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Owing to the limited length of observed tropical cyclone data and
the effects of multidecadal internal variability, it has been a
challenge to detect trends in tropical cyclone activity on a global
scale. However, there is a distinct spatial pattern of the trends in
tropical cyclone frequency of occurrence on a global scale since
1980, with substantial decreases in the southern Indian Ocean and
western North Pacific and increases in the North Atlantic and
central Pacific. Here, using a suite of high-resolution dynamical
model experiments, we show that the observed spatial pattern
of trends is very unlikely to be explained entirely by underlying
multidecadal internal variability; rather, external forcing such as
greenhouse gases, aerosols, and volcanic eruptions likely played
an important role. This study demonstrates that a climatic change
in terms of the global spatial distribution of tropical cyclones has
already emerged in observations and may in part be attributable
to the increase in greenhouse gas emissions.

tropical cyclones | detection and attribution | large-ensemble simulations |
climate change | spatial pattern

The effect of anthropogenic forcing on global tropical cyclone
(TC) activity is of great interest and an important topic

among the science community and public (1–3). Previous studies
have reported possible future changes in global TC activity for
the late 21st century as projected by numerical dynamical models
(2, 4). Most studies have focused on projected changes in the
global TC number, mean TC intensity, and the mean precipitation
associated with TCs (2, 4). However, projected changes in the
spatial distribution of TCs, as well as regional changes in TC
frequency, are regarded as relatively more uncertain (2), despite
their societal importance.
Compared to studies of future projections, detecting any cli-

matic change in the observed record for global TC activity is
challenging, mainly due to two factors (1). The first is the lack of
a reliable long-term observed TC record, which is a limitation
when it comes to confidently differentiating between real cli-
matic trends and artificial trends (1, 5, 6). Because reliable ob-
served TC intensity data at the global scale for climate trends
analysis have only been available since 1980, when satellite ob-
servations began (7), any trend analysis using data before 1980
may involve artificial trends owing to evolution of the observa-
tional method (6). Although there are a few studies that have
shown observed trends in global TC activity, such as poleward
shifts in the location of lifetime maximum TC intensity (8) and
slower TC motion (9), there are uncertainties in these trends
because of the low quality of the observed data employed (5, 6).
Another complicating factor is the effect of multidecadal in-
ternal variability on TC variations (10–12). Although some
trends in the short-term observed record appear to be statisti-
cally significant, it is difficult to distinguish such trends from
intrinsic multidecadal internal variability.
Many studies have shown that global mean temperature has

been rising since the mid-20th century, and that the increase is

attributable to increases in emissions of greenhouse gases
(Fig. 1A and refs. 13 and 14). In contrast, the annual number of
global TCs exhibits no clear trend and has remained steady at
around 86 since 1980 (Fig. 1B and ref. 15). The presence of large
interannual and decadal variations (the SD of the annual mean
number is eight as an indication of interannual variability;
Fig. 1B) may suggest no significant trend for global TC activity.
However, when we look at a global map of the trend in TC
frequency of occurrence (TCF; Observed Data) since 1980
(Fig. 1D), there is a pronounced spatial pattern in the trends,
namely, decreasing trends in the southern Indian Ocean, western
North Pacific, Coral Sea off the northeast coast of Australia, and
the far eastern tropical North Pacific, but increasing trends in the
Arabian Sea, central Pacific including Hawaii, and the North
Atlantic. We wish to assess whether anthropogenic climate
change could play a role in driving this spatial pattern in the
global trends of TCF.
Previous studies reported that intrinsic multidecadal internal

variability, such as the Interdecadal Pacific Oscillation (IPO;
refs. 16 and 17) and Atlantic Multidecadal Variability (AMV, as
also referred to as the Atlantic Multidecadal Oscillation [AMO];
ref. 18), could influence TC activity on a global scale (10–12,
19–21). Indeed, observations showed a positive phase of the IPO
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and a negative phase of the AMV during 1980 to 1997, with a
change in sign thereafter (Fig. 1C and SI Appendix, Figs. S1A and
S2A; see IPO and AMV for computing IPO and AMV indices).
The decadal phase changes in the IPO and AMV on around
1997 could be another potential factor responsible for the ob-
served spatial pattern of TCF trends over 1980 to 2018. To
clarify the extent to which the spatial pattern of the observed
TCF trends was attributable to the externally forced climate
change or internal multidecadal variability, we use two statistical

methods on both the observations and the climate model simu-
lations as described in the following sections.

Effect of Natural Variability and External Forcing on the
Trends in Global TCF
As indicated in Fig. 1A, the global warming trend is much
stronger after 1980 than before. This implies that the warming
trend is nonlinear (22). Therefore, it may be difficult to attribute
the observed linear trends in TCF (Fig. 1D) to nonlinear

0.5

Fig. 1. Time series of surface temperature, global TC number, IPO, and linear trends in TCF. (A) Anomalies of global mean surface temperature relative to the
1961 to 1990 mean based on observations (black), the AllForc large-ensemble experiments (red), and the NatForc experiments (blue), using all of the models
(i.e., FLOR-FA, FLOR, and SPEAR [units: K]). Thin lines represent each ensemble member (95 members for AllForc and 90 members for NatForc); thick lines
represent the ensemble means. Shading indicates the minimum and maximum ranges among the ensemble members. (B) As in A, but for global TC number
(units: number per year). (C) As in A, but for the IPO index (IPO and AMV) (units: σ). (D) Observed linear trends in TCF for the period 1980 to 2018 (number per
year). (E) As in D, but for the ensemble mean of the AllForc experiments. (F) As in D, but for the ensemble mean of the NatForc experiments. The arrows in A
highlight the major volcanic eruptions in history. The white dot in D–F indicates the linear trend over the grid cell is statistically significant at the 95% level
according to the Mann–Kendall significance test. Observations used are (A) HadCRUT4 and GISTEMv4, (B and D) IBTrACS, and (C) HadISST1.1.
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increases in anthropogenic forcing or oscillatory internal natural
variability because a linear TCF trend could be a mixed result
from both effects. One method that successfully splits the climate
variability into a long-term nonlinear trend and other natural
internal modes is the singular value decomposition analysis
(SVD; ref. 23; see SVD Analysis for more details). The SVD
analysis method is an extension of the empirical orthogonal
function (EOF) analysis method (24). Unlike the EOF analysis
method, the SVD analysis method utilizes two variables for the
inputs and identifies the patterns in each variable that explain
the maximum amount of covariance (25). Although the SVD
analysis itself does not always guarantee a separation between a
nonlinear warming trend and other modes, Wang et al. (23)
reported that the SVD analysis using the observed anomalies of
sea surface temperatures (SSTs) and annual TCF over 1965 to
2008 successfully separated the nonlinear global warming mode
from other natural internal modes. We will revisit Wang et al.
(23) by applying the SVD analysis to the observed TCF and SST
datasets over 1980 to 2018 (Fig. 2 A–F). As will be discussed
later, we will also show the SVD results applied to the model
outputs (Fig. 2 G–O) to compare the observed results.
We found that SVD analysis applied to observations over 1980

to 2018 also identified the long-term nonlinear warming mode
and natural variability mode as consistent with Wang et al. (23)
(Fig. 2 A–F). The first SVD mode using observations explains
61% of the total covariance between SST and TCF (Fig. 2 A–C).
The expansion coefficient for the first SST mode (EC1SST) is
highly correlated with both the observed IPO index (IPO and
AMV) with reversed sign (r = 0.71) and the AMV index (IPO and
AMV) (r = 0.73) (Fig. 2 A and C). The spatial pattern of the first
SVD TCF (Fig. 2B) corresponds fairly well to that of the ob-
served TCF trends (Fig. 1D), suggesting an influence of the IPO
and AMV on the observed TCF trends. However, the spatial
pattern of the first SVD TCF does not completely agree with the
observed TCF trends in terms of its smaller negative TCF
loading in the southern Indian Ocean as well as an inconsistent
sign of TCF change in the central Pacific near Hawaii. By con-
trast, the second SVD mode reveals a nonlinear global warming
pattern in which the TCF pattern (Fig. 2E) shows a marked
negative TCF loading over the southern Indian Ocean and a
positive TCF loading in the central Pacific, which appears to be
more consistent with the observed TCF trends than the first SVD
mode (Fig. 1D).
Meanwhile, it is uncertain if the first SVD TCF spatial pattern

in observations, shown in Fig. 2B, is a true response of TCF to
IPO and AMV, owing to the short analysis period. We in-
vestigated the modeled TCF response to the simulated IPO and
AMV using the long-term preindustrial control simulations of
two fully coupled dynamical global models developed at the
Geophysical Fluid Dynamics Laboratory (GFDL): Forecast-
oriented Low Ocean Resolution model with flux adjustments
(FLOR-FA; ref. 26–28) and Seamless System for Prediction and
Earth System Research (SPEAR; ref. 29) (piControl;Models and
piControl Experiments). The two models reasonably reproduced
the IPO- and AMV-like variability (SI Appendix, Figs. S1 B, E,
and I and S2 B, E, and I). The simulated TCF spatial patterns
regressed onto the simulated negative IPO index (SI Appendix,
Fig. S1 G and K) and AMV index (SI Appendix, Fig. S2 G and K)
partially agree with the observed first SVD TCF patterns in the
western North Pacific and North Atlantic (Fig. 2B); however,
there are marked differences between Fig. 2B and SI Appendix,
Figs. S1 G and K, especially in the Indian Ocean and South
Pacific. Therefore, the spatial pattern of the observed TCF
trends is not completely explained by IPO and AMV, indicating
that other factors, such as external forcing, need to be explored.
Note that previous studies (e.g., ref. 30) suggest that the ob-
served IPO and AMV may reflect the response to a combination
of natural and anthropogenic forcing during the historical

period. Although it remains uncertain to what extent the first
SVD results from external forcing, we hypothesize that the sec-
ond SVD represents an externally forced mode responsible for
the global TCF trends (Fig. 2 D–F).
Because of the short duration of the observed record, we

primarily rely on climate model simulations to understand forced
climate change (e.g., anthropogenic forcing) and internal natural
variability (e.g., IPO and AMV). However, understanding forced
climate change in the presence of internal unforced climate
variability and model response uncertainty is a challenge for
climate change science. In the past, climate modeling centers ran
a small number of realizations [e.g., phase 5 of the Coupled
Intercomparison Project (31)] that may not be insufficient to
distinguish all aspects of the forced response from internal cli-
mate variability. An alternative approach is to conduct a new
type of climate simulation called “large-ensemble simulations”
(32). Large-ensemble simulations allow one to better define a
model’s forced response and to distinguish it from internal var-
iability, taking advantage of ensemble statistics given a suffi-
ciently large ensemble.
We conducted new large-ensemble simulations using fully

coupled models developed at GFDL that incorporate 50-km
mesh atmospheric component, enabling realistic TC simulations
(33, 34). In order to investigate the impact of different models on
the results, we conducted large-ensemble simulations with three
configurations using the GFDL models (Large-Ensemble Exper-
iments and SI Appendix, Table S1). The first is the simulation
using FLOR-FA. The second is that using FLOR without flux
adjustment (referred to as FLOR). The last is that using a very
new model developed at GFDL (SPEAR; ref. 29). We utilized
SPEAR in addition to FLOR considering the potential model
dependence of results. SPEAR can be considered as an inde-
pendent model from FLOR and FLOR-FA with substantial
upgrades in the physical and dynamical packages in SPEAR (29).
Each configuration runs 30- to 35-member ensemble simulations.
Each ensemble member was initialized from a different year from
the long-term control simulations and integrated forward by pre-
scribing time-varying historical external forcing such as green-
house gases, aerosols, volcanic aerosols, and solar radiation
(hereafter referred to as AllForc). The simulated global mean
temperature rises year by year, as observed (red lines in Fig. 1A).
Because each ensemble member shows a different phase of internal
variability at a specific time, taking the mean of the ensemble
members can filter out the internal variability (e.g., Fig. 1C); thus,
the resultant mean field can be regarded as an estimated modeled
response to the external forcing. Another set of large-ensemble
simulations was also conducted with similar settings as AllForc
but with a fixed level of greenhouse gases and aerosols at 1941 for
FLOR and FLOR-FA (1921 for SPEAR), along with time-varying
volcanic forcing and solar radiation (hereafter referred to as
NatForc). This meant that there is no apparent trend in global mean
temperature except for a few significant cooling events after the
volcanic eruptions (blue lines in Fig. 1A).
The simulated TCF trends for the period 1980 to 2018 com-

puted by the ensemble mean of the AllForc experiments,
throughout the configurations (Fig. 1E), as well as NatForc
(Fig. 1F), show spatial patterns similar to the observed TCF trends
(Fig. 1D). These results indicate the possibility that external
forcing has played an important role in the observed global TCF
trends. We also applied SVD analysis to the ensemble mean of
SSTs and TCFs simulated by the AllForc (95 members) and
NatForc (90 members) experiments. Because model-simulated
internal natural variabilities are cancelled out by averaging en-
semble members, the first SVD mode now represents a global
warming mode (Fig. 2 G–L), which is related to the TCF patterns
(Fig. 2 H and K) resembling the observed TCF trends (Fig. 1D)
and the observed second SVD mode of TCF (Fig. 2E). A recent
study indicated that mean TC genesis locations were potentially
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shifted equatorward after the volcanic eruptions that occurred in
the Northern Hemisphere (35). This is somewhat consistent with
the first SVD TCF mode of NatForc (Fig. 2K), in that the TCF
anomaly is negative in the Northern Hemisphere and positive in
the Southern Hemisphere during years after the two big volcanic
eruptions of El Chichón in 1982 and Pinatubo in 1991 (Fig. 2L).
The low level of TC activity during the period of cooler surface

ocean conditions in the earlier decades (1980 to 2001) and high
level of TC activity during the recovery period from the cooling in
the later decades (2002 to 2018) in the Northern Hemisphere
might have partially caused the observed spatial pattern of TCF
trends. To isolate the effect of CO2 increases, we conducted an-
other set of experiments, called “Transient 2×CO2,” in which CO2
was increased by +1% per year as a boundary condition until the

A B C

D E F

G H I

J K L

M N O

Fig. 2. SVD analysis using SST and TCF. (A–C) The first SVD mode derived from the observations. (A) The first SVD mode for SST (SVD1SST) and (B) TCF
(SVD1TCF). (C) Time series of the expansion coefficient (EC) for SST (EC1SST, black) and TCF (EC1TCF, red) superimposed on the observed IPO index with flipped
sign (blue) and AMV index (pink) (units: σ). (D–F) As in A–C, but for the second SVD mode and standardized global mean SST in F for the blue line. (G–I) As in
D–F, but for the first SVD mode derived from the ensemble mean of the 95-member AllForc experiments. (J–L) As in D–F, but for the first SVD mode of the
90-member NatForc experiments. (M–O) As in D–F, but for the three-member Transient 2×CO2 experiments.
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CO2 level had doubled relative to the 1990 level (ref. 36 and
Transient 2×CO2 Experiment). The first SVD mode derived from
the ensemble mean of the Transient 2×CO2 experiments (three
members) is again a global warming mode (Fig. 2M–O), revealing
a spatial pattern of TCF similar to the observed TCF trends
(Fig. 1D), except over the North Atlantic. Overall, based on the
results of the large-ensemble experiments, we hypothesized that
the observed spatial pattern of global TCF trends during 1980 to
2018 was highly likely to have been caused by the changes in ex-
ternal forcing, such as greenhouse gases, aerosols, volcanic erup-
tions, and solar radiation, although IPO and AMV were still

important factors for the decreasing (increasing) TCF over the
western North Pacific (North Atlantic).

Detected Climatic Change in the Observed Trends in Global
TCF
A high similarity between the observed (Fig. 1D) and simulated
(Fig. 1E) spatial patterns in the global TCF trends indicates that
it is likely that external forcing played an important role for the
observed TCF change. However, it is still unclear how much of
the observed TCF trends over 1980 to 2018 can be statistically
distinguishable from internally generated noise. If they can be

A

B

C

D

E

F

Fig. 3. Fingerprints for TCF changes. The guess patterns (A, C, and E) were derived from the first SVD modes using the ensemble mean of the large-ensemble
experiments for each model. The fingerprint patterns (B, D, and F) were obtained by rotating the guess patterns by the firstmmodes of the EOF derived from
the long-term piControl experiments. We tested m = 5, 10, or 15, and m = 15 results shown in B, D, and F (A and B) are for AllForc, (C and D) for Transient
2×CO2, and (E and F) for NatForc. Left-hand panels are for FLOR-FA, middle for FLOR, and right for SPEAR.
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distinguished from noise, by what year did this occur? One of the
objective methods to answer the question is so-called optimal
fingerprint analysis (37–39). We conducted the optimal finger-
print analysis using observations and the model simulations
(Optimal Fingerprint Analysis).
We first identified expected spatial patterns of climate change

in TCF (i.e., so-called guess patterns) from the first SVD modes
using the ensemble mean outputs for each configuration
(i.e., FLOR-FA, FLOR, and SPEAR). The obtained guess pat-
terns were for AllForc (Fig. 3A), NatForc (Fig. 3E), and Tran-
sient 2×CO2 (Fig. 3C). The optimal fingerprint patterns
(Fig. 3 B, D, and F) were obtained by rotating the guess patterns
by weighing the EOF modes derived from the long-term
piControl experiments (Optimal Fingerprint Analysis). In the
fingerprint analysis, we searched for an increasing expression of
the fingerprint (or guess) pattern in the observed TCF data and
estimated the detection time at which the pattern would become
identifiable at a 5% significance level. The detection time is
referenced to 1980, the start year of the observed data. “De-
tected at year X” implies that the observed spatial pattern of the
global TCF trends between 1980 and year X is unlikely to be due
entirely to modeled internal variability. The climate noise esti-
mates required for statistical significance were obtained from

1,000-y piControl runs using FLOR-FA and SPEAR (Optimal
Fingerprint Analysis).
The fingerprint analysis revealed that the observed spatial

pattern of TCF trends since 1980 was detected around 2010 with
the fingerprints by AllForc (Fig. 4A). In other words, the prob-
ability that the observed TCF trends between 1980 and 2010 are
due entirely to internal variability is less than 5%. These results
support our hypothesis that the observed spatial pattern of TCF
trends cannot be explained entirely by internal variability. The
observed spatial pattern of TCF trends is also detected after
2010 using the fingerprints of Transient 2×CO2, except for
FLOR-FA (Fig. 4B), and the fingerprints of NatForc, except for
FLOR (Fig. 4C), although the detection is not as robust as in
AllForc. The results from Fig. 4B highlight that the observed
global TCF trend may in part be attributable to the increase in
greenhouse gas emissions.

Summary and Discussion
Recent studies suggest that the state-of-the-art climate models
commonly project statistically significant reduction in the mean
number of global TCs at the end of the 21st century (2, 4). In
contrast, observations reveal no clear trend in the global TC
number since 1980, although the nature of observed global TC

A

B

C

Fig. 4. Detection times for TCF fingerprints in observations. The detection analysis was applied using the guess and fingerprints from (A) AllForc (greenhouse
gases, aerosols, volcanic forcing, and solar forcing), (B) Transient 2×CO2 (greenhouse gas), and (C) NatForc (volcanic and solar forcing), with a 5% significance
level (i.e., P value = 0.025 for a one-side test) as the detection threshold. The color bars indicate the earliest detection time (i.e., the longer bar, the earlier the
detection time). “Guess” denotes the detection time using the guess pattern; F denotes the optimal fingerprint, with the subscript number indicating the
truncation dimension of the EOF. The detection analysis was performed using three different fingerprints, obtained by FLOR-FA, FLOR, and SPEAR. In cases
where the detected variable was lacking statistical significance, the number indicates the P value for the 1980 to 2018 trend.
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number remains uncertain due to the limited length of available
TC data and the substantial impact of natural internal variability
on global TC activity. Despite the limited length of the observed
record, there are pronounced trends in the observed TC fre-
quency of occurrence (TCF, or say TC density) in some regions
over the period 1980 to 2018: decreasing trends in the southern
Indian Ocean, tropical western North Pacific, and South Pacific
and increasing trends in the Arabian Sea, central Pacific, and
North Atlantic. The different sign of TCF trends among the
regions could lead to no significant trend in the overall global TC
number. As indicated in the previous studies (10–12), the effect
of natural decadal variability such as the IPO and/or AMV could
be a potential factor responsible for the observed spatial patterns
in TCF trends since 1980. However, our model simulations
revealed that the observed TCF trends cannot be entirely
explained by such variability. Therefore, this study aimed to
address other external factors responsible for the observed global
TCF trends over the period 1980 to 2018.
Using large ensembles of climate model simulations, we found

that external forcing (i.e., greenhouse gases, aerosols, and vol-
canic eruptions) played an important role in the observed TCF
trends since 1980. The application of two statistical methods
(SVD and optimal fingerprint analysis) showed that the model-
estimated pattern of the changes in TCF from external forcing
had emerged in observations around 2010. Furthermore, the
analysis indicates that the two volcanic eruptions in 1980s and
1990s exerted substantial influence on global TCF trends, as also
indicated by a recent study (35). However, the current study also
highlights that increases in greenhouse gases are also another
important external forcing for the observed TCF trends since
1980. Indeed, the model experiments forced only with mono-
tonically increasing greenhouse gases revealed a spatial pattern
of the TCF trends similar to the observed TCF trends except for
the North Atlantic, where the model showed decreasing TCF
trends whereas observations showed increasing TCF trends.
Conversely, the model experiments forced with the all external
forcing showed increasing TCF trends in the North Atlantic.
These mixed results among the model experiments, and addi-
tional evidence shown in SI Appendix, Fig. S3, suggest that the
observed positive TCF trends in the North Atlantic over 1980 to
2018 could be partially attributable to the diminishing effect of
anthropogenic aerosols and volcanic eruptions that are in line
with the literature (35, 40–42). However, as shown in SI Ap-
pendix, Fig. S3B, our climate models project decreasing trends in
the number of TCs in the North Atlantic toward the end of the
21st century because of the dominant effect of increases in CO2
concentrations, assuming no volcanic eruption.
Regarding natural variability, the IPO and AMV are still

major contributors to influence the spatial distribution of TCs
around the world, especially in the western North Pacific and
North Atlantic. The IPO and AMV might have changed the sign
in the mid-2010s (blue and pink lines in Fig. 2C). If the current
phases persist, we would expect to see more (less) frequent active
TC seasons in the western North Pacific (North Atlantic) in the
upcoming decades owing to the variability of IPO and AMV (SI
Appendix, Figs. S1 G and K and S2G and K). However, consistent
with previous studies (2, 4), our models project a decrease in TCF
over most of the tropics toward the end of the 21st century due to
the anticipated increase in greenhouse gases. This, in turn, leads
to a projected decrease in global TC number (SI Appendix, Figs.
S3A and S4), but the decrease in global TC number is not yet
detectable in the observed record (Fig. 1B) because of the rela-
tively small signal-to-noise ratio for global TC number owing to
the large spatial variations in changes in TC activity.
Although we found consistent results with a different climate

model (SI Appendix, Figs. S5 and S6), projected future changes
in global TC activity still vary considerably among the
state-of-the-art climate models (36). Therefore, it would be

preferable to adopt a multiple-model approach to reduce the
uncertainty. Another caveat is that in the optimal fingerprint
analysis the detection time was computed based on the statistics
using linear trends following previous studies (37–39). However,
as indicated in Fig. 1A, the observed warming trend is much
stronger since 1980 than before. This implies that the warming
trends and the response could be nonlinear. Therefore, the de-
tected time in this study may include uncertainty. As discussed
above, anthropogenic aerosols could have also influenced the
TCs over the North Atlantic. Additional large-ensemble exper-
iments that are forced with a single external forcing (e.g., an-
thropogenic aerosols only) will be useful to clarify the impact of
the single forcing to the regional TC activity.

Methods
Observed Data. For the observed TC data, we utilized the International Best
Track Archive for Climate Stewardship (IBTrACS; ref. 43), version 4, for the
period 1980 to 2018. The IBTrACS dataset consists of TC tracks compiled by
multiple organizations. In this study, we utilized the combination of the
National Hurricane Center, the Joint Typhoon Warning Center, and the
Central Pacific Hurricane Center, which is flagged as “USA Agency” in the
IBTrACS dataset. TC positions were counted for each 5° × 5° grid box within
the global domain. The total count for each grid box was defined as the TC
frequency of occurrence (TCF). Following Wang et al. (23), the raw TCF fields
were smoothed using a nine-point moving average weighted by distance
from the center of the grid box. We also used the UK Met Office Hadley
Centre SST product (HadISST1.1; ref. 44) for SST and HadCRUT4 (45) and GISS
Surface Temperature Analysis (46), version 4, for surface temperatures.

IPO and AMV. We calculated the IPO index for both observations and models
(Fig. 1C) following previous studies (16, 17, 47). The IPO index is the stan-
dardized second principal component of the EOF for the 13-y low-pass-filtered
global SST. The AMV index was calculated following Trenberth and Shea (48).
and Deser et al. (49). The AMV index is defined as the area-average SST
anomaly over the North Atlantic (0–70°N, 90°W–0) minus the global mean SST
anomaly. The AMV index was standardized after calculating the anomalies.

SVD Analysis. SVD analysis is the multivariate statistical method that is widely
used in climate sciences (e.g., refs. 50 and 51). It is also known as principal-
component analysis. In the atmosphere and ocean sciences, data often ex-
hibit large spatial correlations. SVD analysis produces representation of
these correlations and provides insight into spatial and temporal variations
that synchronize among multiple fields of data analyzed.

To detect dominant modes of variability in TCF coupled to SST as the lower
boundary forcing, we performed the SVD analysis in which a covariance
matrix is constructed using annual mean TCF and SST fields. We utilized the
SVD code written in Python that is online available at the PyClimate website
(http://www.ehu.eus/eolo/pyclimate/about_en.html).

We first prepared input data for SVD: X and Y for TCF and SST, re-
spectively, which are annual values consisting longitude, latitude, and time.
Annual mean SST fields are interpolated onto the same grids of annual TCF
values (i.e., 5° × 5° grid box within the global domain). A covariance matrix
Cxy = XTY=N is constructed, where T denotes transpose operator and N
represents total number of years. Passing the covariance matrix to the SVD
function in PyClimate returns a tuple of three arrays U, Σ, and V. Each col-
umn ui of U holds the i-th singular vector of the left (X) field. Same con-
version is followed by the ordering of elements in V to obtain singular vector
vi for Y field. Σ is a one-dimensional array which holds the singular values σi.
The singular vectors are orthonormal (ui ·uj = vi · vj = σi,j) and can be used to
linearly project each of the fields to define the expansion coefficients
pi(t) = x(t) ·ui and qi(t) = y(t) · vi whose covariance is the same as the sin-
gular value associated to that mode pi ,qi = σi. Note that the datasets, X and
Y, are centered (i.e., sample mean is removed for each grid box) inside the
function prior to the SVD computation in PyClimate; however, they are not
detrended.

Models. We used the GFDL FLOR (26) and SPEAR (29). FLOR comprises 50-km
mesh atmosphere and land components, and 100-km mesh sea-ice and
ocean components. The atmosphere and land components of FLOR are
taken from the Coupled Model, version 2.5 (CM2.5; ref. 52), developed at
GFDL, whereas the ocean and sea-ice components are based on the GFDL
Coupled Model version 2.1 (CM2.1; refs. 53–55). SPEAR is a newly developed
coupled model consisting of the new AM4-LM4 atmosphere and land-surface
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model (56, 57), and the MOM6 ocean (58), and the SIS2 sea-ice model. The
horizontal resolution of SPEAR is almost of identical to that of FLOR. A detailed
description and performance and evaluation of FLOR and SPEAR are available in
Vecchi et al. (26) and Delworth et al. (29), respectively.

A suite of simulations using FLOR were also conducted with the “flux
adjustments” approach (26) (referred to as FLOR-FA), which adjusts the
model’s momentum, enthalpy, and freshwater fluxes from the atmosphere
to ocean and so brings the long-term climatology of the SST and surface
wind stress closer to the observations.

Model-generated TCs were detected directly from six-hourly output, using
the following tracking scheme developed by Harris et al. (59), as implemented
in Murakami et al. (60). In the detection scheme, the flood fill algorithm is
applied to find closed contours of a specified negative sea-level pressure
anomaly with a warm core. The storm detection must maintain a warm core
and a wind criterion of 16.5 m·s−1 for at least 36 consecutive hours.

piControl Experiments. We generated long-term preindustrial climate simu-
lations using FLOR-FA (3,500 y) and SPEAR (3,000 y), respectively, by pre-
scribing fixed radiative forcing and land-use conditions representative of the
preindustrial conditions (piControl). A summary of the configuration is
provided in SI Appendix, Table S1. The fixed forcing agents for the control
simulations were atmospheric CO2, CH4, N2O, halons, tropospheric and
stratospheric O3, anthropogenic tropospheric sulfates, black and organic
carbon, and solar irradiance. We analyzed the last 1,000 y in the simulations;
however, the overall conclusions were the same even when using all of
the years.

Large-Ensemble Experiments. We conducted two types of multidecadal sim-
ulations using the dynamical models. A summary of the configuration is
provided in SI Appendix, Table S1. For the AllForc experiments, the historical
anthropogenic forcing was prescribed for the period 1941 to 2004 (but 1921
to 2014 for SPEAR), and the anticipated future anthropogenic forcing was
prescribed for the period 2006 to 2050 based on RCP8.5 (31) for FLOR, 2006
to 2050 based on RCP4.5 (31) for FLOR-FA, and 2015 to 2100 based on the
Shared Socioeconomic Pathway 5–85 (SSP5-85; refs. 61 and 62) for SPEAR. In
the simulations, no volcanic forcing was prescribed after 2006. Although the
prescribed level of anthropogenic forcing among the models was different
after 2005, the effect of the difference was small for the period 1980 to
2018, which is the main focus of this study (e.g., Fig. 1A). These multidecadal
simulations were initiated from the restart files derived from the piControl
experiments every 20 y from the year 101 for each ensemble member
(e.g., year 101 for ensemble 1, year 121 for ensemble 2); thus, the simulated
internal variability, such as IPO and AMV, was out of phase among the en-
semble members (e.g., Fig. 1C).

The other simulation type comprised the NatForc experiments, for which
the experimental settings were identical to AllForc apart from the green-
house gases and aerosols were fixed at their levels in 1941 for FLOR and FLOR-
FA and 1921 for SPEAR. The difference between AllForc and NatForc was
time-varying greenhouse gases and anthropogenic aerosols.

Transient 2×CO2 Experiment. To estimate the responses of TCF to increasing
CO2, we conducted Transient 2×CO2 experiments (36) using FLOR, FLOR-FA,
and SPEAR. Using each model, we preliminarily conducted a long-term fully
coupled 1990 control simulation in which anthropogenic forcing was fixed at
the 1990 level (i.e., 353 ppm for CO2). Using a restart file at the year 101 in
the 1990 control experiment, we ran the same fully coupled simulation ex-
cept with a CO2 increase of +1% per year. After 70 y (i.e., year 170), the CO2

level had doubled (i.e., 707 ppm) relative to the 1990 level. We conducted
the SVD analysis (refs. 23 and 25 and SVD Analysis) using the simulated SST
and TCF during the period of CO2 increase (i.e., years 101 to 170). Note that
we only conducted the simulation with a single member for each of FLOR,
FLOR-FA, and SPEAR.

Optimal Fingerprint Analysis. We applied an optimal fingerprint analysis
method (37–39) to determine if expected spatial patterns of trends in TCF
induced by external forcing derived from the models could be identified in
the observations. A detailed description is also available in Santer et al. (39).
First, we assumed that the first SVD mode for the TCF pattern (e.g., Fig. 2 H,
K, and N), computed from the ensemble mean of the simulated SST and TCF,

is the expected climate change signal pattern (i.e., guess or nonoptimized
pattern). Letting f(x,y) represents the guess pattern, where x is longitude
and y is latitude defined over the 5° × 5° grid cells, the detection variable for
observations (do) is obtained by projecting the observed annual TCF on f as
follows:

do(t) = f(x, y) · TCFo(x, y, t), [1]

where t denotes time (i.e., year) and TCFo represents the observed TCF. The
same projection was also applied to the piControl experiment as

dm(t) = f(x, y) · TCFm(x, y, t), [2]

where TCFm represents the TCF simulated by a piControl experiment. Then,
we fitted the least-squares linear trend for the L-length data to obtain the
linear trend for observations (ao):

do(t) ≈ ao(L) × t + bo(L)t = 1, ..., L [3]

and piControl experiments (am):

dm(t + t0) ≈ am(t0, L) × t + bm(t0, L)t = 1, ..., L, t0 = 0, . . . , tmax − L, [4]

where tmax is the total number of years used in piControl (i.e., tmax = 1,000)
and t0 denotes the staring year of a period with L-years long. Then, we
applied a Gaussian fit for the derived tmax – L samples of am(t0, L) and
compared it with the ao(L). If ao(L) fell above the 97.5% range (critical P
value for statistical significance is 0.025 for the 95% statistical level in a one-
tailed test) of the fitted Gaussian distribution derived from piControl, we
considered that the observed trend as having been detected. The detection
time was referenced to 1980, the start year of the observed data. We used a
minimum trend length of 10 y (i.e., L = 10) so that the earliest possible
detection year was 1990. It was necessary to use independent models for
estimating f and TCFm. If f was derived from FLOR (or FLOR-FA), for example,
TCFm was derived from SPEAR, and vice versa.

Optimized detection times were computed in a similar way but by applying
projections of TCFo and TCFm on f*, which is the optimal fingerprint, that
had been rotated away from high-noise directions. This rotation was per-
formed using the first m EOF models of TCFm. Following Santer et al. (39),
weighting coefficients were derived as follows:

αj = f (x, y) ·ej(x, y), j = 1, . . . ,m, [5]

where ej denotes the j-th EOF eigenvector derived from piControl
(i.e., TCFm). The optimal fingerprint f*was obtained by the EOF eigenvectors
by weighting αj and the inverse of the noise eigenvalue lj as follows:

f* x, y( ) = ∑
m

j=1
αjej x, y( )l−1j . [6]

If f resembled higher EOF modes (i.e., higher noise), this optimization kept
f* away from the higher EOF modes. We explored the sensitivity of the
optimized detection times to a truncation of the EOF models (i.e., m). We
chose 5, 10, and 15 EOF modes as the truncation to construct f* and applied
Eqs. 1 and 2 instead of using f. To avoid the introduction of artificial skill,
when a model was used for optimization (i.e., Eqs. 5 and 6), a piControl run
by another model was used for estimating the internal variability statistics as
used for Eq. 2. For example, when a fingerprint f* was computed using the
EOF models derived from the piControl of SPEAR, we utilized the piControl
of FLOR-FA for computing dm in Eq. 2.

Data and Materials Availability. The source code of the climate model can be
accessed from the Geophysical Fluid Dynamics Laboratory (https://www.gfdl.
noaa.gov/cm2-5-and-flor/) (27). The data that support the findings of this
study are available in ref. 28.
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