQ and a replication stress response inhibitor is synthetically lethal in pancreatic cancer.


The authors declare no conflict of interest.

1I.A.E., A.M.D., and S.X. contributed equally to this work.
2To whom correspondence may be addressed. Email: cradu@mednet.ucla.edu or TDonahue@mednet.ucla.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1812410116/-/DCSupplemental.

Published online March 20, 2019.
Extensively used in patients, chloroquine (CQ) and its derivatives deacidify lysosomes, thus inhibiting autophagy (24). These agents have been investigated in multiple cancers but show limited efficacy in PDAC as monotherapy or in combination with standard-of-care therapies (25–27). In this study, we performed an unbiased kinome inhibition screen to identify previously unexplored vulnerabilities of CQ-treated PDAC cells and found the replication stress pathway to be the most prominent codependency. We validated the synthetic lethality of CQ and the RSR inhibitor VE-822 in multiple in vitro and in vivo PDAC models. Mechanistically, we found that lysosome inhibition led to mitochondrial dysfunction and decreased aspartate, resulting in decreased de novo nucleotide synthesis, thereby inducing replication stress.

**Results**

**Kinase Inhibitor Screen Identifies the Replication Stress Pathway as a Codependency of Impaired Lysosome Function.** A kinase inhibitor screen identified the RSR–ATR/CHEK1 pathway as the most prominent codependency of CQ-treated cells (Fig. 1A). All ATR and CHEK1 inhibitors scored positively (Dataset S1). The synergy between CQ and the RSR inhibitors was validated in a secondary assay (SI Appendix, Fig. S1A). Among these RSR inhibitors, ATR inhibitor VE-822 (also known as VX-970 or Berzosertib) was selected for further analysis due to its translational potential; VE-822 has favorable pharmacodynamics and tolerability in animal models (23, 28). The CQ/VE-822 synergy was confirmed using the combination index (SI Appendix, Fig. S1B) and in a panel of PDAC cell lines in both 2D monolayer and 3D spheroid cultures (Fig. 1B). The synthetic lethality of CQ and VE-822 was supported by the synergistic induction of pH2A.X, a marker of DNA damage (Fig. 1C). In addition, CQ and VE-822 showed synergy in a majority of human PDAC cell lines and primary cultures (XWR200, A13A, and A2.1) (Fig. 1D).

**Lysosome Inhibition Induces Replication Stress.** We hypothesized synergy between CQ and RSR inhibitors occurred because
from cells cultured with [13C6]glucose (23). This method deter-
metabolites and hydrolyzed nucleic acids species (DNA/RNA), (MS)/MS-multiple reaction monitoring (MRM) method to mea-
of stalled replication forks and replication stress (29
machinery and deoxyribonucleotides (dNTPs), is a known cause
sufficiency of essential replication factors, including replication
(NH4Cl) and bafilomycin A1 (BafA1), induced pCHEK1 (Fig.
CQ, other lysosome inhibitors, including ammonium chloride
also noted with increasing doses of CQ (Fig. 2
lysosomal inhibition increased replication stress. We observed
induction of pCHEK1 (S345), a marker of RSR, by 8 h after CQ
exposure in MiaPaca2 cells, which continued to increase up to 32 h.
Accumulation of LC3B confirmed CO inhibition of autophagy-
osome maturation (Fig. 24). Increasing pCHEK1 induction was
also noted with increasing doses of CQ (Fig. 2B). These findings
were consistent across a panel of PDAC lines (Fig. 2C). Similar to
CQ, other lysosome inhibitors, including ammonium chloride
(NH4Cl) and bafilomycin A1 (BafA1), induced pCHEK1 (Fig.
2D), indicating RSR activation is an on-target effect of lysosome
inhibition. These lysosomal inhibitors synergistically inhibited
PDAC cell growth when combined with VE-822 (SI Appendix, Fig.
S24). A 5-ethyl-2-deoxouridine (EdU) pulse-chase assay to
profile cell cycle kinetics was used orthogonally to examine repli-
cation stress, which occurs at stalled replication forks and prolongs
cell cycle S phase. Consistent with pCHEK1 induction, CQ sig-
nificantly prolonged S-phase duration and resulted in fewer labeled
cells reentering the G1 phase of the cell cycle (G1*) (Fig. 2E and SI
Appendix, Fig. S2B).

Lysosome Inhibition Impairs de Novo Nucleotide Biosynthesis. Insufficiency of essential replication factors, including replication machinery and deoxyribonucleotides (dNTPs), is a known cause of stalled replication forks and replication stress (29–31). To in-
vestigate the effect of CQ on dNTP availability, we used a previously
described liquid chromatography (LC)-mass spectrometry
(MS)/MS-multiple reaction monitoring (MRM) method to mea-
sure heavy-isotope labeled nucleotides, in the form of both free metabo-
lites and hydrolyzed nucleic acids species (DNA/RNA), from cells cultured with [13C6]glucose (23). This method deter-
mmines the contribution of nucleotides to free dNTP and ribonu-
cleotide (rNTP) pools and incorporation into newly synthesized
RNA and DNA. CQ decreased all four labeled dNTP pools
(dCTP, TTP, dATP, and dGTP) (Fig. 3A) and the percentage
labeling of DNA across all four bases (Fig. 3B). CQ appeared to
selectively inhibit de novo dNTP biosynthesis, as unlabeled dNTP
pools remained unaffected or increased in CQ-treated cells (SI
Appendix, Fig. S3). De novo produced dNTPs are more readily
incorporated into DNA than those produced by the salvage
pathway (unlabeled dNTPs) (21, 32), suggesting that it is the de-
crease specifically in de novo dNTP biosynthesis that causes rep-
lication stress in CQ-treated cells.

To further investigate the source of the defect in de novo
dNTP synthesis, we assessed the impact of CQ on de novo syn-
thesized ribonucleotide pools. Impaired de novo dNTP bio-
synthesis may be caused by a shortage of substrates for
ucleotide synthesis (e.g., glucose, amino acids) or by ribonu-
cleotide reductase (RNR) inhibition, preventing RNR reduction
of ribonucleotide diphosphates to deoxyribonucleotide diphos-
phates, the rate-limiting step in de novo dNTP production.
MiaPaca2 cells cultured with [13C6]glucose ± CQ were analyzed
for labeled NTP pools and their incorporation into RNA. We
observed no significant changes in NTP pools with CQ treatment
but a decrease in labeled RNA (Fig. 3 C and D), suggesting an
overall decrease in de novo nucleotide synthesis. These results
indicate CQ treatment impairs de novo synthesis of both dNTPs
and NTPs, rather than a defect in conversion of ribo- to deoxy-
ribonucleotides by RNR.

Lysosome Inhibition Depletes Aspartate. In de novo nucleotide biosynthesis, the amino acid precursors Asp, Gln, Gly, and Ser
are utilized for purine biosynthesis, while only Asp and Gln are
required for pyrimidine ribonucleotide synthesis. CQ treatment
significantly decreased intracellular Asp levels while increasing
Gln, Gly, and Ser levels (Fig. 4A). As non-Gln amino acids are
important sources of carbon and nitrogen biomass in cancer cells
(33), we further assess if CQ treatment resulted in a global de-
crease in non-Gln amino acids and thus a general decrease in

Fig. 2. Lysosomal inhibitors induce replication stress. (A) Time course effects of 20 μM of CQ on replication stress marker pCHEK1-S345 and on autophagy marker LC3B in MiaPaca2 cells. (B) Dose-response effects of 24-h CQ treat-
ment on pCHEK1-S345 and LC3B in MiaPaca2 cells. (C) Effect of CQ treat-
ment for 24 h on pCHEK1-S345 and LC3B in a panel of PDAC cell lines. (D) Effects of 24-h treatment with lysosome inhibitors on pCHEK1-S345 and LC3B in MiaPaca2. (E) Measurements of S-phase duration and G1 cell per-
centage by EdU pulse-chase flow cytometry analysis. All immunoblots are
representative of at least two independent experiments. CQ: 20 μM unless
otherwise indicated; NH4Cl: 10 mM; BafA1: 10 nM. **P < 0.01, ***P < 0.001.

Fig. 3. CQ treatment impairs de novo nucleotide biosynthesis. LC-MS/MS-
MRM analysis of (A) relative levels of [13C6]glucose-labeled dNTPs and (B)
percentage of [13C6]glucose labeling of the four DNA bases (DNA-C, DNA-T,
DNA-A, DNA-G) in PDAC cells ± CQ (n = 3). (C) Relative levels of [13C6]glucose-
labeled NTPs and (D) percentage of [13C6]glucose labeling of RNA in
MiaPaca2 (n = 3). CQ: 20 μM; 24-h treatment. *P < 0.05, **P < 0.01,
***P < 0.001, ****P < 0.0001; ns, not significant.
carbon and nitrogen sources. Other than Asp, Ala was the only amino acid that exhibited a significant, but smaller, decrease with CQ treatment (Fig. 4A and Dataset S2). The reduction of Asp was confirmed using an orthogonal Asp assay (SI Appendix, Fig. S4A).

In addition, CQ treatment increased Asp uptake, suggesting increased Asp demand (Fig. 4B). These results imply that Asp is the major amino acid affected by CQ and that Asp is the limiting substrate for de novo nucleotide biosynthesis in the setting oflysosomal inhibition.

We then performed rescue experiments with Asp supplementation to implicate Asp deficiency as a cause of CQ-induced nucleotide insufficiency and replication stress. Asp supplementation rescued Asp levels (SI Appendix, Fig. S4B), partially restored the decrease in DNA labeling with CQ treatment in all four nucleobases (Fig. 4C), and prevented CQ-induced replication stress (Fig. 4D). Asp supplementation partially rescued CQ- and NH4Cl-induced growth inhibition in a dose-dependent manner (Fig. 4E and SI Appendix, Fig. S4 C and D) and CQ-induced DNA damage (SI Appendix, Fig. S4E).

The growth rescue effect of Asp exceeded those of dNTP substrates (de novo substrates Gln, Ser, and Gly and salvage substrates rNs and dNs) and other amino acids (SI Appendix, Fig. S4 F and G).

We hypothesized that CQ treatment could cause mitochondrial dysfunction, resulting in decreased electronic transportation chain (ETC) activity and therefore inhibit Asp biosynthesis (34). To test this hypothesis, we examined mitochondrial membrane potential, a marker of mitochondrial damage (35), in PDAC cells treated with CQ. Chronic, but not acute, treatment with CQ increased mitochondrial membrane potential (Fig. 5A), indicating accumulation of damaged mitochondria (35). In addition, CQ reduced ETC activity (Fig. 5B), an important function of mitochondria to enable Asp synthesis (34). Pyruvate supplementation, which supports Asp synthesis when ETC activity is reduced (35), partially rescued CQ-induced Asp depletion (Fig. 5C) and inhibition of PDAC cell proliferation (Fig. 5D).

Lysosome Inhibition Synergizes with RSR Inhibitors in Complex, Organotypic In Vitro Models and in Vivo. PDAC tumors are characterized by a dense stroma, primarily composed of fibroblasts and extracellular matrix (36). These cancer-associated fibroblasts (CAFs) support cancer cell proliferation and confer resistance to chemoradiation (37, 38). Therefore, we used a 3D organotypic MiaPaCa2/CAF coculture model to assess the efficacy of CQ/VE-822 in stroma-rich PDAC tumors. In contrast to monoculture, the growth of cocultured spheroids was not affected by VE-822. CQ treatment resulted in similar growth inhibition in these cocultures as in a 2D monolayer, and the combination showed substantial synergy (Fig. 6A and B).

In an in vivo PDAC model, the combination of CQ and VE-822 synergistically slowed the growth of xenograft MiaPaCa2 tumors (Fig. 6C, 32% reduction in size at final time point). Overexpression of the Asp transporter SLC1A3 (39) increased Asp levels and was protective against CQ- and CQ/VE-822–induced growth inhibition in MiaPaca2 cells. CQ: 20 μM; Acute: 2 h; chronic: 24 h. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001; ns, not significant.
decreases in Asp levels (SI Appendix, Fig. S5 A–C). In vivo, overexpression of SLC1A3 in MiaPaca2 xenograft tumors rescued the growth inhibition caused by CQ/VE-822 (SI Appendix, Fig. SSD). The CQ/VE-822 combination significantly decreased the proliferation marker Ki67 and increased the frequencies of DNA damage marker pH2A.X-positive cells and apoptosis markers cleaved caspase-3 and cleaved PARP-positive cells in MiaPaca2 tumors (Fig. 6D). Similar to our observations in human PDAC cells, CQ and VE-822 synergistically inhibited the proliferation of cultured murine PDAC KPC cells (SI Appendix, Fig. S64), and this was partially rescued by Asp supplementation (SI Appendix, Fig. S6B). In an in vivo syngeneic KPC PDAC tumor model, the combination of CQ and VE-822 significantly slowed tumor growth (Fig. 6E) and induced DNA damage, as indicated by pH2A.X staining (Fig. 6F). These results suggest the combination of CQ and VE-822 may represent a promising therapeutic strategy in PDAC.

Discussion

PDAC tumors rely on intracellular and extracellular nutrient scavenging to sustain growth. Disabling these pathways with inhibitors of lysosome function has been effective in preclinical models (4), but this strategy has shown limited efficacy in clinical trials (26). Understanding how tumor cells respond to lysosomal inhibitors is required to leverage these agents as PDAC therapeutics. Here, we show that inhibition of lysosomal function in PDAC cells depletes Asp required for de novo nucleotide biosynthesis. This results in deoxyribonucleotide insufficiency and an increased reliance on the RSR pathway. Further, combination treatment with CQ and a RSR inhibitor is synthetically lethal in vitro and in vivo PDAC models.

Deletion of autophagy genes decreases nucleotide pools in Ras-driven cancers (14). Guo et al. (14) found that nutrient deprivation increases catabolism of ribonucleotides to generate ribose phosphate to maintain energy charge, thereby increasing reliance on autophagy-generated Gln for nucleotide biosynthesis. Lung cancer cells deficient of ATG7 were less efficient at Gln recycling and exhibited more pronounced ribonucleotide depletion than their autophagy-proficient counterparts under starvation. Perera et al. (3) found silencing TFE genes, transcription factors regulating lysosomal biogenesis (40), decreased Gln and the pyrimidine nucleoside cytidine. However, the role of lysosome in maintaining deoxyribonucleotide pools to sustain DNA replication and mitigate replication stress in PDAC has not been systematically investigated.

Our data support a model in which CQ treatment critically depletes Asp in PDAC cells, restricting de novo dNTP synthesis. Previous reports addressing how lysosome or autophagy inhibition influences Asp levels are conflicting. Guo et al. (14) showed that ATG7-null mouse lung cancer cells exhibited impaired ability to recycle Asp, but viability of autophagy-deficient cells was rescued with Gln, not Asp, supplementation. This contrasts our findings in which Asp, but not Gln, was decreased following lysosomal inhibition and growth inhibition by CQ was most efficiently rescued with Asp supplementation. Zhang et al. (41) found autophagy-proficient and -deficient cells had equivalent concentrations of Asp. These differences may be due to the unique Gln metabolism pathway in PDAC (42). In addition, Zhang et al. (41) found the concentrations of most amino acids in autophagy-deficient cells increased under starvation conditions due to up-regulation of cell surface transporters. Given we observed an increase in the majority of amino acids following CQ treatment, a similar mechanism may occur following lysosomal inhibition. Others have shown that acute lysosomal inhibition does not significantly change whole cell levels of Asp but increases its lysosomal concentration (43). These observations suggest cellular responses to genetic inhibition of autophagy may not phenocopy those of pharmacologic lysosomal inhibition and that the role of lysosome in amino acid pool maintenance may be cell- and environment context-specific. Previous work identified

![Fig. 6. CQ and VE-822 synergistically inhibit tumor cell growth in organotypic in vitro and in vivo PDAC models. (A) Viability of MiaPaca2-GFP cells in CAF coculture ± CQ ± VE-822 (n = 3). (B) Representative fluorescence images of A. (Scale bar, 0.05 μm.) (C) Xenograft MiaPaca2 tumor growth ± CQ ± VE-822. (D) IHC staining of indicated markers in MiaPaca2 tumors after 5-d vehicle or CQ/VE-822 treatments. (E) Kaplan–Meier curves of tumors in syngeneic KPC mouse models ± CQ ± VE-822. (F) IHC staining of indicated markers in KPC tumors with 5-d vehicle or CQ/VE-822 treatments. *P < 0.05, **P < 0.01, ***P < 0.001.](https://www.pnas.org/doi/10.1073/pnas.1812410116)
a synergetic interaction between CO and inhibitors of CHEK1 in targeting colon and osteosarcoma cancer cells (44). However, rather than CO causing nucleotide insufficiency, the synergy was attributed to the fact that genetic autophagy inhibition has been shown to enhance proteasomal degradation of CHEK1 (45) and thereby increase the potency of CHEK1 inhibitors. In our models, pharmacologic lysosome inhibition did not decrease total CHEK1 protein levels, suggesting CO-induced dNTP pool depletion, leading to increased replication stress, is the primary mechanism underlying this synergy. Our findings suggest the addition of RSR inhibitors could improve the efficacy of lysosomal inhibitors in PDAC and represent a rationally designed drug combination in this notoriously treatment-resistant disease.

Experimental Procedures

Cell Culture. MiaPaCa2, CFPAC1, Panc03.27, and Panc1 were purchased from American Type Culture Collection. DANG, L3.6pl, YAPC, and MiaPaCa2-GFP were provided by Dr. David Dawson, University of California, Los Angeles (UCLA). KPC cells were provided by Dr. Guido Ebli, UCLA. Primary human cancer-associated fibroblasts were isolated from surgical PDAC specimens by an outgrowth method (46) and characterized (47). The primary PDAC model X-Chr.1 was developed from a patient at UCLA. Primary PDAC models A2.1 and A13A were provided by Dr. Christine A. Iacobuzio-Donahue, Memorial Sloan Kettering Cancer Center, New York.