Evolution-inspired design of multicolored photoswitches from a single cyanobacteriochrome scaffold

Keiji Fushimi,a,b,1 Masumi Hasegawa,a Takeru Ito,a Nathan C. Rockwellb, Gen Enomotoc,d Ni-Ni -Win,d J. Clark Lagarias,e, Masahiko Ikeuchib,d and Rei Narikawaa,b,e,1

Departments of Biological Science, Faculty of Science, Shizuoka University, Suruga, Shizuoka 422-8529, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan; Department of Molecular and Cellular Biology, University of California, Davis, CA 95616; Graduate School of Arts and Sciences, University of Tokyo, Meguro, Tokyo 153-8902, Japan; and Research Institute of Green Science and Technology, Shizuoka University, Suruga, Shizuoka 422-8529, Japan

Edited by Peter H. Quail, University of California, Berkeley, CA, and approved May 27, 2020 (received for review March 6, 2020)

Cyanobacteriochromes (CBCRs) are small, bistable linear tetrapyrrole (bilin)-binding light sensors which are typically found as modular components in multidomain cyanobacterial signaling proteins. The CBCR family has been categorized into many lineages that roughly correlate with their spectral diversity, but CBCRs possessing a conserved DXCF motif are found in multiple lineages. DXCF CBCRs typically possess two conserved Cys residues: a first Cys that remains ligated to the bilin chromophore and a second Cys found in the DXCF motif. The second Cys often forms a second thioether linkage, providing a mechanism to sense blue and violet light. DXCF CBCRs have been described with blue/green, blue/orange, blue/tea, and green/teal photocycles, and the molecular basis for some of this spectral diversity has been well established. We here characterize AM1_1499g1, an atypical DXCF CBCR that lacks the second cysteine residue and exhibits an orange/green photocycle. Based on prior studies of CBCR spectral tuning, we have successfully engineered seven AM1_1499g1 variants that exhibit robust yellow/tea, green/tea, blue/tea, orange/yellow, yellow/green, green/green, and blue/green photocycles. The remarkable spectral diversity generated by modification of a single CBCR provides a good template for multiplexing synthetic photobiology systems within the same cellular context, thereby bypassing the time-consuming empirical optimization process needed for multiple probes with different protein scaffolds.

Significance

Cyanobacteriochromes (CBCRs) are small cyanobacterial photoreceptors which are highly diversified and categorized into many lineages based on their primary sequences. In this study, we identified an atypical CBCR exhibiting an orange/green reversible photocycle. Step-by-step site-directed mutagenesis was performed on this native CBCR, and seven new photoconvertible variants were created. During this process, we identified residues crucial for each color tuning event. These seven molecules covering the shorter-wavelength blue-to-orange range would contribute to the future development of multicolored optogenetic tools and are complementary to recently developed molecules sensing longer wavelengths of light.

The authors declare no competing interest.

This article is a PNAS Direct Submission. Published under the PNAS license.

1To whom correspondence may be addressed. Email: fushimi.keiji@shizuoka.ac.jp or narikawa.rei@shizuoka.ac.jp.

This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2004273117/-/DCSupplemental.

photoproduct states that are red-shifted from those of photo-
product states of DXCF CBCRs with PVB chromophores
(SI Appendix, Fig. S2 C, i). DXCF CBCRs that lack the second linkage
retain the fully conjugated \(\pi \) systems in both dark and photo-
product states, which can absorb in the teal-to-yellow region with
PVB (SI Appendix, Fig. S2 C, ii).

In addition to PCB-to-PVB isomerization and second linkage
formation, spectral blue shifting can also occur via a trapped-
twist mechanism, e.g., photoproduct states of red/green CBCRs
in which the chromophore ‘s ring D adopts a twisted geometry
relative to the plane of the B and C rings (SI Appendix, Fig. S2
C, iii) (15, 23). DXCF CBCRs with PVB can form such a photoproduct
state; formation of the second linkage in such cases
results in a blue/teal photocycle, whereas absence of this linkage
yields a green/teal photocycle (8, 11, 15, 21). Thus, much of the
spectral diversity of DXCF CBCR photocycles can be explained
by three mechanisms: 1) PCB-to-PVB isomerization, 2) re-
versible Cys-adduct formation, and 3) trapping of a twisted D
ring in the photoproduct state (SI Appendix, Fig. S2 C).

Previously, we characterized a number of CBCRs from the symbiotic
cyanobacterium *Acaryochloris marina* MBIC11017 (8, 24–27).
In the present study, we focus on a newly identified member of the
DXCF CBCR subfamily from *A. marina*, AM1_1499g1, that lacks
the second Cys residue. A close relative of AM1_6305g1, AM1_1499g1 is a member of a DXCF CBCR lineage that contains
the previously studied CBCRs, FdDpxAg, NpR5113g1, NpR1597g1,
and NpR5113g3 (Fig. 1 D), (8, 11, 21). Members of this class of
CBCRs exhibit teal-absorbing photoproducts with blue/teal
(NpR1597g1 and NpR5113g3) and green/teal (AM1_6305g1,
FdDpxAg, and NpR5113g1) photocycles. The teal-absorbing (15E
Pt) photoproduct states of this DXCF CBCR lineage all possess
trapped-twisted PVB chromophores, whereas their distinct dark-
state spectra reflect the ability (or inability) of the second Cys to
form these second linkage at C10. Due to the absence of a second Cys,
we reasoned that AM1_1499g1 would possess a PCB chromophore
and would exhibit a photocycle distinct from that of prototypical
DXCF CBCRs. The present studies establish that AM1_1499g1 has
an orange/green photocycle and a singly linked PCB chromophore.
We use site-directed mutagenesis of AM1_1499g1, informed by
amino acid sequences of other members of this lineage, to experi-
mentally reconstruct a pathway of molecular evolution that reca-
pitulates most of the broad spectral palette of DXCF-containing
CBCRs.

Results and Discussion

Wild-Type AM1_1499g1 Senses Orange Light with a PCB Chromophore

His-tagged AM1_1499g1
was expressed in the PCB-producing
Escherichia coli and puri-
fied using the Ni-affinity column chromatography (SI Appendix,
Fig. S3 A and B).

Serendipitously, we observed a violet to blue
color change of the purified white light-exposed solution when
the solution temperature was increased (SI Appendix and Dataset S1).
Each lineage cluster is classified according to photocycle. CBCR subfamilies possessing the DXCF motif are indicated with asterisks.

![Fig. 1. Photochemical diversity of CBCRs. Crystal structures of DXCF CBCR TePixJ in (A) the 15Z Pb form (19) (PDB ID 4GLQ; amino acid residues are shown in cyan, and chromophore is shown in gray) and (B) the 15E Pg form (20) (PDB ID 4GLQ; amino acid residues are shown in lime green, and chromophore is shown in gray). Key mutation sites Val473, Cys494 of the second Cys, His523, Leu527, Leu530, and Asn535 in TePixJg (Te) are shown, corresponding to residues Phe97, Ser118, His147, Tyr151, Phe154, and Thr159 in AM1_1499g1 (AM). These amino acid residues are highlighted in a sequence shown below. (C) Sequence comparison between AM1_1499g1 (orange), green/teal (yellow green), blue/teal (blue), and blue/green (violet) CBCRs. Predicted secondary structures of the 15Z Pb (cyan) and the 15E Pg (lime green) forms and amino acid residues within 6 Å of the chromophores (asterisks) are based on the structures of the 15Z Pb form of TePixJ (PDB ID 4GLQ) and the 15E Pg form of TePixJg (PDB ID 3VV4). Amino acid residues of AM1_1499g1 mutated in this study (shown in sky blue) were substituted with residues found in other CBCRs (shown in orange). Highly conserved residues shown in black boldface type include the nearly invariant first Cys and the second Cys found in Asp-Xaa-Cys-Phe (DXCF) motif. (D) Phylogenetic tree of selected CBCRs and phytochromes, based on the alignment shown in SI Appendix and Dataset S1. Each lineage cluster is classified according to photocycle. CBCR subfamilies possessing the DXCF motif are indicated with asterisks.
This change reflected the shift of the absorption maximum of the photoproduct from green at 5 °C to orange at 30 °C (SI Appendix, Fig. S4A). AM1_1499g1 showed reversible photocconversion between an orange-absorbing 15Z/15E/15F dark state (λ_{max} = 613 nm) and a green-absorbing 15I/15F photoproduct (λ_{max} = 544 nm) at 5 °C. At 30 °C, the orange-absorbing (λ_{max} = 618 nm) 15I/15F dark state converted to a yellow-absorbing (λ_{max} = 589 nm) 15E/15F photoproduct (Figs. 2A and 3A and Table 1 and SI Appendix, Fig. S4A and Table S1). No blue- or violet-absorbing species were observed, consistent with the absence of the DCXFs Cys in this protein.

To test whether PVB-to-PCB isomerization is responsible for this thermochromic behavior, we compared the normalized photochemical difference spectra (dark state – photoproduct state) of AM1_1499g1 obtained at 5 °C and 30 °C before and after denaturation (SI Appendix, Fig. S4A and Table S1). These comparisons revealed that the two difference spectra were identical after denaturation, indicating that the bound chromophore was PCB for both preparations. Hence, PVB-to-PCB isomerization was not responsible for the temperature-dependent photoproduct spectral shift, again consistent with the absence of the second Cys residue.

It is possible that the temperature-dependent spectral shift of the AM1_1499g1 photoproduct is due to temperature-dependent k_{cat} of the chromophore and/or of nearby residues in the protein. However, work on the red/green CBCR NpR6012g4 has demonstrated that 15E-PCB can be protonated in the trapped-twist green-absorbing state and can adopt a more relaxed orange-absorbing state (28, 29), so we favor the hypothesis that the chromophores of the green- and yellow-absorbing photoproduct species correspond to similarly constrained and relaxed D-ring chromophores, respectively. Formation of the more relaxed species at higher temperature could indicate that the green-absorbing species is a trapped intermediate, but our data suggest that the two photoproduct species are present at both temperatures in varying ratios. Similar heterogeneity as a function of temperature has been shown for the both preparations. Hence, PVB-to-PCB isomerization was not possible that a significant change in the protein structure is responsible for the interconversion between these two photoproduct states as well.

The S118C Variant of AM1_1499g1 Restores PCB-To-PVB Isomerization, but Not Second Cys Linkage Formation. AM1_1499g1 is most closely related to the green/teal DXCF CBCR, AMI_6305g1, which retains the second Cys residue (Fig. 1 D). We previously showed that AMI_6305g1 retains PCB-to-PVB isomerization activity despite its inability to form a C10 thiol adduct (8). We hypothesized that the introduction of the second Cys into AM1_1499g1, i.e., via construction of the S118C variant (SI Appendix, Fig. S3B), would confer the ability to isomerize PCB into PVB. Indeed, similar to AMI_6305g1, the S118C variant of AM1_1499g1 possessed a PCB chromophore and exhibited a yellow/teal photocycle (Figs. 2B and 3B and Table 1 and SI Appendix, Fig. S4B and Table S1). By comparison with the spectra of wild-type AM1_1499g1, both forms of S118C possessed significantly blue-shifted absorption maxima, consistent with their singly linked PCB chromophore (SI Appendix, Fig. S4A and B). Taken together, these results indicate that introduction of the second Cys residue is sufficient to restore the PCB-to-PVB isomerization activity to the S118C variant of AM1_1499g1 but is insufficient for forming the second Cys linkage.

Exploiting Known DXCF CBCR Diversity to Engineer Color Tuning of the 15Z-Dark State. The absorption maximum of the 15Z Py dark state of S118C AM1_1499g1 unexpectedly was 20 nm red-shifted from that of the 15Z Py dark state of its closest DXCF CBCR relative, AMI_6305g1 (8). By examining the TePixJg structure (16, 17), we identified Tyr151 and Thr159 in AM1_1499g1, which replace Leu and Asn residues in AMI_6305g1, TePixJg, and many other DXCF CBCRs (Fig. 1A and C). To test the role of both residues on dark-state color tuning, we constructed these variants in the S118C background to obtain the S118C/Y151La n d S118C/T159N double mutant proteins (SI Appendix, Fig. S5 A–C). Peaking in the yellow-green region (~570 nm), the dark-state absorption maxima of both variants were blue-shifted by ~10 nm relative to the S118C parent.

We next constructed the S118C/Y151L/T159N triple mutant variant (SI Appendix, Fig. S3B). The dark-state spectrum of this variant was even further blue-shifted than those of the double mutants, thereby establishing that the two substitutions additively affected the color-tuning of the dark state (SI Appendix, Fig. S5C). The resulting triple mutant variant exhibited a green/teal photocycle that was nearly identical to that of AMI_6305g1 (Figs. 2C and 3C and Table 1 and SI Appendix, Fig. S4C and Table S1). Reverse engineering to introduce Tyr and Thr residues into AMI_6305g1 was also performed (SI Appendix, Fig. S3C). The dark-state spectrum of the resulting AMI_6305g1_L132Y/N140T variant was almost identical to that of AM1_1499g1 (SI Appendix, Fig. S6 A and B and Table S1). Taken together, these studies show that both of these residues perform crucial roles for color-tuning of the dark state.

Based on the TePixJg structure, the side chains of residues corresponding to Tyr151 and Thr159 in the AM1_1499g1_S118C variant are located in a good position to influence the D-ring geometry in the dark state (Fig. 1A and SI Appendix, Fig. S7A). Since the dark state of the S118C variant lacks the second linkage, unlike that of TePixJg, it is difficult to predict the structure and conformation of the S118C dark-state chromophore. We hypothesize that the replacements of Tyr151 and Thr159 with Leu and Asn are responsible for constraining the D ring in a twisted conformation (SI Appendix, Fig. S7 B–D). In support of this interpretation, the D-ring carbonyl of the dark-state chromophore of TePixJg appears to be constrained to an out-of-plane conformation by hydrogen bonding with the side chain of Asn535. Replacement of this Asn with Thr159, as found in AM1_1499g1, would require extensive chromophore repositioning to support

Table 1. Spectral properties of AM1_1499g1 and its variant proteins

<table>
<thead>
<tr>
<th>Bilin pigment</th>
<th>Dark state (Z-isomer, λ_{max} (nm))</th>
<th>Photoproduct state (E-isomer, λ_{max} (nm))</th>
<th>Dark – photoproduct positive (nm)</th>
<th>Dark – photoproduct negative (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>PCB</td>
<td>613</td>
<td>544</td>
<td>623</td>
</tr>
<tr>
<td>S118C</td>
<td>PVb</td>
<td>577</td>
<td>491</td>
<td>577</td>
</tr>
<tr>
<td>S118C/15I/15F</td>
<td>PVb</td>
<td>559</td>
<td>492</td>
<td>561</td>
</tr>
<tr>
<td>S118C/T159N</td>
<td>PVb</td>
<td>414</td>
<td>492</td>
<td>414</td>
</tr>
<tr>
<td>S118C/H47Y</td>
<td>PCB</td>
<td>620</td>
<td>585</td>
<td>637</td>
</tr>
<tr>
<td>S118C/H47Y</td>
<td>PVb</td>
<td>577</td>
<td>514</td>
<td>578</td>
</tr>
<tr>
<td>S118C/F97V</td>
<td>PVb</td>
<td>560</td>
<td>524</td>
<td>566</td>
</tr>
<tr>
<td>S118C/F97V</td>
<td>PVb</td>
<td>414</td>
<td>511</td>
<td>418</td>
</tr>
</tbody>
</table>

Absorption spectra of the WT protein were measured at low (5 °C) temperature whereas those of its variant proteins were measured at room temperature. Difference spectra (15Z dark state – 15E photoproduct state) of their proteins were obtained from their absorption spectra.
such a hydrogen bond. Replacement of Leu with Tyr151 in AM1_1499g1 also might influence the positioning of the chromophore via its ability to hydrogen bond with other residues such as His177, a strongly conserved residue known to constrain the D ring in ISZ dark states of CBCRs and phytochromes (4, 17, 31). Indeed, the corresponding histidine residue in TePixg, His553, participates in chromophore positioning by also forming an H bond to the D-ring carbonyl (16, 17).

A Conserved Tyr Residue Performs a Critical Role in Second Linkage Formation. We next focused on identifying residues that affect reversible Cys-adduct formation. According to our phylogenetic analyses, AM1_1499g1 and AM1_6305g1 are members of a CBCR lineage composed of the green/teal CBCRs, FdDpxAg and NpR1571g1, and the blue/teal CBCRs, NpR1579g1 and NpR1573g3 (Fig. 1D). From a sequence alignment and structural information, we identified residues conserved in the blue/teal CBCR lineage—a linkage that retains the ability to form reversible second Cys linkages. One of these was a Tyr residue next to the first Cys residue that is conserved only among the blue/teal CBCR lineage (Fig. 1A and C). To determine the role of this Tyr residue in second Cys linkage formation, we replaced the His residue at this position in AM1_1499g1 with Tyr in the S118C variant background to construct the S118C/H147Y variant (SI Appendix, Fig. S3B). We observed that this S118C/H147Y variant bound PVB and exhibited reversible photocconversion between a blue-absorbing (λmax = 414 nm) IS2Ph dark state and a teal-absorbing (λmax = 492 nm) IS2Pt photoproduct (Figs. 2D and 3A and Table 1 and SI Appendix, Fig. S4D and Table S1). Owing to the extremely blue-shifted dark-state spectra, these studies confirm the role of Tyr147 for second linkage formation in the dark state. The teal-absorbing photoproduct is consistent with the lability of the second linkage in this variant upon photocconversion.

To further examine the importance of this Tyr residue for Cys-adduct formation, we replaced the conserved His residue with Tyr at this position in the green/teal CBCR AM1_6305g1 and conversely replaced the conserved Tyr residue with His at this position in the blue/teal CBCR NpR1573g3 (SI Appendix, Figs. S5 C and D and S6 A and C–E and Table S1). The H112Y variant of AM1_6305g1 absorbed blue light, whereas the Y150H variant of NpR1573g3 absorbed yellow light. In each case, the teal-absorbing photoproduct state spectra were almost identical to those of the wild-type parent. Fully consistent with the results for AM1_1499g1, these results indicate that this His/Tyr position is a crucial determinant for Cys-adduct formation. In TePixg, this His residue is located directly above rings B and C (Fig. 1A and C and SI Appendix, Fig. S74). We hypothesize that the larger side chain of the Tyr residue helps to reposition the chromophore closer to the second Cys residue, facilitating Cys-adduct formation in the dark state (SI Appendix, Fig. S7 B and E). However, DXCF CBCRs from the other lineages that retain this His residue have been shown to retain the ability to form reversible Cys-adducts (8, 9, 11–13). This indicates that the role of this Tyr residue for Cys-adduct formation is context dependent and may be restricted to this specific linkage.

A Conserved Phe Residue Is Critical for IS5 Photoproduct Tuning. Based on the blue-shifted absorbance maxima of their IS5 photoproduct states, wild-type AM1_1499g1 and S118C, S118C/Y151L/T159N, and S118C/H147Y variants likely possess chromophores with twisted, out-of-plane D-ring conformations. A previous study concluded that two conserved Phe residues in an α helix and a β sheet stabilize this twisted geometry to generate teal-absorbing photoproducts (Fig. 1B and C and SI Appendix, Fig. S2 C, iii) (23). Since AM1_1499g1 also possesses both Phe residues, we substituted these two residues with Val or Leu to test their role in photoproduct spectral tuning. To do so, we used the blue/teal S118C/H147Y background to yield the F97V/S118C/H147Y and S118C/H147Y/F154L triple mutants (SI Appendix, Fig. S5 D and E). Spectral measurements showed that the F97V replacement, but not F154L replacement, effectively converted the teal-absorbing photoproduct of the parent to a green-absorbing one in F97V/S118C/H147Y. Based on these results, we conclude that the β-sheet Phe97 is a critical determinant for out-of-plane twisting of the D ring.

To further test this hypothesis, we expressed the four variants F97V, F97V/S118C, F97V/S118C/Y151L/T159N, and F97V/S118C/H147Y (SI Appendix, Fig. S3B), each of which replaces the Tyr residue for Cys-adduct formation is context dependent and may be restricted to this specific lineage.
Fig. 2. Photocycles of AM1_1499g1 variants. (A–H) Normalized absorption spectra of AM1_1499g1 and variants are depicted with structures for each chromophore. The π-conjugated systems for each bilin are color-coded by dark-state and photoproduct-state peak absorption wavelength. (A) Wild-type AM1_1499g1 incorporates PCB and exhibits an orange/green photocycle at low (5 °C) temperature. (B) The S118C variant incorporates PVB and exhibits a yellow/teal photocycle. (C) The S118C/Y151L/T159N variant incorporates PVB and exhibits a green/teal photocycle. (D) The S118C/H147Y variant incorporates PVB and exhibits a blue/teal photocycle. (E) The F97V variant incorporates PCB and exhibits an orange/yellow photocycle. (F) The F97V/S118C variant incorporates PVB and exhibits a yellow/green photocycle. (G) The F97V/S118C/Y151L/T159N variant incorporates PVB and exhibits a green/green photocycle. (H) The F97V/S118C/H147Y variant incorporates PVB and exhibits a blue/green photocycle. Absorption maxima are reported in Table 1. Some samples, especially the F97V/S118C/H147Y variant, showed higher absorption in the shorter-wavelength region due to scattering, indicating that these samples are unstable in solution.
about five times higher AC activity than the sis rather than by laborious optimization of multiple chimeras. AM1_1499g1 chimera with well-chosen site-directed mutagenesis of cyclases with different color responses using a single be possible to develop an entire family of light-responsive adenosine monophosphate (cAMP). To do so, we constructed a fusion protein between AM1_1499g1_S118C and the catalytic domain of Py (yellow) and Pt; yellow). S118C/Y151L/T159N (15E–15Z; yellow), F97V/S118C/Y151L/T159N (15E–15Z; yellow-green), and F97V/S118C/Y151L/T159N (15E–15Z; orange), S118C-AC chimera exhibited a robust yellow/teal photocycle in-distinguishable from that of the S118C variant on its own (15E–15Z dark state – 15E – 15Z – 15E – 15Z; orange), S118C (15E–15Z; yellow), S118C/Y151L/T159N (15E–15Z; yellow-green), and S118C/G154Y (15E–15Z; blue), (B) F97V (15E–15Z; orange), F97V/S118C (15E–15Z; yellow), F97V/S118C/L159N (15E–15Z; yellow-green), and F97V/S118C/G154Y (15E–15Z; blue). Absorption maxima are reported in Table 1.

Fig. 3. Comparative photochemical difference spectra of wild-type AM1_1499g1 and its variants. Normalized difference spectra (15Z dark state – 15E photocycle) are shown for variants with (A) twisted or (B) relaxed D-ring photoproducts. (A) Wild-type AM1_1499g1 (15E–15Z; orange), S118C (15E–15Z; yellow), S118C/Y151L/T159N (15E–15Z; yellow-green), and S118C/G154Y (15E–15Z; blue), (B) F97V (15E–15Z; orange), F97V/S118C (15E–15Z; yellow), F97V/S118C/L159N (15E–15Z; yellow-green), and F97V/S118C/G154Y (15E–15Z; blue). Absorption maxima are reported in Table 1.

As proof of concept, we chose to develop an optogenetic tool that leverages light to reversibly modulate the level of cyclic adenosine monophosphate (cAMP). To do so, we constructed a fusion protein between AM1_1499g1_S118C and the catalytic domain of Cyba1, an adenylyl cyclase (AC) from cyanobacterium Anabaena sp. PCC 7120 (SI Appendix, Fig. S9A) (48). The S118C-AC chimera exhibited a robust yellow/teal photocycle indistinguishable from that of the S118C variant on its own (SI Appendix, Fig. S9B and C). We measured the time course of AC activity of both forms by quantifying cAMP levels produced via HPLC analysis (SI Appendix, Fig. S9D). The 15E–15Z Py form showed about five times higher AC activity than the 15E–15Z Pt form (Fig. 4 and SI Appendix, Table S3), establishing a proof-of-concept design principle for a new family of light-regulated cAMP optogenetic probes based on the AM1_1499g1 scaffold. It should thus be possible to develop an entire family of light-sensitive adenylate cyclases with different color responses using a single AM1_1499g1 chimera with well-chosen site-directed mutagenesis rather than by laborious optimization of multiple chimeras.

Conclusions and Future Perspective. We show that AM1_1499g1 is a PCB-containing CBCR that lacks a second Cys and cannot isomerize PCB to PVB. Via structure- and sequence-informed mutagenesis that introduced PCB-PVB isomerization activity, second-linkage formation, and cancellation of out-of-plane trapped-twist of the bilin D ring, we generated seven variants that exhibit robust yellow/teal, green/teal, blue/teal, yellow/orange, yellow/green, green/green, and blue/green photocycles. We also leveraged one of the variant molecules to generate a chimeric molecule that reversibly regulates cAMP production under yellow and teal light. In the future, we hope to introduce mutations that were successful in altering the chromophore specificity of the red/green CBCR sensor AnPixJg2 (49), enabling substitution of PCB with biliverdin IXα, a much more widespread bilin than PCB. In principle, the lessons learned from such studies could prove useful for generation of an unprecedented palette of photoswitches based on the AM1_1499g1 scaffold for novel optogenetic applications in mammalian cells.

Materials and Methods

Bacterial Strains and Growth Media. The E. coli strain JM109 (TaKaRa) was used for cloning plasmid DNA, and E. coli strain C41 (Cosmo Bio) harboring PCB synthetic systems, pKT2721, was used for protein expression as previously reported (50). Bacterial cells were grown in Lysogeny Broth (LB) medium containing 20 μg mL⁻¹ kanamycin with or without 20 μg mL⁻¹ chloramphenicol. For protein expression, cells were grown in LB containing the appropriate antibiotic(s) at 37 °C until the optical density at 600 nm was 0.4 to 0.8. Isopropyl β-D-1-thiogalactopyranoside (IPTG) then was added to a final concentration of 0.1 mM, and cells were cultured at 18 °C overnight.

Bioinformatic Analyses. Multiple sequence alignment and neighbor-joining phylogenetic trees were constructed with MEGA7 (Molecular Evolutionary Genetics Analysis Version 7.0) software (51). The crystal structures of PVB-bound TePixJg (15E–15Z photoproduct, Protein Data Bank [PDB] ID 4GLQ; 15E–15Z form, PDB ID 3VUQ) were utilized to assess key amino acid residues for color tuning. Molecular graphics were generated by University of California, San Francisco Chimera software (52).

Plasmid Construction. Plasmids expressing His-tagged AM1_1499g1 (amino acid positions 47 to 222) and NpR5113g3 (amino acid positions 388 to 557) (11, 15, 23) were amplified by PCR from A. marina MBIC11017 and Nostoc punctiforme PCC 73102 genomic DNA, respectively, using PrimeSTAR Max DNA polymerase (TaKaRa) and appropriate antibiotic(s) at 37 °C until the optical density at 600 nm was 0.4 to 0.8. Isopropyl β-D-1-thiogalactopyranoside (IPTG) then was added to a final concentration of 0.1 mM, and cells were cultured at 18 °C overnight.

Bioinformatic Analyses. Multiple sequence alignment and neighbor-joining phylogenetic trees were constructed with MEGA7 (Molecular Evolutionary Genetics Analysis Version 7.0) software (51). The crystal structures of PVB-bound TePixJg (15E–15Z photoproduct, Protein Data Bank [PDB] ID 4GLQ; 15E–15Z form, PDB ID 3VUQ) were utilized to assess key amino acid residues for color tuning. Molecular graphics were generated by University of California, San Francisco Chimera software (52).

Plasmid Construction. Plasmids expressing His-tagged AM1_1499g1 (amino acid positions 47 to 222) and NpR5113g3 (amino acid positions 388 to 557) (11, 15, 23) were amplified by PCR from A. marina MBIC11017 and Nostoc punctiforme PCC 73102 genomic DNA, respectively, using PrimeSTAR Max DNA polymerase (TaKaRa) and the appropriate nucleotide primers (SI Appendix, Table S4). AM1_6305g1 (amino acid positions 33 to 203) (8) was constructed as described in previous studies. The Gibson Assembly System (New England Biolabs) was used to fuse the cloned DNA fragments into the pET28a expression vector. The PrimeSTAR Max Basal Mutagenesis kit (TaKaRa) or Kodakara Island (KOD) One PCR Master Mix (Toyobo Life Science) with appropriate nucleotide primers were used to perform site-directed mutagenesis of these proteins (SI Appendix, Table S4). All of the expression constructs were verified by nucleotide sequencing (FASMAC).

Fig. 4. Light-dependent adenylate cyclase activities of both photostates of AM1_1499g1_S118C-AC. The enzymatic reaction catalyzing cAMP synthesis from ATP by the AM1_1499g1_S118C-adenylate cyclase chimeric protein was examined after 0, 5, 10, 20, 30, and 60 min at 25 °C for 15E–15Z (yellow) and 15E–15Z (teal). Reaction products were quantified using HPLC (SI Appendix, Fig. S9D and Table S3). Data are reported as mean ± SD, calculated from three independent experiments.
Protein Purification. All of the proteins were expressed in E. coli C41 containing the bilin biosynthetic plasmid pKT271 in 1 L LB. After expression, cells were disrupted in lysy buffer (20 mM Hepes–NaOH, pH 7.5, 0.1 M NaCl, and 10% (v/v) glycerol with or without 0.5 mM Tris(2-carboxyethyl)phosphine) using three passages through an Emulsiflex C5 high-pressure homogenizer at 12,000 psi (Avestin). Homogenates were centrifuged at 165,000 × g for 30 min, and supernatants were filtered through a 0.8-μm cellulose acetate membrane before loading onto a nickel-affinity His-trap column (GE Healthcare) using an AKTAprime plus (GE Healthcare) System. The column was washed with lysy buffer containing 100 mM imidazole to remove unbound proteins, and His-tagged proteins subsequently were eluted with a linear gradient of Lysis Buffer containing 100 to 400 mM imidazole (1 mL/min, total 15 min). After incubation with 1 mM EDTA for 1 h on ice, purified proteins were dialyzed against lysis buffer with or without 1 mM DTT to remove EDTA and imidazole. Protein concentrations were determined by the Bradford method.

Electrophoresis and Fluorescence Detection. Purified proteins were diluted into 60 mM Tris–HCl, pH 8.0, 2% (v/v) SDS, and 60 mM DTT, denatured at 95 °C for 3 min, and electrophoresed at room temperature using 12% (v/v) SDS polyacrylamide gels. The electrophoresed gels were soaked in distilled water for 30 min followed by visualizing fluorescence bands (details for detection of the fluorescence were described in previous studies (48, 49) and then were stained with Coomassie Brilliant Blue R-250.

Spectroscopy. UV and visible absorption spectra of the proteins were recorded with a UV-2600 spectrophotometer (Shimadzu) at ambient temperature. AM1_1499g1 and its variant proteins were also measured at 5 and 30 °C using a thermostatted cuvette holder. Circular dichroism spectra of AM1_1499g1 and its variant proteins were recorded with a Jasco J-810 spectropolarimeter (Japan Spectroscopic Corporation) at ambient temperature. Wild-type AM1_1499g1 was measured additionally at 5 and 30 °C using a thermostatted cuvette holder. An Opto-Spectrum Generator (Hamamatsu Photonics, Inc.) was used to generate monochromatic light of various wavelengths to induce photoconversion: Pb form, 400 to 430 nm; Pt form, 470 to 490 nm; Pg form, 470 to 620 nm; Py form, 490 to 640 nm; and Po form, 600 to 700 nm.

Biochemical Characterization of Cyanobacteriochromes. For denaturation assays, both dark state (15Z-isomer) and photoprotein state (15E-isomer) of the native proteins obtained at 5 or 30 °C were fivefold diluted into acidic 8 M urea, -pH 2.0, and their absorption spectra were recorded at ambient temperature before and after 3 min of illumination with white light. To assign the spectral peaks to the chromophore incorporated into each protein, those of known PCB- and PVB-binding CBCRs were recorded under the same conditions.

Light-Dependent Enzymatic Reaction of Adenylate Cyclase. The chimeric protein, AM1_1499g1_S118C-AC, was constructed using the method in a previous study (48) (SI Appendix, Fig. S9A). The concentration of the purified protein was calculated using the Bradford method (Bio-Rad) using BSA as a protein standard. After photoconversion to PbPy and PbPt forms with saturating monochromatic light, the chimeric protein (in lysis buffer; 20 mM Hepes–NaOH, pH 7.5, 0.1 M NaCl, and 10% (v/v) glycerol with 1 mM DTT) was added to the reaction buffer containing ATP. The final concentrations of each component in the reaction mixture were as follows: 1 μM chimeric protein, 100 μM ATP, 50 mM Tris–HCl (pH 8.0), 50 mM NaCl, and 10 mM MgCl2. Enzymatic reactions were performed at 25 °C under teal or yellow light irradiation. Aliquots were removed after 0, 5, 10, 20, 30, and 60 min, and the reaction was stopped by heating at 95 °C for 3 min. As an internal standard, nicotine adenosine dinucleotide (NAD) was added to all samples and adjusted to 1 mM as final concentration. After centrifugation, supernatants were filtered through a 0.2-μm PTFE membrane to remove insoluble aggregates. NAD, produced CAMP, and ATP in the samples were detected using a Prominence HPLC system (Shimadzu) with a reverse-phase HPLC column (Kinetex C18, 2.1 l.d. × 100 mm, 1.7 μm; Phenomenex) and eluted with a linear gradient of MeOH and phosphate buffer as described in a previous study (48). Each sample (20 μL) was injected, and absorbance at 260 nm was monitored. Quantities of accumulated CAMP by the enzymatic reaction were calculated from the ratio of the peak area of CAMP to that of NAD using standard curves. Nucleotides were assigned based on their retention times (tR) of standard compounds.

Data Availability. The authors confirm that all data supporting the findings of this study are available within the the main text and SI Appendix. The sequence alignment data is provided as the Dataset S1.

ACKNOWLEDGMENTS. We thank Shelly S. Martin (University of California, Davis) for the gift of the plasmid constructs. We thank Prof. Masayuki Yazawa (Columbia University) for helpful discussion. We thank Mr. Tatsuki Masuzawa, Prof. Takenori Oyoshi, and Prof. Mitsuji Kondo (Shizuoka University) for experimental assistance. This work was supported by grants from Japan Science and Technology Agency, Core Research for Evolutional Science and Technology (JPMJCR1653 to M.I. and R.N.); from Japan Society for the Promotion of Science KAKENHI (26702036 to R.N.); and from the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, United States Department of Energy (DOE DE-FG02-09ER16117 to J.C.L.).

Fushimi et al.
27. K. Fushimi et al., Photosconversion and fluorescence properties of a red/green-type cyanobacteriochrome AM1_C0023g2 that binds not only phycocyanobilin but also biliverdin. *Front. Microbiol.* 7, 588 (2016).