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Traditional methods of characterizing biodiversity are increasingly
being supplemented and replaced by approaches based on DNA
sequencing alone. These approaches commonly involve extraction
and high-throughput sequencing of bulk samples from biologically
complex communities or samples of environmental DNA (eDNA). In
such cases, vouchers for individual organisms are rarely obtained, often
unidentifiable, or unavailable. Thus, identifying these sequences typ-
ically relies on comparisons with sequences from genetic databases,
particularly GenBank. While concerns have been raised about biases
and inaccuracies in laboratory and analytical methods, comparatively
little attention has been paid to the taxonomic reliability of GenBank
itself. Here we analyze the metazoan mitochondrial sequences of
GenBank using a combination of distance-based clustering and
phylogenetic analysis. Because of their comparatively rapid evolution-
ary rates and consequent high taxonomic resolution, mitochondrial
sequences represent an invaluable resource for the detection of the
many small and often undescribed organisms that represent the bulk
of animal diversity.We show thatmetazoan identifications in GenBank
are surprisingly accurate, even at low taxonomic levels (likely <1%
error rate at the genus level). This stands in contrast to previously
voiced concerns based on limited analyses of particular groups and
the fact that individual researchers currently submit annotated se-
quences to GenBankwithout significant external taxonomic validation.
Our encouraging results suggest that the rapid uptake of DNA-based
approaches is supported by a bioinformatic infrastructure capable of
assessing both the losses to biodiversity caused by global change and
the effectiveness of conservation efforts aimed at slowing or reversing
these losses.

environmental DNA | metabarcoding | taxonomic assignments

Human activities have resulted in deteriorating environmental
conditions worldwide, prompting urgent calls to increase

our ability to assess biodiversity across space and through time
(1, 2). Identifying organisms for these assessments typically relies
on observations or, for small organisms, reference to voucher
specimens housed in collections. Traditional morphological iden-
tifications of collected materials are increasingly being replaced by
DNA-based identifications. This change has been accelerated by
the adoption of DNA barcoding (3) because of its accuracy, speed,
and now lower costs. However, for very small and abundant or-
ganisms (the vast majority of diversity on the planet), even tradi-
tional barcoding can be impractical. Thus, sequencing of bulk
DNA samples (from collections of organisms) or environmental
DNA (eDNA; DNA shed from organisms into the environment)
via metabarcoding (the characterization of multiple DNA se-
quences from a single sample) is increasingly being used to char-
acterize biodiversity in terrestrial, freshwater, and marine habitats
(4, 5). Materials studied include bulk soil (6), sediment, and
benthic aquatic samples (7); bulk samples from organismal traps
(e.g., Malaise traps for insects) (8); gut contents (9); plankton tows
(9); filtered water (10); and ancient DNA (11, 12).
Identifying animal (metazoan) sequences obtained from these

environmental samples typically relies on comparisons with GenBank

(13), the largest repository of genetic data for biodiversity (14, 15).
In many cases, no vouchers are available to independently con-
firm identification, because the organisms are tiny, very difficult
or impossible to identify, or lacking entirely (in the case of eDNA).
While concerns have been raised about biases and inaccuracies in
laboratory and analytical methods used in metabarcoding (16–18),
comparatively little attention has been paid to the taxonomic re-
liability of GenBank itself, whose >4.7 million mitochondrial gene
sequences representing >170,000 metazoan species have never
been comprehensively assessed for taxonomic accuracy.
Mitochondrial sequences represent an invaluable resource be-

cause of their comparatively rapid evolutionary rates and conse-
quent high taxonomic resolution (19). The majority of metazoan
mitochondrial genomes contain 37 genes, including 2 coding for
ribosomal RNA, 13 coding for proteins, and 22 tRNAs (20). The
tRNAs generally are very short (approximately 60 to 70 bp) and
thus not useful as taxonomic markers. However, the other 15 genes
are generally much longer than 100 bp, making them potentially
useful markers. For the many small and often undescribed organisms
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that represent the bulk of animal diversity (21), they represent a
cost-effective way of broadly characterizing individuals, populations,
species, and communities.
Incorrect taxonomic annotations of DNA sequence data can be

caused by inadvertent amplification of laboratory contaminants
(22), intimately associated organisms including bacteria (23, 24), or
nontarget genes, such as pseudogenes (25); by incorrect identifi-
cation of the study organisms (26); or by mistakes made during data
entry at various stages. These annotation errors could be pervasive
and highly problematic, but there have been only limited attempts
to quantify their magnitude. We analyzed the scale, patterns, and
causes of metazoan mitochondrial sequence mislabeling in the
GenBank BLAST NT database at the genus level and above to
address previous critiques of GenBank that have focused on major
taxonomic errors. We used VSEARCH (27) to group closely re-
lated metazoan sequences of 13 protein-coding and 2 ribosomal
RNA-coding mitochondrial genes (SI Appendix, Table S1) at 97%,
98%, 99%, and 100% thresholds. Clusters containing sequences
belonging to different phyla, classes, orders, families, or genera
were flagged for further investigation. This approach assumes that
clusters of highly similar sequences (97% or greater) for these
hypervariable genes should typically contain conspecifics but not
sequences of multiple genera, families, orders, classes, and phyla
(unless they are mislabeled). We did not attempt to identify errors
at the species level because to do so would require case-by-case
assessments of far more clusters coupled with detailed taxonomic
evaluations, since multispecies clusters could often be the result of
insufficient taxonomic resolution of the genes or taxonomic
disagreements and revisions.

Results and Discussion
A total of 4,714,864 gene sequences downloaded from GenBank
yielded 279,899, 304,804, 354,463, and 440,800 multisequence
clusters (groups containing more than 1 sequence) at 97%, 98%,
99% and 100% clustering thresholds, respectively (SI Appendix,
Table S1 provides the breakdown per gene at the 97% thresh-
old). The remaining 332,834, 385,985, 511,172, and 1,547,404
“clusters,” respectively, had just a solitary sequence, which by
definition could not be used to test for labeling errors since the
test depends on having more than 1 higher taxon in a cluster. As
expected, sequences in multisequence clusters represented a
larger proportion of all sequences at lower similarity thresholds
(Fig. 1). Cytochrome oxidase subunit I (CO1) and Cytochrome b
apoenzyme (Cytb), the 2 most common mitochondrial gene se-
quences in GenBank, with 54.5% and 10.5% of all mitochondrial
sequences, respectively, also had somewhat higher proportions
of sequences in multisequence clusters (e.g., >90% at a 97%
threshold; Fig. 1 and SI Appendix, Fig. S1), probably because
with a greater depth of sampling, sequences that do not form
clusters are less likely. Thus, we highlight analyses based on the
97% threshold for these 2 genes, as these estimates are the most
inclusive of GenBank’s data and hence likely to be the most
reliable. We also present analyses of the small (12S) and large
(16S) ribosomal RNA genes, as they are being increasingly tar-
geted in community DNA studies that heavily rely on GenBank
for taxonomic annotations (4). The 97% threshold represents a
level of sequence similarity typical of intraspecific variation for
mitochondrial genes (28); it also provides a reasonable upper
bound on the estimate of mislabeled sequences because the
resulting larger clusters are more likely to contain genuinely
related higher taxa (e.g., congeners) that nevertheless will be
flagged as misidentified by virtue of belonging to a single cluster.
To estimate the number of sequences that were incorrectly

annotated, we examined all clusters containing multiple phyla,
classes, and orders individually and used phylogenetic analyses to
determine where the errors occurred. Whenever mislabeled se-
quences at the order, class, and phylum levels could not be
identified unequivocally with phylogenetic analysis, we calculated

the minimum and maximum possible number of misannotated
sequences, assuming that at least 1 annotation was correct. For the
much more numerous clusters containing multiple families or genera,
we used the same methods as were used for higher taxonomic ranks
for all the clusters with 100 or more sequences (i.e., 375 clusters
accounting for 133,598 sequences); for clusters with fewer than 100
sequences, we only estimated the minimum and maximum numbers
of mislabeled sequences. We manually examined clusters larger than
100 sequences because our analyses showed that checking these
clusters (which represented only 2.0% of all clusters but contained
46.8% of the total sequences) was an efficient way of improving the
precision of our estimate of the possible range of error rates (SI
Appendix, Fig. S2).
The percentage of sequences with incorrect assignments in-

creased with decreasing taxonomic rank but was very low for
most taxonomic levels (Table 1 and Fig. 2). Only 0.01% of se-
quences were incorrectly annotated at or above the level of the
class, 0.05% were incorrectly annotated at or above the level of
order, and 0.17% to 0.95% were incorrectly annotated at or
above the level of family. Error rates rose only at the level of
genus and above, with the total for all genes ranging from 0.73%
(minimum estimate) to 3.47% (maximum estimate). For CO1
and Cytb, the minimum and maximum estimates ranged from
0.58% to 3.30% and from 0.72% to 5.03%, respectively.
A maximum estimate is likely to be an overestimate because it

assumes that the taxon with the fewest sequences in a cluster is the
one that is correctly identified (SI Appendix), whereas the correct
annotation was the most common taxon in 95% of the clusters
examined (SI Appendix, Fig. S3). Other limitations inherent to
distance-based clustering approaches with fixed thresholds may
also inflate our estimates. Moreover, some groups, such as cichlid
fishes, elephants, dolphins, and bovines, as well as the higher-level
taxa Anthozoa and Porifera (Fig. 3), are known to have genera
that cannot be differentiated using mitochondrial gene sequences
alone due to recent divergences (29) or slow rates of molecular
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Fig. 1. Percentage of sequences in multisequence clusters for 13 protein
and 2 ribosomal RNA-coding metazoan mitochondrial encoded genes.
Clustering was performed on sequences retrieved from the GenBank BLAST
nucleotide database using VSEARCH.
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evolution (30, 31) and are not misannotations. Our analysis shows
remarkably low rates of mislabeling at the genus level within the
hyperdiverse Arthropoda (0.44% to 2.56%) for the animal DNA
barcode CO1 gene (Fig. 3 and SI Appendix, Fig. S4), which may
reflect high standards of data curation, notably in BOLD (32). Our
analysis excluded the small proportion of sequences (i.e., ∼5% of
CO1 sequences and <10% of the sequences for other genes; Fig. 1
and SI Appendix, Fig. S1) that did not cluster with other sequences
(i.e., singletons) and likely belong to rare and undersampled taxa.
Although we have no a priori reason to expect a higher proportion
of mislabeled sequences among singletons than within the fraction
of the database analyzed, complementary analyses are warranted.

The difficulty of assessing the accuracy of singleton sequences also
highlights the importance of replication within taxa, particularly in
barcoding initiatives, to allow cross-validation.
To determine the likely sources of taxonomic errors and hence

potential remedies, we individually examined all multitaxon clusters
that contained multiple phyla, classes, or orders (SI Appendix,
Table S2 and Fig. S5). For 70.8% of the cases, there was no obvious
explanation. For the remainder, the likely sources of error were
laboratory contaminants (16.3%), data entry errors (8.4%, poten-
tially due to autofill functions of sequence submission platforms),
contamination by associated organisms in the sample (3.2%), and
pseudogenes (1.1%) (SI Appendix, Table S2). As has been noted
previously (33), many of these errors could be detected before
submission by performing a BLAST search. For known pseudo-
genes, errors occur when the organelle is specified as “mitochon-
drion” because the sequence is most likely in the nuclear genome.
We also examined sources of error at lower taxonomic levels

(families and genera), focusing on clusters containing 100 or
more sequences. Interestingly, 55.0% of the sequences had the
incorrect label because of taxonomic revisions, meaning that they
were correct at the time of entry. Other assignment errors at
these lower levels were caused by laboratory contamination
(4.5%) and data entry errors (2.8%). The more numerous ex-
amples of misannotations at the family or genus level in small
clusters that we did not examine are less likely due to data entry
and contamination errors, because they would normally lead to
misidentifications at higher taxonomic levels; for these, there is
no substitute for having appropriate taxonomic expertise when
assigning names to samples. As has been noted by others, taxo-
nomic names for submitted sequences should not be based solely
on a database search, to prevent the propagation of errors (34).
Concerns about errors in GenBank have prompted cautionary

notes (35–37) and the creation of curated sequence databases for
particular taxonomic groups and genes, including BOLD (32),
PR2 (38), SILVA (39), PHYMYCO-DB (40), and MIDORI
(41). However, our results stand in contrast to most previous
estimates of GenBank annotation error rates. For example,
Bridge et al. (42) reported that 12 of 51 species of the renowned,
highly poisonous fungus Amanita had incorrect genus names and
that 16 of 100 fungi of the order Helotiales were misidentified at
the genus level; in most of these cases, the annotations were to
distantly related fungi or nonfungi. A recent study estimated that
6.9% of all sequences listed as Gastrotricha (43) did not belong
to this phylum (our estimate is 2.5%). Similarly, some re-
searchers have warned that the number of misidentified parasite
sequences may be increasing (26), although there are no quan-
titative estimates. There are several possible reasons for the
discrepancy between earlier estimates and concerns and our re-
sults. Specifically, fungi, parasites, and other small metazoans are
more taxonomically challenging and more difficult to sample
without contamination. Error rates may also have decreased in
recent years, with increasing attention to quality control (e.g.,
GenBank; https://www.ncbi.nlm.nih.gov/books/NBK44940/).
DNA-based biosurveys are rapidly increasing in popularity (4,

44), with the annual number of papers based on these methods
having risen >21-fold between 2000 and 2018 (Fig. 4). Our re-
sults suggest that while quality control efforts remain essential,
metazoan sequences in GenBank are highly reliable for a range
of applications, ranging from underpinning ecological inferences
to assessing environmental policies.

Materials and Methods
The sequence datasets for 13 protein-coding mitochondrial genes—ATP
synthase subunit 6 (A6) and 8 (A8); Cytochrome oxidase subunits I (CO1),
II (CO2), and III (CO3); Cytochrome b apoenzyme (Cytb); NADH dehydrogenase
subunits 1 to 4 (ND1 to ND4), 4 L (ND4L), 5 (ND5), and 6 (ND6)—and 2 ri-
bosomal RNA-coding mitochondrial genes—large (lrRNA) and small (srRNA)
ribosomal subunit RNA—were prepared using BLAST with reference datasets

Table 1. Estimated numbers of metazoan mitochondrial
encoded sequences in GenBank with incorrect taxonomic labels
at the phylum, class, order, family, and genus levels

Level

No. of mislabeled
sequences

% of mislabeled
sequences

Minimum Maximum Minimum Maximum

Phylum 375 375 0.01 0.01
Class 537 566 0.01 0.01
Order 1,610 2,377 0.04 0.05
Family 7,500 41,677 0.17 0.95
Family* 5,919 34,071 0.14 0.78
Genus 32,062 152,157 0.73 3.47
Genus* 29,198 140,212 0.67 3.22

Proportions are calculated based on the total number of sequences in
nonsolitary clusters at the 97% clustering threshold.
*Removing sequences of Porifera and Cnidaria (0.6% and 0.09% of
sequences, respectively).

All phyla: min max
Cnidaria and Porifera removed: min max

C D

CO1 Cytb

16S 12S

A B

Fig. 2. Estimated percentage of mislabeled metazoan sequences for 2 protein
coding genes and 2 ribosomal RNA coding genes: (A) CO1; (B) Cytb; (C) 16S; and
(D) 12S. Estimated minimum and maximum values are indicated for each tax-
onomic level. Calculations were made with and without the phyla Cnidaria and
Porifera because they are known to have lower rates of evolution for these
genes; however, these 2 groups account for only 0.6% and 0.09% of all se-
quences, respectively, and thus have a relatively minor influence on overall
error estimates.
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prepared from RefSeq mitochondrial genome datasets (downloaded on Feb
21, 2018) to perform the gene classification as described below (flowchart in
SI Appendix, Fig. S6). (Because various gene names have been used to specify
a single gene in GenBank, one cannot simply use the annotated gene names
to classify the sequences to the genes.)

First, the BLAST NT FASTA file was downloaded from the National Center
for Biotechnology Information server (ftp://ftp.ncbi.nih.gov/blast/db/FASTA)
on February 21, 2018. Next, mitochondria-related gene sequences were
extracted from the FASTA file. Then GenBank flat files of the mitochondria-
related gene sequences were further downloaded using NCBI EDirect. Next,
only the metazoan flat files were extracted from the flat files. From the flat
files, each gene sequence was truncated using gene location information,
and separate FASTA files were prepared for each gene. Taxonomic names
(phylum, class, order, family, genus, and species) were added to each se-
quence using taxonomy files (nodes.dmp and names.dmp) downloaded
from ftp://ftp.ncbi.nih.gov/pub/taxonomy. For the 13 protein-coding genes,
corresponding amino acid FASTA files were prepared, since amino acid se-
quences were more efficient than nucleotide sequences for separating the
genes via BLAST classification. These prepared FASTA files (nucleotide se-
quences for ribosomal RNA-coding genes and amino acid sequences for
protein-coding genes) were used as queries for BLAST.

The following BLAST parameters were used for protein-coding genes: blastp
-db RefSeq_prepared_db -query metazoan_mitochondrial_amino_acid.fasta
-num_alignments 100 -word_size 3 -outfmt 7 -seg ‘no’ -soft_masking ‘false’.
The following BLAST parameters were used for ribosomal RNA-coding genes:
blastn -db RefSeq_prepared_db -query metazoan_mitochondrial_nucleotide.fasta
-num_alignments 100 -word_size 11 -outfmt 7 -dust ‘no’ -soft_masking ‘false’. BLAST
results were considered significant only if 2 criteria weremet: E-value <1e−10 and bit
score >70. If multiple genes were listed in the BLAST result, the queries were
discarded.

Based on the BLAST result, we separated the dataset by genes (total of 15).
In addition, length restriction was performed for the datasets: 12S, 200 to

2,000; 16S, 100 to 2,500; A6, 100 to 1,000; A8, 100 to 500; CO1, 100 to 2,000;
CO2, 100 to 1,500; CO3, 100 to 1,300; Cytb, 100 to 1,500; ND1, 50 to 1,200;
ND2, 150 to 1,500; ND3, 100 to 600; ND4, 150 to 2,000; ND4L, 100 to 700;
ND5, 150 to 2,000; ND6, 150 to 1,500. This length restriction procedure was
required to avoid random clustering of short sequences in the subsequent
procedure.

To identify taxonomically mislabeled sequences, clustering analyses were
performed at 97%, 98%, 99%, and 100% similarity thresholds with VSEARCH
(27) (–sortbylength,–cluster_fast). The vast majority of sequences were lo-
cated in multisequence clusters at 97% for all genes (from 86.2% for 12S to
95.6% for CO1; SI Appendix, Fig. S1). After clustering, we checked incon-
gruences of taxonomic labels within each cluster at all taxonomic levels
except species (i.e., phylum, class, order, family, and genus) using custom Perl
scripts. Clusters with sequences labeled as different phyla, classes, orders,
families, or genera were extracted for downstream analysis.

We attempted to identify which were the mislabeled sequences in all
clusters containing multiple phyla, classes, and orders, but we examined only
a portion of the much more numerous clusters with multiple families and
genera. We focused on clusters containingmore than 100 sequences, because
our estimates based on order-level misidentifications showed that manually
checking larger clusters was a relatively efficient way to narrow the possible
range of error rates. Clusters with more than 100 sequences represented only
2.0% of all clusters but contained 46.8% of the total sequences. By simulating
sampling the order-level data at different depths, we found that randomly
selecting sequences and then checking the corresponding clusters was in-
appropriate, because this method tended to preferentially sample low-error
large clusters, resulting in a poor approximation of the true error rate (SI
Appendix, Fig. S2). While randomly sampling clusters directly produced a
more accurate estimate of the error rate, we opted to manually check large
clusters by hand and provide a range of possible error rates for family and
genus misidentifications so as to err on the conservative side and avoid the
need to specify a model.

A B

DC

Fig. 3. Number of sequences and estimated percentage of mislabeled sequences at the genus and family levels across major metazoan phyla: (A) CO1; (B)
Cytb; (C) 16S; and (D) 12S. The category “Other phyla” includes sequences of Acanthocephala, Brachiopoda, Bryozoa, Chaetognatha, Ctenophora, Cyclio-
phora, Entoprocta, Gastrotricha, Hemichordata, Kinorhyncha, Nematomorpha, Nemertea, Onychophora, Placozoa, Priapulida, Rhombozoa, Rotifera, Tardi-
grada, and Xenacoelomorpha.
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A similarity search using the BLAST server (33) (blastn with “low-complexity
region filter” and “mask for lookup table only” functions disabled) was per-
formed using the putative mislabeled sequence as a query, and the distance
tree function on the BLAST server was used to examine phylogenetic rela-
tionships with 100 close matches to the query. If the taxonomy of the out-
group sequences disagreed with the query taxonomy, we concluded that the
query had the wrong taxonomy. Mislabeled sequences at the phylum, class,
and order levels detected in this study will be reported to GenBank for re-
moval from BLAST search databases (i.e., flat files flagged as “UNVERIFIED”).

Mislabeled sequences could not be identifiedunequivocally in all clusters at the
phylum, class, and order levels or in large clusters (>100 sequences) with multiple
families and genera (incorrect taxon label identified in 65% of clusters exam-
ined). Moreover, we did not attempt to identify which sequences were mis-
labeled in the numerous small clusters (<100 sequences) containing multiple
families or genera. In all these cases, we estimated the minimum and maximum

numbers of sequences that were possibly mislabeled in each of these clusters as
follows. To calculate themaximum number of mislabeled sequences, we selected
the taxon within a cluster that had the smallest number of entries and assumed
that all the remaining sequences in the cluster were in error. To calculate the
minimum number of mislabeled sequences, we selected the taxon with the
largest number of entries and assumed that all the remaining sequences were in
error. For example, if a cluster of 6 sequences contained 3 sequences labeled
taxon A, 2 sequences labeled taxon B, and 1 sequence labeled taxon C, then the
minimum number of mislabeled sequences would be 3 and the maximum
number would be 5.

The putative cause of errors of each sequence unambiguously identified as
mislabeled was inferred to the extent possible by using detailed observations
of the taxonomic affiliation and sequence annotations within each cluster
(identification flowchart in SI Appendix, Fig. S5). First, we classified se-
quences as mislabeled because of “data entry error” if the accession number
and genus name had consecutive or nearly consecutive numbers or if had a
very similar genus name. Next, we identified whether they were common
laboratory contaminants, such as DNA from humans, common rodents,
laboratory model organisms, common human food, mosquitos, or pets. We
then checked whether the sequence was a potential nuclear mitochondrial
pseudogene using 2 criteria: a mention of pseudogenes in the definition or
project title of the GenBank flat file and a drastic change in sequence sim-
ilarity between different regions of the sequence. Then the sequence was
classified as a contamination from a host or dietary item if the project title of
the GenBank flat file mentioned gut content analysis or parasite study. Next,
we checked whether the BLAST result indicated high similarity to bacterial
sequences. Finally, we searched online databases (e.g., FishBase, WORMS) to
check whether a taxonomic revision took place in the group. If none of these
categories applied, we classified the sequence as other laboratory contam-
ination or taxonomic misidentification. We did not attempt to identify the
cause of sequence misidentification in phyla Porifera and Cnidaria clusters
because of the lower taxonomic resolution in these groups for mitochon-
drial genes (30, 31).

Raw data files (FASTA files: https://figshare.com/articles/Fasta_files/7642202),
data analysis scripts (https://figshare.com/articles/R_Script_for_estimation_of_
minimum_and_maximum_error_/7856180), clustering output files (https://
figshare.com/articles/MultipleTaxaClustersFamiliyGenus/7853561; https://
figshare.com/articles/MultipleTaxaClusteringPhylumClassOrder/7853567), and a
table summarizing the estimated minimum and maximum numbers of
mislabeled sequences per phylum and per gene (https://figshare.com/articles/
Summarized_Table/7856156) are available at Figshare (https://figshare.com/).
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