Automated vehicles (AVs) are coming to our roadways. They are beginning to pose problems and issues that many of the public have not yet encountered or even witnessed. The present work addresses how the capacities and impacts of growing degrees of ground automation can be communicated to and understood by the general public. To accomplish this, we have sought to integrate our individual perspectives on the issue of AVs which feature, first, a science communication viewpoint that focuses specifically on how the traveling public can anticipate, understand, and appreciate the effects of such innovation. Our second narrative strand features a human-centered approach to the on-coming penetration of AVs, looking to understand precisely how these diverse forms of full and semiautomation will be experienced by human drivers. Finally, we conclude with an analysis of the technical challenges guiding the possible features of this wave of automation and prospective autonomy in future transportation. All three levels—public communication, human–machine interaction, and technical feasibility—coact to sculpt the coming forms of transportation. The resulting system promises to be strikingly different from its traditional and contemporary form, which has come to be accepted as the status quo for almost a century. Shared discourse, including public communications pertaining to this disruptive evolution, is critical to our collective understanding of the future we may be able to create.

Current Communications About Self-Driving Cars

As of March 2018, 52 companies possessed permits to test autonomous vehicles on the roads of the State of California alone (1, 2). Self-driving vehicles represent a fast-paced field of modern technology, as companies compete for dominance in this important field of emerging transportation capacity. Nevertheless, relatively few members of the traveling public have experienced trips in an autonomous vehicle. This personal inexperience can make it difficult for the general populace to judge the potential utility, for good or bad, of such vehicles. The advent of the driverless car is usually portrayed as both labor saving and accident reducing. However, the societal impact of these mobile robots will certainly be more extensive than a simple change in the journey between the immediate origin and the destination. For example, in coming years it may not be necessary for individuals to own a car, especially when they can summon one from a circulating fleet using a smartphone application and being fully confident that it will arrive within minutes or even seconds. This sea change in vehicle usage will have many knock-on effects. Some studies have suggested that up to 30% or more of traffic circling downtown streets is actually searching for parking. The search could become unnecessary when the vehicle is driving itself to pick up its next user, as some projections concerning Uber usage seem to suggest. Such functionality might free up curb space, which is becoming increasingly more important for safe pick-ups and drop-offs in already congested locations (4). These technological changes may then foreshadow a repurposing of parking structures or parking spaces within buildings to accommodate new housing, offices, or retail uses. Of course, parking concerns are not by any means the only dimension of change.

The radical changes promised by AVs will have profound and extended effects on the general public. Some of these changes we can readily anticipate; others are much less predictable. On what basis will individual members of the public judge the value of such technical innovations (5)? One prominent issue in such a discussion is what people understand an AV to be. It may well be that the general public views such vehicles as not requiring any driver input whatsoever. However, this perception fails to capture many of the major differences between proposed AVs and the present, semiautomated on-road vehicles. The latter provide various forms of driver assistance to help the driver who remains in ultimate control. Fully autonomous vehicles are designed to drive themselves. These differing forms of advancing vehicles have been categorized in a hierarchy which compares driver control versus vehicle control. The hierarchy is described in the Society of Automotive Engineers (SAE) levels of control (6, 7). Although we do not specifically discuss each of these levels here, it is vital to note that many public assumptions about advanced vehicle capabilities may be misplaced. Thus, individuals may well assume that such AVs possess much more intelligence and operational capacity than is actually the case. Such assumptions may prove critical, if not fatal.

Some of the most evident proximal impacts will be on jobs and associated commuting patterns. The driverless car has the potential to make its human controller as redundant as the horse became for the horseless carriage. Truck and taxi drivers may well have to find new forms of employment, some perhaps supervising these individual vehicles from remote control call centers. However, jobs in the new transportation sector may well
diminish, as they have in other sectors radically changed by automation and now emerging machine autonomy (8). It is true that some jobs will be created, e.g., in maintaining such fleets of autonomous vehicles, and access to employment for those in economically depressed regions could be improved with AV transport services. Studies (9–11) show that, in general, societal changes resulting from the introduction of these innovations are likely to be extensive. Of course, it is likely that many human-driven vehicles will remain on the roadways for some decades to come. For those who still choose to own their own vehicle, that vehicle need not be parked and taking up space for 22 hours a day. It could be out earning money by giving rides to others. City transit agencies need to consider the arrival of the driverless car now, when plans for future transit projects are in the pipeline. Does a costly subway extension still make sense in light of these emerging transport options? Driverless cars can provide mobility to those who cannot physically drive, such as children, the disabled, or the frail elderly. However, for such populations the problems of ingress into and egress from the vehicle remain, emphasizing that mobility is more than just the car journey alone. Fuller, augmented mobility is a social amenity that can prevent the loneliness, depression, and failing quality of life that attend isolation and immobility. Perhaps such AVs will lure passengers off buses, deleteriously impacting the economics of bus operations in urban and suburban areas. These represent only a limited set of the foreseeable changes; more widespread and radical change is promised.

Such enormous changes, when coupled with a still relatively limited public awareness resulting from the somewhat constrained distribution of the details of the precise nature of the technology’s development, means that it is important for all involved professionals to disseminate their work and clearly articulate the limits of their own research. Of course, with such complex issues considerable uncertainty remains about the manner in which such innovations will make both short- and long-term impacts (12). There are also further limits on science, and a costly subway extension still makes sense in light of these changes resulting from the introduction of these innovations are likely to be extensive. Of course, it is likely that many human-driven vehicles will remain on the roadways for some decades to come. For those who still choose to own their own vehicle, that vehicle need not be parked and taking up space for 22 hours a day. It could be out earning money by giving rides to others. City transit agencies need to consider the arrival of the driverless car now, when plans for future transit projects are in the pipeline. Does a costly subway extension still make sense in light of these emerging transport options? Driverless cars can provide mobility to those who cannot physically drive, such as children, the disabled, or the frail elderly. However, for such populations the problems of ingress into and egress from the vehicle remain, emphasizing that mobility is more than just the car journey alone.

Fuller, augmented mobility is a social amenity that can prevent the loneliness, depression, and failing quality of life that attend isolation and immobility. Perhaps such AVs will lure passengers off buses, deleteriously impacting the economics of bus operations in urban and suburban areas. These represent only a limited set of the foreseeable changes; more widespread and radical change is promised.

Hancock et al. PNAS

April 16, 2019

vol. 116

no. 16

7685

PNAS

Hancock et al.

Copyright © 2019. All Rights Reserved.
technical forms of technology that intend to relieve humans of all momentary tactical control and even threaten to supersede all strategic control as well (26). As such, the present expansion is more a disruptive system change than a gradual and controlled evolution. Because disruptions effect broad change, a myriad of issues concerning the future of transport are embedded in many more broadly based questions about the role and impact of automated and autonomous systems in human life more generally (6, 27).

Today’s vehicles are already technology-heavy semiautonomous systems built, in turn, by other high-tech systems engineering and production processes. In some circumstances, the coming AVs might well appear to be robots built by robots, although this is not proving ubiquitously to be the case, since many mainstream manufacturers now appear to be rediscovering the advantages of human workers. As capital costs of fabrication replace labor costs in the long arc of technical productivity enhancement, we are witnessing not simply a transfer of momentary vehicle control but also a logistical tail effect in which the production and design of those vehicles also shows shifts in decision-making authority. This latter shift of power nominally pits increasingly capable computer-mediated technologies (28, 29) against humans who are largely restricted by the limitations of their inherent capacities to assimilate ever greater tranches of information as technology changes. But this progress continues apparently unabated (30). However, the form of progress that constantly features facets of growing machine superiority is not without its own subtleties and caveats. For example, some vehicle manufacturers have found that the vision of fully automated production proves less efficient and sustainable than one in which humans and machines work alongside each other. Like the operations of the innovative vehicles themselves, this could well imply that the human role is not purely vestigial but rather is one that coevolves along with the nature of the technological innovations involved. Such a proposition argues that the development of automation, rather than being a separation of human and technology, might actually represent an on-going symbiosis between humans and the technology they create (Fig. 1).

Previous contrasts of human performance and machine performance have largely been set within the competitive rather than the cooperative perspective. Perhaps the seminal example of such a contrasting comparison derives from the now classic Fitts list (31, 32). In the Fitts report, the authors juxtaposed a series of capabilities in which either the machine or the human excelled and which by implication was performed better by one or the other. This list and those that have subsequently followed it (33) have been characterized as “MABA–MABA” (Machines Are Better At–Men Are Better At) types of analyses (Fig. 2) (34). As indicated, the essence of such comparison is one of contrast, not cooperation. Some have suggested that the very way in which these comparisons are framed is incorrect (35). Technologies can and often do augment inherent human abilities (36); thus rather than an explicit replacement of human knowledge and ability by more efficient machine functions, a partnership between them is sought. Notwithstanding these arguments, two simple curves exhibit the contrasting rates of change in human and machine capability over time (Fig. 1). From this perspective, the relative rates of change mean that machines threaten to supersede increasingly greater swathes of human capacity on an ever-accelerating curve. This eventuality is argued notably by technology optimists who reference increasing computer and robot capability and an associated decrease in the price of their operations (37). However, it must be acknowledged that precisely where we currently stand on these generalized curves has always been a matter of debate (38). Despite the apparently contrasting trends illustrated in Fig. 1, all is not dissonance between humans and technology, of which AVs are one of the more prominent recent incarnations. For instance, it is clear that only with technology can our limited planetary resources support a world population that soon promises to exceed eight billion persons (39). Generally, the growth of automation does not result in any simple one-for-one replacement of each individual human worker, even within the purview of any particular domain of specific production. Rather the relationship is more complex, with a variegated interplay of augmentation and replacement contingent upon the innovative technology and the fiscal and socio-technical drivers that found such developments (40). In general, automation changes the fundamental nature of the remaining human work. Automation may do this in time increments that cause both benefit and hardship. These effects will be felt for decades and then across generations as economies adapt to the new added capacities (41).

Today, these dynamics and influences are reaching most evidently into the multi-trillion dollar social domain of transportation.

One of the proximal problems we now face concerns a quickly approaching and ever greater mix of multiple forms of vehicle control on mutually shared road systems (12, 42). For the foreseeable future many vehicles will be solely and exclusively controlled by human drivers. Indeed, with the enthusiasts’ concern for vintage vehicles, such manually controlled machines may continue to be present even in highly automated contexts. However, ever more frequently interspersed with these manually driven vehicles will be systems with some degree of shared human–machine control. Indeed, we are witnessing these systems enter into full-production vehicles at the present. In these vehicles, humans may temporarily drive while the vehicle assumes control on putatively more predictable multilane freeways or on major road arteries, e.g., where traffic control flow is separated by barriers. The latter driving situation, which overwhelmingly demands precise control over lateral and longitudinal positioning, is especially well suited to current automation capacities (43). However, among this mix of manual and semiautomated control, fully autonomous vehicles will also emerge. This gradual turn to semiautomated and fully automated entities brings particular issues into focus (44). Fully automated systems will be under permanent computer control, never seeking human input and
Man causation: what is actually the result of the situation or the condition, this error occurs when an individual attributes to humans actions that are incorrect, they lead to cases of attribution error (48). Traditionally, this occurs when an individual attributes to human causation what is actually the result of the situation or the condition.

Conform to intrinsic human attributions concerning social behaviors, evolves during the coming years, the degree to which such features conform to intrinsic human attributions concerning social behaviors, evolves during the coming years, the degree to which such features evolve during the coming years, the degree to which such features.

conceivably be programmed into AVs, there seem to be few efforts to be so in current production models. At the same time, automated systems process highly divergent sources of perception and associated driver interaction. Reprinted from ref. 31, with permission of the Ohio State University Research Foundation.

Thus never formally possessing what we now view as an immediate driver. However, all these vehicular technologies will operate together as a community on common roadways, at least for a number of decades. This has been referred to as the “mixed equipage” or “mixed inventory” transportation state. Such mixtures of entities create their own specific problems and conflicts (45). One particularly relevant concern is the psychological concept of attribution error (46).

The open question we still face is the precise form and frequency of attribution error when humans act in conjunction with AVs on all segments of the roadway system (50). The roadway is a mutual social resource, so all actors bear shared responsibility for common citizenship (51). In present transportation conditions, such social harmony is preserved and legally mandated by the rules of the road. These rules include formal traffic-control devices and traffic laws and further involve the designed regularities of the roadway by the civil engineers responsible for their construction. Most critically, these rules are also augmented by common assumptions about how other drivers will behave in various driving contexts. While the design features of AVs will obviously evolve during the coming years, the degree to which such features conform to intrinsic human attributions concerning social behavior on the road is unlikely to be uniform (52).

For AVs, such concerns fall in the interstices between design innovation and regulation, as indeed they do for virtually all forms of emerging technology. How to reconcile the speed of legislation and the speed of technological innovation has yet to be resolved.

As a general proposition, human beings are effective in distilling the attributions of others. Indeed, the cohesion of society depends upon rational attribution and common ground assumptions (53). Humans driving on the roads together engage in an implicitly choreographed “dance” in which, even though some prove less than completely sensitive, the general collective functions remarkably well. However, the foundational, implicit rules are not always evident. For example, people in different countries and people who come from different cultures drive by different implicit and sometimes explicit rules; one evident example is the side of the road on which they drive. Such cultural, common assumptions can be highly problematic for strangers to that region (54). Driverless vehicles are the ultimate strangers in our midst. They currently lack the required etiquette to operate as human beings do (55). Unlike the tourist, who at least can depend upon certain common human assumptions, AVs have highly limited access to the implicit rules of the road and access only the explicit rules with which they have been programmed. They have even less access to social conventions at the human–human interaction level. Although these latter behaviors might conceivably be programmed into AVs, there seem to be few efforts to be so in current production models. At the same time, automated systems process highly divergent sources of perception and associated driver interaction. Reprinted from ref. 31, with permission of the Ohio State University Research Foundation.

Hancock et al. PNAS April 16, 2019 vol. 116 no. 16 7687

Fig. 2. The comparative lists generated by Fitts and his colleagues (31) in a 1951 report on the future of aviation. Although considered peripheral to the central focus of that report, the lists themselves and the associated graphic have been the subject of much discussion in the more than 60 y of their existence. Most especially, much attention has been paid to whether using direct comparisons provides the most useful strategy for the development of human–machine collaboration. Such an approach exerts an important impact even today in proposals such as the SAE multiple levels of AV capacity and associated driver interaction. Reprinted from ref. 31, with permission of the Ohio State University Research Foundation.

<table>
<thead>
<tr>
<th>• Ability to detect small amount of visual or acoustic energy.</th>
<th>• Ability to respond quickly to control signals, and to apply great force smoothly and precisely.</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Ability to perceive patterns of light or sound.</td>
<td>• Ability to reason deductively, including computational ability.</td>
</tr>
<tr>
<td>• Ability to improvise and use flexible procedures.</td>
<td>• Ability to reason handle highly complex operations, i.e., to do many different things at once.</td>
</tr>
<tr>
<td>• Ability to store very large amounts of information for long periods and to recall relevant facts at the appropriate time.</td>
<td>• Ability to exercise judgment.</td>
</tr>
</tbody>
</table>

As a general proposition, human beings are effective in distilling the attributions of others. Indeed, the cohesion of society depends upon rational attribution and common ground assumptions (53). Humans driving on the roads together engage in an implicitly choreographed “dance” in which, even though some prove less than completely sensitive, the general collective functions remarkably well. However, the foundational, implicit rules are not always evident. For example, people in different countries and people who come from different cultures drive by different implicit and sometimes explicit rules; one evident example is the side of the road on which they drive. Such cultural, common assumptions can be highly problematic for strangers to that region (54). Driverless vehicles are the ultimate strangers in our midst. They currently lack the required etiquette to operate as human beings do (55). Unlike the tourist, who at least can depend upon certain common human assumptions, AVs have highly limited access to the implicit rules of the road and access only the explicit rules with which they have been programmed. They have even less access to social conventions at the human–human interaction level. Although these latter behaviors might conceivably be programmed into AVs, there seem to be few efforts to be so in current production models. At the same time, automated systems process highly divergent sources of perception and associated driver interaction. Reprinted from ref. 31, with permission of the Ohio State University Research Foundation.
the devices that give them a tangible embeddedness in our world. Thus, such attributions will be highly contingent on the general public’s perceptions of AVs, and such perceptions are highly susceptible to the inconsistent coverage provided by contemporary media outlets. Of course, attribution errors are not the only issue that beset full human–automation integration.

Technical Feasibility

As is always important regarding a culture-changing technical innovation, historical context can help temper both cynical and overly optimistic reactions to our near future. Research on self-driving cars is not as new as it may seem. Autonomous driving research was well underway in the early 1980s, and by 1996 multiple platforms were demonstrating significant autonomous capabilities, as evidenced by Carnegie Mellon University’s “No Hands Across America” project, which demonstrated 96% autonomous driving from Pennsylvania to California along the nation’s highways and interstates. The reason these early successes fully two decades ago did not lead to a sea change in driving was not simply technical. As is the case today, the financial model for exactly how autonomous driving would function was uncertain. From sales and lease models to liability and tort, it was unclear how autonomous decision making in machines could be integrated into a legal and jurisdictional system designed entirely for human action and human consequence.

A further, more nuanced concern has affected the optimism of technology adopters in this area for the past two decades. The autonomous car can demonstrate statistical success, traveling thousands of miles with reasonable accident rates in the real world. Ironically, the Achilles heel of autonomous machines is the same as their relative advantage: the lack of tactical human decision making. When facing a highly unlikely situation that is nonetheless critical, the machine can face a choice point it has never before addressed: what if a stroller runs into the street after the mother trips and falls; what if two nefarious individuals hijack the car; what if a hacker destroys the braking system; what if glare from a solar reflection blinds the sensors just as a truck passes? Furthermore, we, as human designers and users, may have absolutely no idea how that machine might respond to such novel scenarios. Humans have an empathetic understanding of how other humans behave when facing boundary circumstances. We can imagine ourselves in each scenario, and we can imagine bounds on just how we ourselves might react, but autonomous cars are not so constrained. Of course, it may be possible to engage differing forms of “smart” infrastructure to share these control burdens, but this raises the difficult issue of what parts of the transport system are publicly owned and supported versus the private vehicles that benefit from such social investments. Such discussions are themselves framed within the wider context of an emerging, integrated origin-to-destination-oriented transport system.

Autopilot control systems in both private and commercial aircraft provide an informative comparison with ground AVs, but there are some significant differences between the contexts. First, in general, airplanes in the sky face circumstances that present somewhat fewer moment-to-moment dynamic changes and a less diverse range of such challenges than those faced by cars on terra firma. Second, commercial aircraft still have not one but two humans ready to respond with what is anticipated to be high levels of situation awareness. It is clearly now feasible to make a fully autonomous commercial aircraft, an airliner. In fact, it is driven by a human who has blind spots (62). These dissonant attributions and their associated errors are liable to be a problematic source of conflict as we proceed down the road to autonomy.
However, the cost of doing so and demonstrating its absolute safety may well be prohibitive in our current risk-averse climate. As systems become increasingly more complex, our ability to test their responses to all possible states diminishes accordingly, and we quickly reach a point at which it becomes literally remissible to exhaustively test the system as a whole. We then are left with an alternative: to conduct a restricted set of sample-based testing, trying to derive general conclusions from partial evaluation coverage and create resilience by keeping at least one or more humans in the loop (71). The current belief that a human or a team of humans would be capable of innovative, on-the-job problem solving remains persuasive. Humans are not so obviously constrained by the rules written into formal software or by the purely mechanistic limitations of the sensors and effectors of our current AV hardware. Thus put it more than probable that during any extended transition period our semi-automated ground vehicles can and will behave very much like contemporary airborne systems. Whether we will need graded licenses to operate these varying forms of automated has yet to be determined. Precedent argues against such a course.

Of course, this shared control and shared responsibility type of activity is only one of many forms of operation that will be present at any one time. Presently, Uber states that it will field a team of remote human drivers, while Waymo claims to have no need of such support services. Whether shared responsibility is an obligatory phase of development or whether a significant portion of ground transportation can jump to full automation is contingent upon many forces beyond the technical alone (e.g., financial/marketing constraints). The degree to which technological evolution will proceed via gradual change or jump to a new stable state (punctate equilibrium) (72) is still uncertain. Of course, one form of technology may exhibit gradualism while another allied technology vaults forward. That being so, perhaps we should expect a chequered pattern of development in our AVs and their on-road operations. It is unlikely that the failure of one sort of AV technology produces parallel failures of other sorts. It is more than probable that during any extended transition period our semi-automated ground vehicles can and will behave very much like contemporary airborne systems. Whether we will need graded licenses to operate these varying forms of automated has yet to be determined. Precedent argues against such a course.

Examples of boundary conditions can often remind us of the unique value of human innovativeness. Ironically, it is human ingenuity that can give us the examples that require a human common-sense response. A relevant and recent example comes from the computer vision research team that demonstrated the “45 mph stop sign.” They created small graffiti modifications of a standard octagonal red stop sign and showed that a remarkably small number of black stickers placed in precise positions on a stop sign accomplish two outcomes simultaneously: to humans, the stickers look like simple graffiti and in no way diminish the ability to discern the stop sign, but to the computer’s vision system (as determined by researchers’ tests derived from self-driving car software) the very same modified stop sign appears reliably to be a 45-mile-per-hour speed-limit sign. This example is crucial because we are surprised by the computer’s mistake and because, as humans, we expect errors to be small deviations from our own norm, not large reversals of interpretation. Collectively we may be surprised if we assume that machine errors follow human patterns of error. They definitively do not. Rather, we must see autonomous machines as true social aliens. They are responsive agents in our universe, but they are nonhuman. They will succeed in ways that are not human, and they also will fail in ways that have nothing to do with how we fail. This prevents us, as nonexperts, from intuitively placing boundaries on the ways in which we expect autonomy to fail gracefully.

Therein lies the grand social challenge of our time vis-a-vis autonomy. AVs may statistically perform more safely than humanity, but are we as humans prepared to live in a world in which failure and degradation appear, from our human perspective, to be random and extreme compared with our comparative expectations of human fallibilities? That is a challenge for systems engineering, for engineering design, and especially for the science of human–machine integration. Progress, especially in this last-mentioned area of inquiry, is not keeping pace with that in the field of computer science or with computational capacity in general. The fundamental problem here is the complexity of understanding human cognition itself. Hence, our desire to innovate responsibly will demand a renewed focus on understanding the societal ramifications of innovation—innovation that is fast but whose integration into society requires us to resolve issues that are not solely engineering challenges but are trans-disciplinary social concerns that can be nuanced, complex, and comparatively slow in developing.

Routes to Resolution

In the prior sections, we discussed some of the current and forthcoming challenges that face the integration of driverless vehicles into modern transportation. Having identified such problems, it is incumbent upon us to offer some avenues for research and public engagement that can help us identify and implement more robust deployments. Two vital elements here concern calibrated operator trust and communicated transparency. For the former, design processes should seek to design explicitly for appropriate levels of trust by human occupants in light of the known reliability of the automation (73, 74). This goal is difficult, but achieving it is critical. It is difficult because we are still finding our way in understanding the contextual reliability of differing forms of automation and semiautomation offered by various manufacturers. It is critical, because if there is insufficient human trust in autonomous and semiautonomous systems, there will be both little usage and chronic misuse (75). The company that establishes the most effective calibration of trust, as a result of the highest perceived and actual reliability of their product, will be best placed in this emerging market, that is, assuming the market does not collapse if there is a catastrophic loss of public trust. Transparency is a property of the machine by which it clearly signals both its near- and long-term intent (76). To accomplish this, vehicles must already possess human-like capacities in various rudimentary forms. For example, displays inside the vehicle already show the driver various states of engine function, gas tank status, and the like. Externally, there are existing but limited techniques for informing other agents of vehicle intent via displays such as turn signals (77). All of these express intent, albeit currently on a rather low level. Such communications, via increasingly information-rich interactions, will greatly enhance vehicle-to-vehicle and vehicle-to-infrastructure conversation capacities.

Trust is already a central theme in the public debate about driverless transportation. Acceptance of any technology requires trust. Quite often new technologies fail to deliver on their promises, either because of the hyperbolic nature of those promises or because their software systems were insufficiently tested and debugged for rich, real-world interaction (78). However, the vehicle is an order of magnitude different from most electronic orthotics. The failure of a telephone or a computer can be annoying and frustrating, and sometimes such failures do even put lives at risk, but on our roadways human lives are always at risk. So, as the risks associated with a momentary failure of interaction increase in proportion to the incipient threat in the environment, the importance of trust grows in lock step. Given that even present-day production vehicles are partial robots, how people come to employ, evaluate, and appropriately trust their robot vehicles will remain a major factor in their greater public acceptance (79). This is centrally a challenge of design, test, and evaluation in conjunction with increasingly widespread public usage.

The trial of trust is further magnified by the fact that these vehicular robots will become more complex as they attempt to function safely in more challenging future contexts, such as dense urban driving. This complexity, in turn, easily outpaces the knowledge level of many of the stakeholders throughout the transportation community. The speed with which new technological innovations increase the gap between stakeholders’ intuition regarding vehicles and the reality of what is fielded in our laboratory cities exacerbates an already critical problem. We
cannot expect the appropriate form of regulation and policy-setting leadership that is sorely needed until those in a decision-making role possess the appropriate technological fluency and the time to apply it (80). By “fluency” we mean a combination of common semantic grounds for discourse, an awareness of the state of the art, and the critical inquiry skills required to make sense of this new technology. Even then, autonomous systems are still liable to manifest unforeseen positive and negative societal consequences, especially as these transportation advances are linked with other interactive complex systems in society (e.g., the service industry). Fluency itself is a two-way street in which designers, fabricators, manufacturers, and vendors of these emerging systems need to explicate their products in a way that can be understood by legislators and the public alike. Although vital, trust is by no means the only factor involved in such complex decision-making processes; there have been numerous important studies of these constellations of differing influences on decision making (18, 20). We need a new way in which to integrate expertise with decision-making discourse and to nurture trust (16, 81–83). Expertise must itself be trustworthy—not a technical advisor serving at the pleasure of a corporation but rather outreach providing the technology fluency that enables elected officials, civil servants, and the public to engage in meaningful discourse regarding our shared human–technology future (82). In light of the foregoing arguments, we advocate that such an independent scientific body, allied to current transportation regulatory bodies, be created to address the specific concerns of emerging ground-transportation technologies and most especially the issues associated with AVs. Such a group would still face issues in determining how to communicate technical information for general public scrutiny and why such effective information brokerage is so difficult to fully achieve (84).

Conclusions

The advent of AVs on the busy roadways of the world’s nations represents a sea change in the way human transportation is conceived and enacted. We are now witnessing an epoch of significant transition in which active control of the vehicle is being taken from the human driver and placed within the charge of the on-board computer systems themselves (85). This transition is reflected in the disparate strategies of current vehicle production companies. Some of the newer manufacturers view the car as a computer that just happens to have wheels, and they produce cars that are responsive to lateral and longitudinal control. They illustrate one very stark fact: the speed limit, but then how does the anxious husband get his pregnant wife to the emergency room? Questions regarding anyone on the roadway? It may well be that all AVs will adhere to the same rules of the road—any one part of the journey represent only a single facet of this unprecedented change.

Much ink and much ire has been expended in championing automation as a flawless answer to the continuing carnage of road traffic injuries and deaths. Although it is a laudable goal within itself, it is doubtful whether such a grandiose claim is actually testable or realizable (11, 86). Similar objections can be raised for the claims of greater efficiency, since the pertinent question here is at what level should this efficiency be measured—at the systemic level, or is the claim advanced for each vehicle and person on the roadway? It may well be that all AVs will adhere to the speed limit, but then does the anxious husband get his pregnant wife to the emergency room? Questions regarding exceptional social conditions go well beyond algorithmic oversight of lateral and longitudinal control. They illustrate one very stark fact: when we change the face of transportation in the manner that is being proposed, we will change the nature of society itself (7). Whether we are prepared for such a radical evolutionary step remains to be seen.

ACKNOWLEDGMENTS. We thank the three anonymous reviewers whose detailed and extensive comments have served to improve significantly the revised work and Dr. Jessica Cruit, Dr. Kristy Snyder, Dr. Frances Martinez, and Dr. Gabriella Hancock for helpful observations on various early versions of this paper.