








corresponding to ηext ≈ 3.5%. Based on these values of ηint, Rrear,
and Rs, we project the thermophotovoltaic efficiency of our cell at
different temperatures (blue line in Fig. 7) and also compare it
with the experimentally measured values (dots). The efficiency
begins to diminish at emitter temperatures of >1,350 °C. Series
resistance limits the performance of the device in that temperature
range, where the brighter illumination gives rise to a larger short-
circuit current, and therefore larger resistive voltage drop. The
detailed procedure for estimating ηint and Rs from the current−
voltage data is given in the SI Appendix.
Our setup differs from a thermophotovoltaic system in a full

chamber (as shown in Fig. 1A) in 2 key factors: 1) the geometric
view factor, which should be unity in the full chamber, and 2) the
internal series resistance, which should be limited by the inherent
series resistance of the device. The latter can be approached via
improved interconnect metallization in commercial devices.
High series resistance penalizes the cell’s fill factor due to a
resistive voltage drop. In our case, the device had an inherent
internal Rs ≈ 0.1 Ω, but we had an excess 0.33 Ω introduced by
the wire bonds. If these technical difficulties are resolved, we
project that such a system, using a photovoltaic cell identical to
ours, would have a power conversion efficiency of 33.6% at
1,207 °C. This projection is shown by the red line in Fig. 7.
The projected effect of improved subbandgap reflectivity,

from an average value of 94.6 to 98%, is shown by the green
curve in Fig. 7. This improvement in reflectivity can be obtained
by adding a layer of low refractive index dielectric between the
rear gold layer and the semiconductor (49).
Improving the material quality of the photovoltaic device,

which we parameterize with the internal luminescence efficiency
ηint, leads to an enhancement in both operating and open-circuit
voltages. The internal luminescence efficiency of InGaAs is mainly
affected by defect-mediated Shockley−Read−Hall recombination
and, to a lesser extent, by intrinsic Auger recombination. The best
reported (50) values for InGaAs films reached τSRH ≈ 47 μs, with a
corresponding Auger coefficient ∼8.1 × 10−29 cm6·s−1. For our
projection, we use a more moderate Shockley−Read−Hall lifetime
τSRH ≈ 10 μs, ∼2 orders of magnitude longer than the lifetime
τSRH ≈ 60 ns in our device. This would increase the value of ηint
to 98%. This improvement in the internal luminescence effi-
ciency leads to a larger voltage in the photovoltaic cell, raising

the thermophotovoltaic efficiency to ∼48%, as shown by the
orange curve in Fig. 7.
Further efficiency gains can be achieved using an antireflection

coating, and by maximizing the emitter emissivity using silicon carbide
as the thermal radiation source instead of graphite, since the former
has an emissivity « = 0.96 versus « = 0.90 of the latter. This full set of
improvements can lead to >50% power conversion efficiency in
an InGaAs thermophotovoltaic system, as shown by the black
line in Fig. 7.
Although we have achieved a record for thermophotovoltaic

cell efficiency (29.1%), to translate this into a full thermophoto-
voltaic system would require further work on furnaces, combustion
product circulation, thermal management, and other elements.
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Conclusion
We have achieved 29.1 ± 0.4% thermophotovoltaic power
conversion efficiency, by reuse of unabsorbed subbandgap
photons. We provide a roadmap to achieve higher efficiencies
by separately considering the realistic improvements of mate-
rial, device, and chamber parameters. With the improvement of
these parameters, it is possible to achieve >50% power con-
version efficiency using InGaAs photovoltaic cells. A highly
efficient thermophotovoltaic heat engine would be an excellent
choice for hybrid automobiles, unmanned vehicles, and deep
space probes.
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