Structure and function of an unusual flavodoxin from the domain Archaea

Divya Prakash*, Prashanti R. Iyer*, Suharti Suharti1,2, Karim A. Walters*, Michel Geovanni Santiago-Martinez*, John H. Golbeck, Katsuhiko S. Murakami1,2, and James G. Ferry1,2

*Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802; and 1Department of Chemistry, State University of Malang, 65145 Malang, East Java, Indonesia

Edited by Mary E. Lidstrom, University of Washington, Seattle, WA, and approved November 11, 2019 (received for review May 21, 2019)

Flavodoxins, electron transfer proteins essential for diverse metabolisms in microbes from the domain Bacteria, are extensively characterized. Remarkably, although genomic annotations of flavodoxins are widespread in microbes from the domain Archaea, none have been isolated and characterized. Herein is described the structural, biochemical, and physiological characterization of an unusual flavodoxin (FldA) from Methanosarcina acetivorans, an acetate-utilizing methane-producing microbe of the domain Archaea. In contrast to all flavodoxins, FldA is homodimeric, markedly less acidic, and stabilizes an anionic semiquinone. The crystal structure reveals an flavin mononucleotide (FMN) binding site unique from all other flavodoxins that provides a rationale for stabilization of the anionic semiquinone and a remarkably low reduction potentials for both the oxidized/semiquinone (−301 mV) and semiquinone/hydroquinone couples (−464 mV). FldA is up-regulated in acetate-grown versus methanol-grown cells and shown here to substitute for ferredoxin in mediating the transfer of low potential electrons from the carbonyl of acetate to the membrane-bound electron transport chain that generates ion gradients driving ATP synthesis. FldA offers potential advantages over ferredoxin by (i) sparing iron for abundant iron-sulfur proteins essential for acetotrophic growth and (ii) resilience to oxidative damage.

Electron transport | methanogenesis | anaerobic | greenhouse gas | global warming

Flavodoxins (Fld) are electron-transfer proteins essential for diverse metabolisms in microbes from the domain Bacteria, whereas organisms from the domain Eukarya contain multidomain flavoproteins evolved from ancestral flavodoxin genes (1, 2). Flds were discovered over 50 y ago in Cyanobacteria and Clostridia growing in low-iron conditions where they serve as electron carriers in enzyme systems operating at potentials near that of the hydrogen electrode (3, 4). Flds contain 1 molecule of redox active flavin mononucleotide (FMN) that is noncovalently bound. All Flds characterized are highly acidic proteins containing between 140 and 180 residues that are divided into short-chain and long-chain types differing by a 20-residue loop of yet unknown function (2). The protein environment of FMN stabilizes the neutral form of the semiquinone (sq), producing dramatic shifts in the reduction potentials for each of 2 1-electron reductions of the flavin. The unusual flavodoxin plays an electron transport role in the pathway of acetate conversion to methane in Methanosarcina acetivorans, a model methanogen for investigating the process by which two-thirds of the 1 billion metric tons of methane are produced annually in Earth’s anaerobic biospheres with a substantial contribution to global warming effecting climate change. Homologs of the gene encoding the flavodoxin are uniformly distributed in diverse acetotrophic methanogens consistent with a wider range of electron transport functions awaiting discovery.

Significance

A flavodoxin from the domain Archaea has been characterized. It is the first of any flavodoxin shown to stabilize an anionic semiquinone, providing a platform for understanding how the protein environment modulates the reduction potentials of flavins. The unusual flavodoxin plays an electron transport role in the pathway of acetate conversion to methane in Methanosarcina acetivorans, a model methanogen for investigating the process by which two-thirds of the 1 billion metric tons of methane are produced annually in Earth’s anaerobic biospheres with a substantial contribution to global warming effecting climate change. Homologs of the gene encoding the flavodoxin are uniformly distributed in diverse acetotrophic methanogens consistent with a wider range of electron transport functions awaiting discovery.

The authors declare no competing interest.

This article is a PNAS Direct Submission. Published under the PNAS license.

Data deposition: The X-ray crystal structure coordinates and structure factors have been deposited in the Protein Data Bank (ID code 5WID).

1P.R.I. and S.S. contributed equally to this work.
2To whom correspondence may be addressed. Email: kum14@psu.edu or jgf3@psu.edu.

This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1908578116/-/DCSupplemental.

First published December 4, 2019.

www.pnas.org/cgi/doi/10.1073/pnas.1908578116

PNAS | December 17, 2019 | vol. 116 | no. 51 | 25917–25922

www.pnas.org/cgi/doi/10.1073/pnas.1908578116

PNAS | December 17, 2019 | vol. 116 | no. 51 | 25917–25922

Downloaded by guest on June 19, 2021
mediate electron transfer between CODH/ACD and Rnf (13). However, the genome is annotated with several Flds of which transcriptomic analyses show a 3-fold increased expression in acetate-grown versus methanol-grown cells of the Fld encoded by MA1799 (FldA) signaling an electron transport role in the acetotrophic pathway (14). Here, we report the structural, biochemical, and physiological characterization of FldA. The results show that: (i) FldA mediates electron transfer between CODH/ACD and the membrane-bound electron transport chain, (ii) homologs are widely distributed among acetotrophic methanogens, and (iii) the properties of FldA are distinct from all characterized Flds, which includes the unprecedented stabilization of an anionic sq.

Results
Expression and Purification. His\textsubscript{6}-tagged FldA was produced in *Escherichia coli* and acrobically purified to homogeneity. SDS-PAGE (SI Appendix, Fig. S1) indicated a monomer molecular mass of 16 kDa consistent with the calculated value of 16,363. Size-exclusion chromatography estimated a native molecular mass of 35.8 kDa, which indicated a dimer in solution.

Spectral Analysis and Cofactor Determination. The UV-visible absorption spectrum (Fig. L4) of as-purified FldA showed maxima at 360 and 460 nm with a shoulder at 490 nm typical of oxidized Flds. The ε\textsubscript{460} was found to be 12.8 ± 0.5 mM-1cm-1, which is characteristic of Flds with a full complement of flavin (15). Partial reduction with sodium dithionite yielded a spectrum showing a peak and pronounced shoulder with maxima at 387 and 480 nm, indicative of flavin anionic sq unprecedented for Flds. Further reduction produced a spectrum of the sq form. The spectrum was identical to the as-purified protein when fully reduced FldA was oxidized with potassium ferricyanide.

Reduction Potentials. Potentiometric titrations at pH 7.0 revealed \(E_m\) values of \(−301 ± 5.06\) mV for the ox/sq couple and \(−404 ± 2.61\) mV for the sq/hq couple (SI Appendix, Fig. S2).

Crystal Structure. The crystal structure of oxidized FldA, solved to 1.68-Å resolution (SI Appendix, Table S1), contained 3 FldA monomers in the asymmetric unit (Fig. 2 and SI Appendix, Fig. S3). All 3 monomers contained an FMN molecule. The overall structure and FMN binding pocket of the monomer structures are nearly identical (0.161–0.231 Å r.m.s.d.) without any particularly local conformation differences. Among the 3 FldA molecules in the asymmetric unit, protomers A and B share a large molecular surface (891.2 Å2). Molecule C also forms a dimer with its symmetry related protomer C molecule joined by a molecular interface of 884 Å2. The dimeric structure is in agreement with the native molecular mass in solution. The monomer is folded into a sandwich configuration with 5 β-sheets in the middle flanked by two 3 or 3 α-helices similar to generic short-chain Flds (16–19) (Fig. 2). Each monomer contains 1 FMN located near the surface arranged head-to-tail where the heads contain the FMN molecules separated by 33 Å (Fig. 2). An overlay of the 3 FldA monomers at the FMN binding site reveals identical structures except for displacement of the W92 side chain in protomer C relative to W92 in protomers A and B (Fig. 2B) since W92 of protomer C contacts with a symmetry related molecule.

The FldA structure joins the Fld from *Desulfovibrio gigas* as the only other WT dimeric Fld structure (17). The overall and secondary structures of monomers are similar with an r.m.s.d. between FldA and the *D. gigas* Fld of 1.562 Å for the Cα of 143 residues (Fig. 2C). A notable difference is the length of loops surrounding FMN. The *D. gigas* Fld has longer loops compared with FldA from *M. acetivorans*. Importantly, the environment of FMN in the *D. gigas* Fld is more negative than for FldA. An overlay of the dimers reveals further differences in configuration (Fig. 2C). Unlike FldA, the *D. gigas* Fld monomers are oriented head-to-head bringing the FMN molecules to within 17 Å.

FldA has properties distinct from all generic short-chain monomeric Flds of the domain *Bacteria* with important implications for the biochemistry and physiology. FldA is more positively charged in comparison to generic Flds having negatively charged FMN-binding pockets (Fig. 3). FldA has a calculated pI of 5.75 in stark contrast to an analysis of 38 generic Fld sequences, which reveals a median pI value of 4.5 ± 0.6 (20). The difference is...
more pronounced in the FMN binding region exemplified in the electrostatic landscape of FldA compared to the generic Fld from D. gigas of the domain Bacteria (Fig. 3). SI Appendix, Fig. S4) shows residues interacting with the FMN of FldA from M. acetivorans. Notably, no acidic side chains interact with the FMN in contrast to generic Flds from the domain Bacteria (17–21). Importantly, the FMN environment of FldA from M. acetivorans is distinct from generic Flds in that a glycline is absent in the position adjacent to the N5 atom of the isoalloxazine ring (Fig. 3). The si and re faces of the FldA ring are flanked by W92 and F58 forming π–π stacking interactions (Fig. 3 and SI Appendix, Fig. S4), similar to generic Flds where the isoalloxazine rings are flanked by aromatic residues (22).

Physiology. Electron transport in the acetotrophic pathway of methanogenesis for M. acetivorans originates with the 5-subunit (αβγδε) CODH/ACD complex (SI Appendix, Fig. S5). The ACD component (pY6) cleaves acetyl-CoA, and the CODH component (pω) oxidizes the carbonyl group to CO2 (23). CODH also oxidizes CO, a surrogate for the carbonyl group. The electrons are transferred to the Rnf complex that initiates a membrane-electron transport chain culminating in reduction of the heterodisulfide HdrA2B2C2 (SI Appendix, Fig. S6) to Fe(III)-dependent respiratory methanotrophic and acetotrophic growth of M. acetivorans (24, 25).

Bioinformatics. A BLASTp search was conducted with M. acetivorans FldA as the query while constraining searches to Flds represented in the National Center for Biotechnology Information nonredundant database. The results retrieved FldA homologs only from metabolically diverse methanogens (SI Appendix, Fig. S7). The results underscore the uniqueness of FldA compared to generic Flds. A distance tree of alignments of FldA and generic Flds from the domain Bacteria (SI Appendix, Fig. S7) revealed 2 clades (I and II) of FldA homologs in which clade I was comprised of acetotrophic Methanosarcina species consistent with a role for FldA as shown here for M. acetivorans. The only exception in clade I is the FldA homolog from Methanoporeducens nitroreducens, a species capable of oxidizing methane and reducing nitrate, suggesting a potential role for this FldA homolog in the anaerobic oxidation of methane (26). A distant FldA homolog (clade III) was retrieved from Methanoseta concilii. Methanoseta is the only other genera capable of metabolizing acetate consistent with a role for FldA homologs in acetotrophic methanogens (27). All FldA homologs in clade II were from nonacetotrophic species that utilize either H2/CO2 or methylocotrophic substrates (methanol, methyamines, and dimethyl sulfide) for growth and methanogenesis. These results suggest potential roles for FldA homologs in diverse metabolisms of methanogens. Sequence alignments show that FldA homologs in clade I and clade II, and the homolog from the acetotroph M. concilii, share the S56TFYY60 FMN binding.

3.5 and 7.0 μM. Fig. 4B shows emergence of the sq form of FMN on completion of the reaction with excess CoMS-SCoB, a result indicating 1-electron transfer from the hq form. The results establish that FldA is competent in mediating electron transfer between CODH/ACD and the membrane-bound electron transport chain supporting acetotrophic growth. Furthermore, FldA replaced Fdx as an electron acceptor to the coenzyme F23H2-dependent electron bifurcating heterodisulfide reductase HdrA2B2C2 (SI Appendix, Fig. S6) proposed to function in Fe(III)-dependent respiratory methanotrophic and acetotrophic growth of M. acetivorans (24, 25).
motif of FldA from *M. acetivorans* but are missing the cognate glycine residue that stabilizes the neutral sq in generic Flds (SI Appendix, Fig. S8). This result is consistent with the FldA homologs stabilizing an anionic sq. The chain lengths of FldA (149 residues) and homologs range from 144 to 156 residues, similar to generic short-chain Flds. However, the tree shows that generic short-chain Flds from diverse species (clade IV) are only distantly related to FldA with sequence identities less than 35%, which further underscores the unique position of FldA homologs in the Fld family. Clade IV Flds include a generic short-chain Fld (147 residues) from *M. acetivorans* for which expression of the gene (MA2699) is up-regulated severalfold in methanol-grown versus acetate-grown cells, suggesting a role other than in aceticotrophic growth (14).

Discussion

The FMN Environment of FldA is Unprecedented for Flavodoxins. The biochemical, structural, and physiological characterization of FldA from *M. acetivorans* is an Fld characterized from the domain *Archaea*. Although the overall crystal structure establishes FldA as a member of the Fld family, several unique properties distinguish it from generic Flds of the domain *Bacteria*.

The protein environment of generic short-chain Flds is responsible for shifting the $E_{sq/hq}$ for free FMN to more negative values between −372 and −440 mV (28), thereby enabling Flds with the ability to substitute for the low-potential 1-electron carrier Fdx (24). The negative $E_{sq/hq}$ for generic Flds is accomplished by stabilization of a neutral sq and destabilization of the anionic hq dependent on residues proximal to the flavin. Several acidic residues clustered around the FMN binding site provide an unfavorable electrostatic environment, which is a major factor destabilizing the anionic hq (29). The absence of positively charged residues adjacent to the phosphate diianion of FMN also contributes to the negatively charged environment (30). The isoalloxazine ring system is in an electron-rich hydrophobic environment where at least 1 aromatic residue forms a π–π stacking interaction, further contributing to destabilization of the anionic hq (31). Finally, the more negative value for $E_{sq/hq}$ of FMN in generic Flds is further dependent on a neutral sq stabilized by a hydrogen bond between the protonated N5 atom of FMN and a polypeptide carbonyl group facilitated by a glycine residue adjacent to the N5 atom from residues (28, 32–36).

Similar to generic Flds, the isoalloxazine ring of FMN in FldA is sandwiched by aromatic residues and the negative charge of the phosphate moiety is uncompensated by positively charged residues. However, in contrast to generic Flds, the FMN environment of FldA is less negatively charged, favoring stabilization of the anionic sq. As in generic Flds, unfavorable π–π stacking interactions between the isoalloxazine ring system of FMN and aromatic residues W92 and F58 are anticipated to destabilize the FMN anionic hq in FldA. Also similar to generic Flds, the uncompensated negative charge of the phosphate group of FldA is expected to contribute to the destabilization, albeit to a lesser extent than π–π stacking interactions. The anionic sq is a common intermediate for both $E_{ox/sq}$ and $E_{sq/hq}$; thus, the inability of FldA to stabilize a blue neutral sq discourages the first 1-electron reduction while encouraging the second reductive step as shown for G57 variants of *Clostridium beijerinckii* Fld (37). This explains the lowering of both the $E_{sq/hq}$ and $E_{sq/bc}$ potentials of FMN in FldA below that of free FMN that is unusual for generic Flds of the domain *Bacteria* that stabilize a blue neutral sq.

Residues interacting with FMN explains the stabilization of an anionic sq in FldA. Unlike generic Flds, a carbonyl group adjacent to the N5 atom FMN is absent in FldA that would otherwise hydrogen bond to the N5-bound proton and stabilize a neutral sq. Furthermore, no positively charged residues are near the N1-C2-O2 atoms of FMN that would stabilize the anionic sq as reported for several flavoproteins other than Flds (38–40). Finally, no electron density attributed to a metal cation was detected in the crystal structure of FldA that might also assist in stabilizing the anionic sq as proposed for the flavodoxin-like NrdF (20). Thus, the less overall negative charge of FldA and absence of a glycine residue adjacent to the N5 atom of FMN contributes to stabilization of the anionic sq, which is unmatched for generic Flds from the domain *Bacteria*. It appears that the archaea evolved a mechanism for modulating the reduction potential of flavin in FldA to provide a more negative than free flavin, which is distinct from that of Flds in the domain *Bacteria*. Finally, the unconventional protein environment of FMN in FldA provides an experimental platform for determination of how flavoproteins modulate the reduction potentials of free FMN.

Physiological Relevance of FldA and Homologs. The results presented here show that FldA can replace Fdx in mediating electron transport from CODH/ACD to the membrane-bound electron transport chain essential for aceticotrophic growth (Fig. 5) (12, 13). The $E_{sq/hq}$ of FldA (−464 mV) approximates the CO2/CO couple ($E_m = −540$ mV) of CODH/ACD comparable to Fdx ($E_m = −414$ mV) consistent with the results. The findings (Fig. 4B and SI Appendix, Fig. S6) that support 1-electron transfer roles for FldAnq (Fig. 5) are analogous to the generic Fld from *Acidaminococcus fermentans* with roles for the FdAnq in electron bifurcation and 1-electron reduction of RnfB (41).

A role for FldA in aceticotrophic growth of *M. acetivorans* is supported by a 3-fold up-regulation in acetate-grown versus methanol-grown cells producing methane. FldA is also up-regulated in *M. acetivorans* cultured with methanol as the electron donor and anthraquione-2,6-disulfonate as electron acceptor for nonmethanogenic respiratory growth dependent on Rnf and cytochrome c, which further supports an electron transport role (42). FldA may provide an advantage in the marine environment where *M. acetivorans* was isolated (43). Iron levels in seawater are extremely low (0.02–1 nM), predicting an iron-sparing role for FldA to augment the supply for abundant iron-sulfur enzymes essential for growth (44, 45). Finally, Flds are more resistant to inactivation during oxidative stress than are Fdxs (46–48), consistent with a role for FldA in the exceptional oxidative stress tolerance of *M. acetivorans* (49).

FldA homologs may also play a role in alternative electron transport pathways of aceticotrophic methanogens such as *Methanosarcina barkeri* that utilizes CODH/ACD in the aceticlastic pathway. However, unlike *M. acetivorans* and most aceticotrophic species in clade I that contain the Rnf complex (SI Appendix, Fig. S8), *M. acetivorans* does not contain Rnf homologs. *M. acetivorans* contains at least one homolog from the Rnf complex (MA2699). The putative Rnf homologs in *M. acetivorans* (Fig. 4B and SI Appendix, Fig. S2) show that the Rnf complex is composed of at least 15 of the 16 subunits, but without the RnfD subunit, which is a chaperone and subunit of RnfA (43). The presence of RnfA is predicted to stabilize the FldA homolog from a putative electron donor and anthraquinone-2,6-disulfonate acceptor for alternative electron transport pathways dependent on Rnf and cytochrome c.

![Fig. 5. Proposed roles of FldA in electron transport of acetate-grown *M. acetivorans*. CODH/ACD, CO dehydrogenase/acetyl-CoA deacetylase; CoMS-SCoB, heterodisulfide of HS-CoM and HS-CoB; Cyt c, multiheme cytochrome c; FdxN, oxidized ferredoxin; FdxH, reduced ferredoxin; FdAnq, 2-electron reduced; FldAnq, one-electron reduced; HdrA$_{BC}$, F$_{2}$H$_{2}$-dependent heterodisulfide reductase; HdrDE, heterodisulfide reductase; HS-CoB, coenzyme B; HS-CoM, coenzyme M; MP, methanophenazine; RnfA-G, subunits of the Rnf complex.](https://www.pnas.org/doi/10.1073/pnas.1908578116)
Conclusions. An Fld from the domain Archaea (FldA) has been biochemically, structurally, and physiologically characterized. The stabilization of an anionic sq that modulates the reduction potential of FMN is unique to the domain Archaea. The unique environment of FldA in Fdx offers a platform on which to interrogate the role of active site residues in modulating the reduction potential of free flavin in flavoproteins. The findings show that FldA is capable of replacing Fdx and has a potential advantage by sparing iron for abundant iron-sulfur proteins essential for growth and by a greater resilience to oxidative damage. Finally, bioinformatics analyses support a role for FldA homologs in metabolically diverse methanogens suggesting diverse roles.

Materials and Methods

Materials. Fdx, membranes, and the CO dehydrogenase component of CODH/ACD from M. acetivorans were purified as previously described (13, 50). Fdx from M. thermospharicus was a gift of Jan Keltjens, Radboud University, The Netherlands. All other chemicals were purchased from Sigma-Aldrich. Primers were from Integrated DNA Technologies. Resins and columns required for chromatographic separations were from GE Healthcare.

General Methods. Anaerobic procedures were performed in a Coy anaerobic chamber at 25 °C with glove boxes described previously (13, 50). Free thiols were determined with DTNB ([5,5′-dithiobis-(2-nitrobenzoic acid)] as described elsewhere (51). Iron and acid-labile sulfur were quantitated as described elsewhere (52, 53). The flavin content of FldA was determined by UV-visible and fluorescence spectroscopy as described elsewhere (54). Protein concentrations were determined using the Bradford and BCA methods (55). Protein parameters were determined with the ExPaSy ProtParam tool (https://web.expasy.org).

Cloning Expression and Purification of FldA. The full-length sequence encoding FldA was amplified from M. acetivorans genomic DNA by PCR using Phusion Taq polymerase with sense (5′-TTGTGCA-TATGTGGAGAAAACAATTATTG) and antisense (5′-GATGATGATGATGACACCATC-TCTGCTTGT) primers containing XIeol and XhoI restriction sites (underlined sequences), respectively. The amplified fragments were cloned into the pET vector. E. coli Rosetta pLacI cells harboring pET22B-FldA. E. coli was cultured at 37 °C in Luria-Bertani broth containing 100 mg of ampicillin per ml. The full-length sequence encoded a putative flavodoxin domain (search model contains residues 252–517) and a putative flavodoxin domain (search model contains residues 252–517) as described elsewhere (54). Protein concentrations were determined using the Bradford and BCA methods (55). Protein parameters were determined with the ExPaSy ProtParam tool (https://web.expasy.org).

Purification of recombinant FldA was performed aerobically. Approximately 15 g of thawed cells were resuspended in 50 mM Tris-Cl (pH 8.0) containing 500 mM NaCl and 20 mM imidazole and lysed by sonication with a Qsonica sonicator, by applying 7 cycles of 45-W pulses for 25 s each with an interval of 10 s. Cell debris was removed by centrifugation at 10,000 × g for 30 min at 4 °C. The supernatant solution was loaded onto a sodium-translocating high-performance column (1.6 × 13 cm) equilibrated with 50 mM Tris-Cl (pH 8.0), containing 500 mM NaCl and 20 mM imidazole. The column was then washed with 3 column volumes of 50 mM Tris-Cl (pH 8.0) containing 500 mM NaCl and 40 mM imidazole. FldA was batch eluted with 50 mM Tris-Cl (pH 8.0) containing 500 mM NaCl and 250 mM imidazole. FldA-containing fractions were identified by their characteristic yellow coloration and their UV-visible absorbance spectra. These fractions were concentrated using an Amicon 3 kDa MWCO filter and stored at −20 °C. The protein was purified to electrophoretic homogeneity by loading onto a Superdex 75 HR 10/30 column connected to an Akta FPLC system (GE Healthcare). The column was preequilibrated with 50 mM Tris-HCl (pH 8) containing 150 mM NaCl and 10% glycerol. FldA eluted with the same buffer as a single isolated peak. Fractions containing FldA were collected and concentrated by using an Amicon 3 kDa MWCO filter and stored at −80 °C.

Redox Titrations. Please see SI Appendix.

Structure Determination. FldA was crystallized by vapor diffusion in hanging drops with microseeding at 22 °C against a reservoir containing 0.1 M Bis-Tris (pH 6.5), 0.2 M ammonium acetate, and 20–26% (w/v) maltitol-2,4, pentanedioyl (MPD). Crystals reached their full size within 2 d and were yellow in color because of the presence of FMN. For cryocystallography, the crystals were harvested from a drop, soaked 5 min in 0.1 M Bis-Tris (pH 6.5), 0.2 M ammonium acetate, and 32% (w/v) MPD, and then flash-cooled by immersion in liquid nitrogen. Complete 2.34 Å resolution diffraction data were collected by synchrotron radiation (F1 line) at the MacCHESS facility (Cornell University) and processed with HKL2000 (56). Primitive hexagonal space group P6_222 crystals (a = b = 112.77 Å, c = 173.72 Å) contained 3-17 kDa FldA molecules per asymmetric unit. The structure was determined by molecular replacement. The search model was derived from the A-type flavoprotein (FPrA) from Moorella thermoacetica (PDB code 1YCF) after removal of its N-terminal domain (search model contains residues 252–399 and 1 FMN) (57). A molecular replacement solution includes 3 FldA molecules in an asymmetric unit. The electron density map was calculated using phases from the molecular replacement, and it was further improved using the density modification program Resolve (58) which includes 3-fold non-crystallographic symmetry (NCS) restraints. The resulting electron density map has several deviations from the molecular replacement solution, indicating that model bias was effectively removed by density modification. A near complete model was built automatically by using Resolve and a complete model was built by Coot (59). The positional refinement with NCS restraints performed with refmac5 and Phenix (60, 61). Finally, positional refinement without NCS restraint was carried out, and FMN and water molecules were added to the model. The final model contains 3 FldA molecules (A, residues 1–144; B, residues 1–143; C, residues 1–144) Each molecule has 1 FMN, 1 MPD, 2 acetylene, and 474 water molecules (Rwork = 15.8%; Rfree = 17.3%).

Enzyme Assays. Assays were conducted anaerobically with degassed buffers in a N2 atmosphere. Reductions of Fdx or FdR was monitored at 460 nm or 395 nm, respectively. Initial rates were determined with molar extinction coefficients of 12,800 determined for FldA and 30,600 for Fdx based on clostrial Fdx (62).

Data Availability. The X-ray crystal structure coordinates and structure factors have been deposited in the Protein Data Bank (ID code 5WID).

ACKNOWLEDGMENTS. We thank the staff at the Cornell High Energy Synchrotron Source (CHESS) Macromolecular X-ray science at the Cornell High Energy Synchrotron Source (MacCHESS) for support of crystallographic data collection. CHESS is supported by the National Science Foundation (NSF) and NIH/National Institute of General Medical Sciences (NIGMS) via NSF Award DMR-1332208, and the MacCHESS resource is supported by NIGMS Award GM-103485. This work was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the US Department of Energy through Grants DE-FG02-95ER20198 MOD16 (to J.G.F.) and DE-SC0010575 (to J.H.G.), and NIH/NIGMS Grant R01-GM087350 (to K.S.M.).

M. barkeri instead utilizes a proton-translocating electron transport pathway involving H2-producing and H2-consuming hydrogenases that may interact with FldA homologs (9).