Sahle and Gossa (1) identify 2 components of our paper with which they disagree. Their concerns are based on misunderstandings of our paleomagnetic data and the published details of the Bokol Dora 1 (BD 1) artifact assemblage.

The normal paleomagnetic sequence at BD 1 cannot represent the Reunion subchron [2.128 to 2.148 Ma (2)]. This would require one or more of the following scenarios: 1) The age of the Ali Toyta Tuff (ATT) is ~0.5 My too old. There is no evidence to support this in the 40Ar/39Ar data; the 95% confidence interval places a minimum age of 2.55 Ma on the juvenile feldspar population. 2) The ATT feldspars were reworked from older eruptions and are unassociated with the vitric component. Geochemical analyses of ~150 glass shards demonstrate that the ATT has a single, homogenous population (3) indicating no incorporation of additional tephra. 3) The normal paleomagnetic interval represents both the Gauss (at/around the ATT) and the Reunion (at/around BD 1), separated by an ~0.5-My unconformity. There is no evidence for an unconformity between these levels in the sedimentological analysis of multiple sections. Any unconformity would have had to remove the reverse polarity sediments of the Matuyama chron while preserving on the brief (20 ky) Reunion subchron. Nearby sedimentation rates range from ~30 cm/ky (4) to ~90 cm/ky (5). Thus, the ~9 m of sediment between the ATT and BD 1 may represent ~10 to 30 ky.
Oldowan assemblages (ref. 3, figure S12). Sahle and Gossa contend that we drew associations between environmental changes, the appearance of early Homo, and systematic flake production. We did not. The connection between the appearance of Homo and environmental parameters is well documented (7). Previous studies document that systematic flake production increases resource return rates for subsistence opportunities that occur in more open habitats (8, 9).

Acknowledgments
We thank the Authority for Research and Conservation of Cultural Heritage, Ethiopian Ministry of Culture and Tourism, for permission to conduct fieldwork at Ledi-Geraru and laboratory research in the National Museum of Ethiopia, Addis Ababa, where the BD 1 artifacts are housed. This research was sponsored by National Science Foundation Grants BCS-1157351, BCS-1460493, and BCS-1157346, and BCS-1157351. This paper was made possible through the support of a grant from the John Templeton Foundation. The opinions expressed in this paper are those of the authors and do not necessarily reflect the views of the John Templeton Foundation.