Complete encapsulation of sulfur through interfacial energy control of sulfur solutions for high-performance Li–S batteries

Donghee Gueona, Min-Young Jua, and Jun Hyuk Moonb,1

*Department of Chemical and Biomolecular Engineering, Sogang University, 04107 Seoul, Republic of Korea

Edited by Yi Cui, Stanford University, Stanford, CA, and accepted by Editorial Board Member Catherine J. Murphy April 16, 2020 (received for review January 4, 2020)

Complete encapsulation of high-content sulfur in porous carbon is crucial for high performance Li–S batteries. To this end, unlike conventional approaches to control the pore of carbon hosts, we demonstrate controlling the interfacial energy of the solution in the process of penetrating the sulfur-dissolved solution. We unveil, experimentally and theoretically, that the interfacial energy with the carbon surface of the sulfur solution is the key to driving complete encapsulation of sulfur. In the infiltration of sulfur solutions with N-methyl-2-pyrrolidone, we achieve complete encapsulation of sulfur, even up to 85 wt %. The sulfur fully encapsulated cathode achieves markedly high volumetric capacity and stable cycle operation in its Li–S battery applications. We achieve a volumetric capacity of 855 mAh/cm3 at 0.2C and a capacity reduction of 0.071% per cycle up to 300 cycles at 1C.

sulfur encapsulation | interfacial energy | lithium–sulfur batteries | capillary action | high sulfur loading

N ext-generation electric vehicles (EVs), hybrid EVs, and energy storage systems require energy storage batteries with high capacity and high energy density (1, 2). Lithium–sulfur (Li–S) batteries are one of the promising candidates because they have a high theoretical capacity (1,675 mAh/g) that enables an energy density (2,600 Wh/kg) more than twice that of conventional lithium–ion batteries (3–6). Common practice for Li–S battery electrodes is to contain sulfur in a porous carbon host (7, 8). Sulfur has a very low electrical conductivity (5 × 10–30 S/cm at 25 °C), and lithium polysulfides (LiPS) produced during charging/discharging reactions cause dissolution and shuttling in the electrolyte solution (9). Sulfur loading into the porous carbon hosts (i.e., sulfur loading into the hollow cavity) improves electrical conductivity and prevents the dissolution through physical confinement (10, 11). Previously, much effort was devoted to control the pore structure of carbon or carbon composite in order to securely encapsulate sulfur and form a uniform composite of sulfur and carbon (12–19). Moreover, efforts have also been devoted to designing binder and sulfophilic structure (20, 21).

In contrast to these efforts, a relatively overlooked factor is that the low-to-moderate compatibility of sulfur or sulfur-dissolved solution (typically, a sulfur/CS2 solution) with carbon causes difficulty in completely loading sulfur into the porous carbon host (22, 23). Recent studies have introduced various metal compounds for improved adsorption of PSs but, due to their relatively low content, the compatibility with carbon surfaces is still important (24–26). Indeed, molten sulfur shows only partial wetting on the carbon surface (SI Appendix, Fig. S1) (27). This property causes highly resistive diffusion of sulfur into the micropores or mesopores of carbon in the traditional melt diffusion processes. Previous results often showed poor penetration of sulfur into the open pores of carbon nanotube (CNT) assembly or carbon particles with hollow cavities (28–30). Meanwhile, even in the case of penetrating the sulfur-dissolved CS2 solution, the sulfur may not favorably penetrate the porous structure, because the CS2 has low compatibility with the carbon surface; CS2 is nonpolar due to its symmetry molecular structure, and the carbon surface is mildly polar. A sulfur vapor deposition has been proposed to address this issue, but this has limitations in selectively loading sulfur into the porous carbon structure (19). Therefore, a robust and high-fidelity process for complete encapsulation of sulfur, regardless of the carbon or carbon composite host, remains a challenge. This is particularly useful for the fabrication of electrodes containing high amounts of sulfur to achieve ultrahigh energy density.

In this study, we present the control of the interfacial energy of the sulfur solution and thereby completely load a high amount of sulfur into the porous carbon host. We exploit a hollow porous carbon sphere (HPCS) (see SI Appendix for synthesis details and productivity of HPCS); this particle has a hierarchical pore structure with a macropore inside and a mesopore in the shell. We apply a mixed solution of isopropyl alcohol (IPA) or N-methyl-2-pyrrolidone (NMP) and CS2 in the preparation of the sulfur solution. The deposition of sulfur by the penetration of each sulfur solution and conventional sulfur/CS2 solution is compared in Fig. 1. The sulfur/CS2 solution, due to its low wettability on the carbon surface, causes poor penetration into the pore, resulting in sulfur being deposited outside of the HPCS after evaporation of the solvent, as described in Fig. LA. The solution containing IPA has low sulfur solution–carbon interface energy due to its low surface tension and thereby improves the penetration. NMP is highly compatible with carbon, and, therefore, NMP-containing solutions also show enhanced penetration. Our study reveals that NMP lowers interfacial energy of the sulfur solution by adding a solvent with high compatibility with the carbon surface. The use of NMP improves the infiltration of sulfur solution effectively, resulting in complete sulfur encapsulation. We observe that the control of sulfur loading greatly affects Li–S battery performance. We identify significantly superior cell performance in the complete encapsulation. Our method can also be applied to effectively load active materials for next-generation energy storage devices.

Significance

Complete encapsulation of high-content sulfur into porous carbon or carbon composites is crucial for high-performance Li–S cells. However, the low-to-moderate compatibility of sulfur-dissolved solution with carbon causes difficulty in completely loading sulfur into the porous host. We control the interfacial energy of the sulfur solution by adding a solvent with high compatibility with the carbon surface. The use of NMP improves the infiltration of sulfur solution effectively, resulting in complete sulfur encapsulation. We observe that the control of sulfur loading greatly affects Li–S battery performance. We identify significantly superior cell performance in the complete encapsulation. Our method can also be applied to effectively load active materials for next-generation energy storage devices.

Author contributions: J.H.M. designed research; D.G. and M.-Y.J. performed research; D.G. and J.H.M. analyzed data; and D.G. and J.H.M. wrote the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission. Y.C. is a guest editor invited by the Editorial Board.

This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

1To whom correspondence may be addressed. Email: junhyuk@sogang.ac.kr.

This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2000128117/-/DCSupplemental.

interfacial energy more than IPA, resulting in sulfur deposition only in the porous shell for the IPA solution (Fig. 1B) and sulfur deposition into the hollow cavity (i.e., complete encapsulation of sulfur) in the NMP solution (Fig. 1C). We apply sulfur-loaded carbon hosts prepared with each sulfur solution to the cathode of a Li–S cell. We achieve the best performance in the cathode with the most secure sulfur loading prepared using the NMP-containing solution; this cell achieves significantly higher volumetric capacity and stable cycle operation.

HPCs are formed by first forming a silica core as a seed with the Stöber method, forming a silica layer containing the polymer

Fig. 1. (A–C) (Left) Schematic for comparison of penetration of three different sulfur-dissolved solutions into HPCS. (Right) (A) Penetration of sulfur-dissolved CS₂ solution into HPCS and deposition of sulfur after solvent drying. (B and C) Infiltration of sulfur solution containing IPA or NMP and deposition of sulfur. (D, G, and J) High-magnification TEM image and EDX elemental mapping of (D) S/HPCS (CS₂), (G) S/HPCS (CS₂/IPA), and (J) S/HPCS (CS₂/NMP). (Scale bar, 200 nm.) (E, H, and K) High-magnification TEM image and line EDX result for (E) S/HPCS (CS₂), (H) S/HPCS (CS₂/IPA), and (K) S/HPCS (CS₂/NMP); red, carbon; green, sulfur. (F, I, and L) Low-magnification SEM images of (F) S/HPCS (CS₂), (I) S/HPCS (CS₂/IPA), and (L) S/HPCS (CS₂/NMP). (Scale bar, 1 μm.) The S content for all samples was 75 wt %, which was confirmed by thermogravimetric analysis (TGA) (SI Appendix, Fig. S11A).
resorcinol formaldehyde (RF), and then carbonizing the RF and selectively removing the SiO₂. Detailed synthetic procedures and scanning electron microscopy (SEM) images of the particles at each step are given in SI Appendix, Fig. S2. HPCs have a mesopore carbon shell and macropores inside; the internal macropores of HPCs provide a reservoir for high sulfur loading, and the mesopore shell can inhibit the dissolution of Li PSs or MnS in the spheres (31, 32). SI Appendix, Fig. S3 shows that HPCS has a diameter of about 600 nm and a mesopore shell with a pore size of about 5 nm. The transmission electron microscopy (TEM) image also shows pore channels aligned in the radial direction. The X-ray diffraction (XRD) spectrum shown in SI Appendix, Fig. S4 reveals the glassy carbon character of HPCSs.

We wet the carbon sphere with a sulfur solution and evaporate the solvent to deposit the sulfur. CS₂ is widely used because it has uniquely high solubility for sulfur (~450 mg/mL at 25 °C) (34). The TEM image, its elemental mapping, and the line profile of sulfur for a sample prepared by infiltration of sulfur-dissolved pure CS₂ solution show that only a trace amount of sulfur is loaded in the porous shell and macropore cavity (Fig. 1 D and E). The SEM image of Fig. 1F clearly shows the residue of sulfur present on the outside of the particle. Previous studies have also observed imperfect sulfur loading into carbon pores (35, 36). Furthermore, even in the even diffusion of sulfur, conventionally applied, we observe that sulfur does not penetrate into the pores in the sphere (SI Appendix, Fig. S5). We surmise that this is due to the unfavorable wetting characteristics of the solvent on the carbon surface. We therefore have investigated the wetting characteristics of various solvents on the carbon surface to determine the infiltration properties of HPCSs fabricated with IPA- or NMP-containing solution.

We applied binary solvents to improve wetting of the sulfur solution on the carbon surface. We chose IPA as an additional solvent since it has a very low surface tension of 22 mN/m and chose NMP since it is widely used as a solvent capable of dispersing CNTs or graphene (37–39). Here, we prepared a binary solvent containing 40% IPA or NMP in CS₂; each solution has a solubility comparable to that of CS₂ (SI Appendix, Fig. S6). TEM images of sulfur-loaded HPCS (S/HPCS) prepared using these mixture solutions and the elemental mapping of S and C in these images are shown in Fig. 1 G and H, respectively. Fig. 1 I and J shows line profiles of the elemental mapping of S/HPCS prepared using the solutions containing IPA and NMP, respectively. Using mixed solvents clearly produces different sulfur loadings from the loading obtained using pure CS₂. In S/HPCS prepared using CS₂/IPA, sulfur is observed in the porous shell. With the CS₂/NMP solvent, the sulfur is carried into the macropores (SI Appendix, Fig. S7) for more TEM images of many S/HPCS particles prepared using the sulfur-dissolved CS₂/NMP solution. In the SEM images in Fig. 1 J and L, no sulfur residue is visible around the HPCSs fabricated with the IPA- or NMP-containing solution. These results confirm that the CS₂/IPA and CS₂/NMP solutions lead to the more complete infiltration of sulfur-dissolved solvent into the pores of HPCs. The XRD spectrum shown in SI Appendix, Fig. S8 reveals the sulfur character of S/HPCS (CS₂/NMP) (40, 41).

The different loading of sulfur for the three solutions can also be confirmed by Brunauer–Emmett–Teller (BET) pore analysis of S/HPCS (SI Appendix, Fig. S9). The S/HPCS (CS₂) sample shows little N₂ adsorption, reflecting the complete coverage of HPCS by the sulfur residue. The S/HPCS (CS₂/NMP) exhibits adsorption in mesopore, while the S/HPCS (CS₂/IPA) shows nonporous characteristics. This can be explained by the fact that, in the S/HPCS (CS₂/IPA), sulfur is deposited in the shell to block the mesopore, whereas, in the S/HPCS (CS₂/NMP), the adsorption profile indicates the presence of mesopore shell due to the deposition of sulfur in the inner hollow cavity.

To illustrate the difference in infiltration depending on the solvent composition, we analyze the capillary action of the solution inside the mesopore shell of HPCS. In such small pores, the infiltration is dominated by capillary pressure (42). The capillary pressure force depends on the contact angle with the surface and the interfacial tension of the liquid (i.e., γSV cosθ). The contact angles (θ) of CS₂, CS₂/IPA, and CS₂/NMP solutions on a flat carbon surface are measured to be 53°, 17°, and 17°, respectively, as observed in Fig. 2A. The value of γSV is calculated by the lever rule considering the mixing ratio, yielding 32 mN/m for CS₂, 29 mN/m for CS₂/IPA, and 35 mN/m for CS₂/NMP (37). Details of the calculation of the capillary pressure are given in SI Appendix, Supplementary Note #1. Then, the capillary pressures of CS₂/NMP and CS₂/IPA are ~1.7 times and 1.4 times larger, respectively, than CS₂. These results explain the significantly improved infiltration of the solution containing IPA and NMP into the carbon pores compared to the CS₂ solution and also explain the improved infiltration in solutions containing NMP over IPA.

This calculation shows that the penetration of the liquid into the carbon pores is determined by the contribution of the contact angle and the interfacial tension of the liquid. This indicates that the interfacial energy of the liquid/solid is the term that determines the penetration; the interfacial energy, γSV, is equal to the surface energy of the carbon, γSV−γCV cosθ, from the Young’s equation under partial wetting conditions (42). The γCV of carbon was reported to be ~39.5 mN/m for glassy carbon (43). The γSV value obtained by subtracting γCV cosθ from this value is 20.2 mN/m for CS₂, 11.8 mN/m for CS₂/IPA, and 6 mN/m for CS₂/NMP (Table 1). The γSV values were further confirmed by simulation using Surface Evolver software (SI Appendix, Supplementary Note #2); we simulated a droplet contacting the carbon surface with minima in the energy landscape satisfying the equilibrium of the three forces in Young’s equation. We obtained γSV values of 21.5, 11.5, and 5.5 mN/m for CS₂, CS₂/IPA and CS₂/NMP, respectively, in the simulation, which agree with the values in the experiment. Compared to the IPA solution, the NMP solution exhibits a similar contact angle but has a much lower interfacial energy, so it penetrates more favorably into the macropore cavity of the interiors of the carbon particles. We further applied other solvents (ethanol and N,N-dimethylformamide) to confirm the hypothesis that the penetration of sulfur-dissolved solution is determined by interfacial energy. Ethanol has a surface tension similar to IPA, and N,N-dimethylformamide has interfacial energy with carbon which is similar to NMP. The results show that CS₂/ethanol shows sulfur loading in the shell similar to IPA, and CS₂/DMF confirms the deposition of sulfur into the hollow cavity (SI Appendix, Supplementary Note #3).

We prepared a Li–S battery cell containing S/HPCS (CS₂), S/HPCS (CS₂/IPA), or S/HPCS (CS₂/NMP) cathode. First, we...
obtained cyclic voltammetric curves in the 1.7- to 2.8-V (vs. Li/Li+) region at various scan rates, as observed in Fig. 3 A–C. These curves show cathodic peaks at 2.4 V and 1.95 V on the reduction curves, which are related to reduction reactions of $\text{S}_8 + 4\text{Li}^+ + 4e^- \rightarrow 2\text{Li}_2\text{S}_4$ (C1) and $2\text{Li}_2\text{S}_4 + 12\text{Li}^+ + 12e^- \rightarrow 8\text{Li}_2\text{S}$ (C2), respectively. Additionally, the anodic peak near 2.5 V is related to the reverse reaction of Li PS: $\text{Li}_2\text{S}_2/\text{Li}_2\text{S}$ to S_8 (44, 45). The response of the peak current to the scan rate is related to the rate of the sulfur transformation reaction. We obtained the relative diffusivity of Li ions (D_{Li^+}) using the modified Randles–Sévick relationship (5).

$$D_{\text{Li}^+} \propto \frac{I_p^2}{S^n n^2 C_{\text{Li}^+} v}$$

[1]

where I_p is the peak current, n is the charge transfer number, S is the geometric area of the active electrode, C_{Li^+} is the concentration of lithium ions in the cathode, and v is the potential scan rate. Here, D_{Li^+} includes the diffusion of Li$^+$ in solution to the surface of the sulfur deposit and the quasi−solid-state/solid-state diffusion in the LiPS layer formed on the S surface (46, 47). The D_{Li^+} of each sample at each redox peak is compared as shown in Fig. 3D; for every redox peak, S/HPCS (CS2/NMP) and S/HPCS (CS2/IPA) show a much higher value than S/HPCS (CS2), revealing the fast reaction kinetics achieved with the S/HPCS (CS2/NMP) and S/HPCS (CS2/IPA) electrodes (5). In particular, we observe significant differences between each sample for the C_2 reaction. Poor diffusion in S/HPCS (CS2) samples is responsible for slow solid-state diffusion in bulk sulfur residues (46, 48, 49). In S/HPCS (CS2/IPA), sulfur is encapsulated in a microdomain in a porous shell, but there may be a large delay in the liquid-phase diffusion of Li$^+$ in sulfur-clogged mesopores (50). In the S/HPCS (CS2/NMP), a thin layer of sulfur deposited on the inner wall of the porous shell, which allows rapid diffusion of Li$^+$ into open pores of the shell (51). A comparison of the charge diffusion for these samples is described in detail in SI Appendix, Supplementary Note #4.

Fig. 3E compares the electrochemical impedance spectra of these electrodes. The semicircle corresponds to the charge transfer resistance (R_{ct}) for the electroredox reaction at the electrode/electrolyte interface, and the straight line in the high-frequency region is the Warburg impedance and corresponds to Li-ion diffusion. The S/HPCS (CS2/NMP) electrode shows the smallest semicircle and also the straightest line with the steepest slope; this confirms the smallest R_{ct} value and the fastest diffusion of S/HPCS (CS2/NMP).

Second, the galvanostatic charge/discharge characteristics of the S/HPCS (CS2), S/HPCS (CS2/IPA), and S/HPCS (CS2/NMP) cathodes are compared in Fig. 4 A–C. Two representative plateaus are observed in the discharge voltage profile (Fig. 4 A–C). The first plateau at 2.3 V shows the reduction from solid S_8 to higher-order Li PSs ($\text{Li}_2\text{S}_n, n = 4$ to 8), and the second plateau at 2.1 V shows the reduction to insoluble Li_2S_2 and Li_2S. Ideally, the capacity from the second reaction is 3 times the capacity from the first reaction. However, since the reaction related to the second plateau, including nucleation and solid-state charge diffusion, is sluggish, the capacity ratio (Q_2/Q_1) for the first and second

Table 1. Characterization of CS2, CS2/IPA, and CS2/NMP solvents on glassy carbon substrate

<table>
<thead>
<tr>
<th>Solvents</th>
<th>CS2, mN/m</th>
<th>CS2/IPA, mN/m</th>
<th>CS2/NMP, mN/m</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ_{lv}</td>
<td>32 (60)</td>
<td>29 (61)</td>
<td>35 (62)</td>
</tr>
<tr>
<td>$\gamma_{lv} \cos \theta$</td>
<td>19.3</td>
<td>27.7</td>
<td>33.5</td>
</tr>
<tr>
<td>γ_{sv}</td>
<td>39.5</td>
<td>39.5</td>
<td>39.5</td>
</tr>
<tr>
<td>$\gamma_{sl} = \gamma_{sv} - \gamma_{lv} \cos \theta$</td>
<td>20.2</td>
<td>11.8</td>
<td>6</td>
</tr>
</tbody>
</table>

Fig. 3. (A–C) Cyclic voltammetry of (A) S/HPCS (CS2), (B) S/HPCS (CS2/IPA), and (C) S/HPCS (CS2/NMP) cathodes between 2.8 V and 1.7 V at various scan rates from 0.3 mVs to 0.6 mVs. (D) Relative diffusivity of Li$^+$ ion for each cathodic and anodic reaction. (E) Nyquist plots of S/HPCS(CS2), S/HPCS(CS2/IPA), and S/HPCS(CS2/NMP) cathodes.
plateaus is less than 3 (25). We compared the ratio of Q_2/Q_1 at various C rates for each electrode, as observed in Fig. 4 D–F. As predicted, the S/HPCS (CS$_2$) electrode exhibits a very small ratio below 1.5, deviating considerably from the ideal value: Low utilization of sulfur by incomplete encapsulation into carbon pore is observed. S/HPCS (CS$_2$/NMP) shows a higher ratio than S/HPCS (CS$_2$/IPA), especially at higher C rates; at 2C, the ratio for S/HPCS (CS$_2$/NMP) is 2, but the ratio for S/HPCS (CS$_2$/IPA) is 1.5. In S/HPCS (CS$_2$/IPA), in which the sulfur is loaded in the mesopore shell, there may be pore clogging during the discharging reaction. It has been observed that pore clogging in a zeolite-templated microporous carbon host results in low performance at a high rate (52). S/HPCS (CS$_2$/NMP) is capable of ion transfer to the interior via the mesopore shell, which may allow relatively high utilization of sulfur. Moreover, the PS ions confined in the macro pore cavities inside may also promote the nucleation reaction (53).

Fig. 5A shows the cycle performance of S/HPCS (CS$_2$), S/HPCS (CS$_2$/IPA), and S/HPCS (CS$_2$/NMP) cells at a C rate of 1C. The sulfur content was 75 wt %, and the sulfur loading for the electrodes was \sim0.1 mg/cm2. S/HPCS (CS$_2$/NMP) showed markedly outstanding retention of \sim89% with a capacity of 750 mAh/g at 100 cycles; S/HPCS (CS$_2$/IPA) showed a retention of \sim77%, and S/HPCS (CS$_2$) had a very low retention of 44%. We also present a comparison of S/HPCS (CS$_2$/NMP) with S/HPCS by conventional melt diffusion in SI Appendix, Fig. S10. The S/HPCS (CS$_2$/NMP) cell shows faster kinetics and higher sulfur utilization for sulfur redox reactions; the poor performance of the melt diffusion S/HPCS may be responsible for poor penetration into the mesoporous shell due to the high viscosity of the molten sulfur.

Furthermore, we compared the cycle performance of each cathode cell at a very high sulfur content of 85 wt % (SI Appendix, Fig. S11B), as shown in Fig. 5B. Note that a sulfur content of 85 wt % should contain approximately twice the volume of sulfur in a 75 wt % loading. Previous results for a hollow carbon sphere-based Li–S cell typically applied a sulfur loading of 60 to 75 wt % (SI Appendix, Table S1). We observe the sulfur residue around the HPCSs for the S/HPCS (CS$_2$/IPA) sample but not the S/HPCS (CS$_2$/NMP) sample (SI Appendix, Fig. S12). This indicates that S/HPCS (CS$_2$/NMP) had a complete penetration of sulfur into the hollow carbon. In the case of S/HPCS (CS$_2$/IPA), the sulfur is deposited in a mesopore shell with a limited volume, thus leading to an incomplete loading in the high sulfur content. The S/HPCS (CS$_2$/NMP) cell still displays a stable capacity retention of 80%, but the S/HPCS (CS$_2$/IPA) cell shows the retention of only 64%. In the case of the S/HPCS (CS$_2$/NMP), the sulfur redox reaction may occur only in the inner cavity, thereby limiting the shuttling of PS ions in the cavity, resulting in excellent capacity retention (54). In contrast, the S/HPCS (CS$_2$/IPA) shows poor retention due to incomplete utilization of sulfur residues.

The long-term cycle performance of S/HPCS (CS$_2$/NMP) cells is recorded up to 300 cycles as shown in Fig. 5C. The cell shows a reduction of only 0.071% per cycle until reaching 300 cycles after a reduction in capacity of \sim0.3% per cycle for the initial 40 cycles. Fig. 5 C, Inset is an image of 30 LEDs lit for 20 min with constant brightness; this result confirms the stable operation of the S/HPCS (CS$_2$/NMP) cell. Fig. 5 D and E compares the morphologies before and after charging/discharging for S/HPCS (CS$_2$/NMP) and S/HPCS (CS$_2$) electrodes, respectively. Unlike the S/HPCS (CS$_2$), where the formation of irreversible Li$_2$S/Li$_2$S precipitation on the surface of the carbon spheres is prominent, the S/HPCS (CS$_2$/NMP) shows carbon spheres with no surface residues even after the cycle (SI Appendix, Fig. S13).

Complete encapsulation of sulfur in S/HPCS (CS$_2$/NMP) enables the achievement of high volumetric capacity of Li–S cell. We evaluate the cycle performance of an electrode cell with a cathode sulfur density of 0.62 g/cm3 at a high sulfur loading of 4 mg/cm2. The volumetric capacity is obtained by multiplying the gravimetric capacity by the sulfur loading and dividing this value by the electrolyte thickness (65 μm; SI Appendix, Fig. S14), as shown in Fig. 5F. The cell shows an initial gravimetric capacity of 1,388 mAh/g at 0.2C and a retention rate of 86% for 100 cycles at 0.5C. The calculated volumetric capacity is also displayed, showing 855 mAh/cm3 and 652 mAh/cm3 at 0.2C and 0.5C, respectively. Compared with recent results (55–59) as shown in Fig. 5G, the S/HPCS (CS$_2$/NMP) cell exhibits high volumetric capacity, even at high sulfur loading.
In conclusion, we demonstrate controlled sulfur loading into HPCSs by controlling the interfacial energy of sulfur-dissolved solution. The widely used sulfur/CS₂ solution does not easily penetrate porous carbon, due to the high interfacial energy of CS₂, resulting in a bulk sulfur residue. We find that the use of a mixed solution containing IPA or NMP significantly improves the infiltration of the solution into the pores by improving wetting with the carbon surface. In particular, the use of NMP with low interfacial energy with carbon can improve infiltration more effectively, resulting in complete sulfur encapsulation.

Materials and Methods
HPCS was prepared by first forming a SiO₂ core and a formaldehyde-resorcinol polymer shell, heat-treating the particles at high temperature, and then removing SiO₂. Sulfur deposition was obtained by wetting HPCS with sulfur solution (solution in which sulfur is dissolved in CS₂, CS₂/IPA, or CS₂/NMP). All procedures and analysis of HPCS samples are described in detail in SI Appendix, Methods. The fabrication and evaluation of lithium–sulfur battery cells is also presented in SI Appendix.

Data Availability.
All data needed to evaluate the conclusions in this paper are available in the main text or in SI Appendix.

ACKNOWLEDGMENTS.
This work was supported by National Research Foundation of Korea (Grants 2019R1A2C2009123 and 2019R1A4A1027627). The Korea Basic Science Institute is also acknowledged for the SEM and TEM measurements.
33. Z. W. Seh et al., Two-dimensional layered transition metal disulphides for effective encapsulation of high-capacity lithium sulphide cathodes. Nat. Commun. 5, 5017 (2014).
47. X. Liang et al., A highly efficient polysulfide mediator for lithium-sulfur batteries. Nat. Commun. 6, 5882 (2015).