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Population estimates are critical for government services, devel-
opment projects, and public health campaigns. Such data are typi-
cally obtained through a national population and housing census.
However, population estimates can quickly become inaccurate
in localized areas, particularly where migration or displacement
has occurred. Some conflict-affected and resource-poor countries
have not conducted a census in over 10 y. We developed a hier-
archical Bayesian model to estimate population numbers in small
areas based on enumeration data from sample areas and nation-
wide information about administrative boundaries, building loca-
tions, settlement types, and other factors related to population
density. We demonstrated this model by estimating population
sizes in every 10- m grid cell in Nigeria with national coverage.
These gridded population estimates and areal population totals
derived from them are accompanied by estimates of uncertainty
based on Bayesian posterior probabilities. The model had an over-
all error rate of 67 people per hectare (mean of absolute residuals)
or 43% (using scaled residuals) for predictions in out-of-sample
survey areas (approximately 3 ha each), with increased precision
expected for aggregated population totals in larger areas. This
statistical approach represents a significant step toward estimat-
ing populations at high resolution with national coverage in the
absence of a complete and recent census, while also providing
reliable estimates of uncertainty to support informed decision
making.

demography | international development | Bayesian statistics |
remote sensing | geographic information systems

Accurate population estimates are critical for delivering
government services, planning development projects, and

implementing public health campaigns. These data are typically
obtained through a national population and housing census.
However, it is in resource-poor and conflict-affected countries,
where such datasets are most needed, that recent censuses have
not been able to be conducted. The Democratic Republic of
Congo has not conducted a census since 1984, yet effective inter-
ventions for recent Ebola outbreaks needed accurate estimates
of vulnerable population sizes in affected areas. Polio eradica-
tion efforts and yellow fever vaccination campaigns in Nigeria are
based on census results from 2006. Even where censuses are con-
ducted at standard 10-y intervals, these population estimates can
quickly become inaccurate at local scales. In each of these exam-
ples, vulnerable populations could be better served if accurate
up-to-date population estimates were available at high spatial
resolution for specific age and sex groups along with reliable
measures of uncertainty to support effective decision making and
planning.

There are a variety of approaches for estimating current pop-
ulation sizes when census results are outdated, incomplete, or
inaccurate. The United Nations Population Division produces
annual updates from projection models that incorporate fer-
tility, mortality, and migration information (1, 2), but these

national-level estimates do not account for subnational popula-
tion patterns. Satellite imagery and other geospatial data have
been used to disaggregate population totals from administra-
tive units to create gridded population estimates at a higher
resolution, e.g., 100-m grid cells (3), but in many countries this
still relies on projections of outdated census results. Alternative
approaches are now available in which population counts are
collected in small randomly selected areas and these spatially
limited but recent survey data (which we call a “microcensus”)
are used in combination with geospatial datasets to map pre-
dicted population sizes nationally (4). This approach was recently
applied to support polio eradication efforts in northern Nigeria
where settlement maps derived from satellite imagery were used
to extrapolate microcensus results (5).

With all of these approaches, it remains a challenge to accu-
rately account for uncertainty (i.e., patterns of population density
that are not well explained by a given population model). It
is important that uncertainty intervals accurately reflect uncer-
tainty in the population estimates that may arise from projec-
tions, spatial variations in population density, relatively small
sample sizes inherent in microcensus data, and other sources.
For example, a vaccination campaign may want to plan resources
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to achieve 90% certainty that the target population will be cov-
ered. In this case, the accuracy of the uncertainty intervals may
be more important than the mean population estimate. A mod-
eling framework is needed that can utilize appropriate data when
they are available to map populations while providing robust
estimates of uncertainty.

Advances in Bayesian statistics (6) provide the building
blocks necessary to customize models for specific microcensus
or other population data. Specifically, hierarchical population
models that are commonly used in ecology (7, 8) provide a
methodological foundation for mapping populations in data-
poor environments and accounting for uncertainty (9, 10). These
models can include geospatial covariates as predictors of pop-
ulation density and can easily be extended to accommodate
complex relationships such as non-Gaussian error structures,
random effects, age structure, observer error, spatial and tempo-
ral autocorrelation, and nonlinear models. Each of these topics
have important benefits for population modeling and decision
making.

Our objective was to construct a Bayesian framework for
population mapping using limited microcensus survey data to
1) produce gridded population estimates at 100-m resolution
nationally using geospatial covariates and 2) quantify the uncer-
tainty for these estimates and aggregated population totals (e.g.,
state population totals). We demonstrate the approach here
using spatially limited survey data from Nigeria (Fig. 1) to map
the population nationally.

Results
We developed a Bayesian modeling framework that combines
population data from recently conducted microcensus surveys
with several geospatial covariates. A hierarchical structure was
used for this model that enabled it to borrow strength in estimat-
ing population densities across settlement types and administra-
tive units. For the Nigeria application, through using geospatial
covariates that covered the entire country on a consistent spatial
grid, we were able to predict population sizes in all unobserved

areas. One of the most important covariates was a settlement
map derived from high-resolution satellite imagery that identi-
fied settled areas and classified them as nonresidential, rural, or
several categories of urban areas (5, 11). Depending on availabil-
ity of microcensus survey data from a state, population estimates
had average error rates from 67 to 92 people per hectare (mean
of absolute residuals or 43% based on scaled residuals) for out-
of-sample predicted population densities. Full results from the
model are available for download (12) including a raster of
gridded estimates and a Structured Query Language database
containing 10,000 Markov chain Monte Carlo (MCMC) samples
from the predicted posterior distribution for each grid cell.

Population Density. Estimates of population density in each
microcensus cluster (Fig. 2) were based on a hierarchical ran-
dom intercept using settlement types and administrative units
(Eqs. 4–7) plus the additive effects of geospatial covariates (Eq.
3). These estimates may be similar to the mean population den-
sity for a settlement type nationally (Fig. 2A), but in many cases
population densities in specific areas differ from the mean (Fig. 2
B–F). For example, in some rural microcensus clusters in Ebonyi
state, population densities were much higher than expected (pos-
sibly due to housing for agricultural workers) and there was a
high degree of residual variation in space (Fig. 2B). Urban areas
(type A) of Kano state had higher population densities than
expected for the settlement type nationally, and in the cluster
shown in Fig. 2C, covariates indicated that the population den-
sity was even higher than expected (i.e., the dashed distribution
is greater than the blue intercept distribution). In urban areas
(type D) of Lagos state, there was extremely high variation in
population densities that was not well explained by covariates
in the model, but σt,r ,s,l captured this residual variation well
(Fig. 2D). Some urban areas (type B) in Akwa Ibom state had
slightly lower population densities than the national average for
the settlement type. The microcensus cluster shown in Fig 2E
had covariate values suggesting an even lower density and the
observed density was at the low end of this posterior distribution.

Fig. 1. Map of Nigeria showing locations of microcensus surveys as the number of survey locations within each 20-km grid cell. Labeling (R1 to R11) and
shading of states indicate regions used for modeling.
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Fig. 2. (A–F) Posterior probability distribution for random intercepts αt,r,s,l and estimates of population density Di (dashed line) for six microcensus clus-
ters. Gray represents densities for a settlement type nationally (Eq. 7). Red represents densities for a settlement type within a region (Eq. 6). Green
represents densities for a settlement type within a state (Eq. 5). Blue represents densities for a settlement type within a local government area (Eq. 4).
Dots represent observed population densities from microcensus surveys. Settlement types shown include rural (M) and several urban types (A, B, D,
and F).

The federal capital territory of Abuja had slightly higher than
average densities for peri-urban areas (type F), but the covariates
in the microcensus cluster shown in Fig. 2F suggested lower than
average densities which matched well with the observation in
that cluster.

Population Totals. The estimates of population density were
made on a 100-m spatial resolution grid. The total population
in each grid cell was estimated as a Poisson process (described in
Materials and Methods) of the density and settled area. By aggre-
gating these grid cells and their posterior distributions we can
derive posterior distributions for population totals in adminis-
trative units (Table 1) or custom-drawn polygons. By aggregating
all grid cells, the total population of Nigeria was estimated to be
179,876,056 (95% CI: 160,361,328 to 207,626,890).

Covariate Effects. Three geospatial covariates included in the
model (Eq. 3) had significant positive effects at the 95% con-
fidence level and three covariates did not (Table 2). Gridded
population estimates from WorldPop (x1) had a positive rela-
tionship with log population densities. Significant positive effects
were also detected for school densities (x2) and household sizes
(x3). Residential area (x5) within a 1-km radius had a detectable
negative effect, but only at the 80% confidence level. Total set-
tled area (x4) and nonresidential settlement (x6) within a 1-km
radius did not have significant effects.

Model Diagnostics. Model diagnostics were based on predicted
values for each microcensus cluster (i.e., average area = 3 ha).

Graphically comparing observed populations to predictions
(Fig. 3) showed that cross-validation predictions were similar
to in-sample predictions, suggesting that the model performed
fairly well in areas without survey data. Estimates of total popula-
tion size tended to be less accurate than estimates of population
density (r2 of 0.46 vs. 0.26). This may be due to inaccurate or
outdated estimates of settled area from the settlement map. The
95% credible intervals for out-of-sample predictions included
the observed values 94.5% of the time, indicating that the model
error structure was robust. A summary of observed populations
in microcensus clusters compared to posterior predictions is
provided in SI Appendix, Table S2.

Analysis of residuals (Table 3) indicated a slight positive bias
driven by the large number of clusters with low populations

Table 1. Example state-level population totals

State Population Lower Upper

Abuja 3,838,085 3,311,346 4,457,200
Borno 5,599,020 2,687,960 10,993,263
Kano 13,704,940 11,836,661 16,085,987
Kaduna 8,623,416 7,420,205 10,138,022
Lagos 9,381,532 7,221,440 13,144,086
Ogun 9,417,916 6,285,736 14,275,008
Sokoto 5,186,534 3,325,988 7,911,709

Population estimates are mean and 95% credible intervals from derived
posterior distributions. No microcensus data were available from Borno,
Ogun, or Sokoto states.
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D
ow

nl
oa

de
d 

by
 g

ue
st

 o
n 

O
ct

ob
er

 2
1,

 2
02

0 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1913050117/-/DCSupplemental


Table 2. Estimated covariate effects (untransformed βk) on
population densities

Mean Lower 95% Lower 80% Upper 80% Upper 95%

x1 0.011 0.004 0.007 0.015 0.017
x2 0.027 0.013 0.018 0.036 0.041
x3 0.147 0.057 0.089 0.206 0.236
x4 −0.007 −0.027 −0.020 0.007 0.014
x5 −0.011 −0.027 −0.021 −0.0003 0.005
x6 −0.006 −0.016 −0.013 0.001 0.005

x1 is WorldPop Global population estimates; x2 is school density; x3 is
household size; x4 is settled area within 1 km; x5 is residential area within
1 km; and x6 is nonresidential area within 1 km.

where the model tended to overestimate slightly. An assess-
ment of model fit by settlement type is provided in SI Appendix,
Table S1. Imprecision was relatively high as expected for pop-
ulation predictions in such small spatial areas (i.e., microcensus
survey clusters with about 3 ha of settlement). Imprecisions are
expected to decrease when gridded population estimates are
aggregated to derive population totals for larger areas (e.g.,
wards, local government areas, or states). Residuals did not indi-
cate strong spatial autocorrelation, suggesting that the random
intercept and spatial covariates adequately accounted for spatial
effects (SI Appendix, Fig. S1). Cross-validated model predictions
in states where data were withheld from the model had the high-
est inaccuracy but average error was only 92 people per hectare
(43%) with an imprecision of 121 people per hectare (54%) at a
spatial scale of about 3 ha, so predictions were still informative.

MCMC chains for all parameters in the full model reached
convergence (see MCMC trace plots, available in Figshare at
http://dx.doi.org/10.6084/m9.figshare.12902492). Population esti-
mates for a few clusters did not fully converge in three cross-
validation runs due to long right tails. We accepted the risk of
slightly conservative estimates of cross-validated model fit.

Discussion
Accurate, spatially detailed, and up-to-date population data are
a key component for planning and monitoring public health and
development projects, among many other uses. A number of
high-resolution gridded population datasets exist (13–17), but
these approaches also depend on up-to-date census data or accu-
rate projections. In contrast, here we demonstrate a modeling
framework that produces high-resolution population estimates
independent of a census and in the situation where limited recent
enumeration has taken place. The approach uses a limited set
of recent observed population data collected rapidly and at a
fraction of the cost of full national enumeration. The hierarchi-
cal modeling framework acknowledges that population densities
vary across space and in different socioeconomic contexts. These
patterns are represented by data on settlement types, household
sizes, and other factors. The model is estimated using Bayesian
techniques which enables confidence in population estimates to
be quantified based on posterior probability distributions. The
predictions and associated uncertainty measures are produced
for every 100-m grid square in the country. This fine resolu-
tion gives users great flexibility in estimating populations for any
defined region of interest or level of aggregation. The uniform
grid also allows the population data to be integrated with other
datasets, such as local estimates of age–sex structure.

The uncertainty estimates of the predicted population are both
an advantage and a challenge of our approach. It is important to
consider the uncertainty in the population estimates to use them
most effectively. Census data are known to have inaccuracies and
to quickly become outdated in some situations, but these uncer-
tainties are rarely quantified or acknowledged, so data users may
not be accustomed to considering uncertainty. We suggest that

the uncertainty might be used to guide high/low scenarios in
planning. For example, the upper estimate could be used when
allocating vaccine to local distribution centers during a national
vaccine campaign to minimize the chances of vaccine shortages.
Not only does population vary across space, the uncertainty does
as well, and these patterns can help guide future data collection
to improve the model.

We are not implying that population estimates are extremely
precise at the 100-m scale (they are not). We are advocating an
approach that preserves the ability of end users to aggregate 100-
m grid cells to produce population estimates for any geographic
area and that provides robust probabilistic estimates of uncer-
tainty at any spatial scale. We have provided tools that allow
end users to interact with these Bayesian posterior predictions
at the 100-m grid level or aggregated to any larger area while
maintaining proper estimates of uncertainty (12, 18).

Limitations and Model Extensions. The model assumed that no
people lived in areas classified as nonresidential settlements
from the LandScanHD settlement map (11). This was neces-
sary because no microcensus surveys were conducted in these
areas and borrowing information from residential settlement
types, where population densities were potentially much higher,
would produce biased estimates of population densities in com-
mercial and industrial areas. Ongoing microcensus surveys have
targeted nonresidential areas and have found some populations
associated with industrial worker housing and slum areas, and
we acknowledge that the current model excludes populations in
these areas.

This model also assumed that population sizes were observed
without error during microcensus surveys. Observation error will
probably result in underestimation of population sizes (i.e., omis-
sions of people are more likely than duplicates) and this effect
likely varies among settlement types (e.g., undercounts may be
more likely in informal settlements and slums). The assump-
tion of perfect observations could be relaxed if repeat surveys
were conducted in some microcensus clusters. There is robust
literature from ecology to correct for this bias and to account
for the resulting uncertainty in overall population estimates (7).
Working within a Bayesian framework gives the flexibility to
incorporate an observation submodel when appropriate data
become available.

The maps of settled areas and settlement types are criti-
cal pieces of information for this model, but the imagery used
for settlement mapping was from 2014 and sometimes earlier.
This likely resulted in underestimation of populations in areas
where urban expansion has occurred. A measurement error sub-
model (6) could be used to account for this discrepancy using
covariates like change in nighttime lights across the time period
between settlement mapping and microcensus surveys. Again,
the Bayesian framework provides the necessary flexibility to
develop this submodel.

Looking to the future, as additional microcensus data con-
tinue to be collected, it will be necessary to extend this modeling
framework to be a time series model. This will account for
temporal autocorrelation in microcensus data allowing multi-
ple years of sparse data to be incorporated into a single model.
This will avoid the need for collecting an entirely new micro-
census dataset and fitting a new independent model. Instead,
information from old microcensus data can be incorporated
with newer data. This approach has potential to support a “liv-
ing census” in which ongoing microcensus data are combined
with existing national household survey data to estimate popu-
lations at high resolution for improved planning for government
services and development projects and to support prepara-
tions for a national census. There is a large body of work
on Bayesian time series models that could be applied for this
purpose (6–8).

24176 | www.pnas.org/cgi/doi/10.1073/pnas.1913050117 Leasure et al.
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Fig. 3. Observed population totals (N) and population densities (D) in surveyed microcensus clusters versus model predictions. Top row shows predictions
from the full model, Middle row shows random cross-validation, and Bottom row shows state-by-state cross-validation results. Diagonal lines are 1:1 lines
where predictions equal observations.

Conclusions. Population data are key for governments and non-
governmental organizations to plan and evaluate development
projects. Beyond operational goals, accurate data on the size,
distribution, and demographics of a population are important
for understanding the impacts of events such as conflicts, dis-
asters, or improvements in health care, as well as for planning
for potential future population trajectories. There is no substi-
tute for the wealth of information beyond simple population
counts that can be collected during a national population census,
but in the absence of a census or recent extensive enumeration,
advances in statistical modeling and geospatial data mean that
modeled estimates or population totals, as we demonstrate for

Nigeria, can contribute accurate information for providing these
vital data.

Materials and Methods
The analyses undertaken were approved by the ethics and research gover-
nance panel of the University of Southampton (submission no. 45895) with
oral consent obtained from survey participants.

Microcensus Data. Surveys were conducted in 15 of 37 Nigerian states in
2016 and 2017 by eHealth Africa (Fig. 1). We used the total population
counts from 1,141 microcensus clusters as input data for our model (Dataset
S1). Microcensus survey locations were random samples within each state
stratified by settlement type. Each microcensus cluster included about 3 ha

Leasure et al. PNAS | September 29, 2020 | vol. 117 | no. 39 | 24177
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Table 3. Analysis of residuals for in-sample posterior predictions
and out-of-sample cross-validations (X-val)

Parameter Prediction Bias Imprecision Inaccuracy r2

Ni In sample 34 (0.06) 252 (0.50) 179 (0.38) 0.38
Ni X-val random 36 (0.04) 284 (0.57) 199 (0.43) 0.26
Ni X-val state 121 (0.11) 313 (0.54) 257 (0.43) 0.08
Di In-sample 7 (0.06) 86 (0.50) 61 (0.38) 0.57
Di X-val random 8 (0.04) 96 (0.57) 67 (0.43) 0.46
Di X-val state 24 (0.11) 121 (0.54) 92 (0.43) 0.40

Residuals (predicted minus observed) were calculated based on the
mean of the posterior predicted distribution. Bias is the mean of residu-
als; imprecision is the SD of residuals; inaccuracy is the mean of absolute
residuals; r2 is the squared Pearson correlation coefficient for observed ver-
sus predicted values. Values in parentheses are based on scaled residuals
(residual/predicted).

of a single settlement type. Settlement types included nonresidential, rural,
and four urban categories (Fig. 2).

Geospatial Covariates. Administrative boundaries used in the model were
local government areas (l), states (s), and regions (r). State and local gov-
ernment area boundaries were obtained from eHealth Africa in September
2018. Regions were groups of states that were thought to share simi-
lar population characteristics. Each region contained at least one state
with microcensus data. Selecting state groupings is inherently subjective
and should be done in collaboration with local experts, stakeholders, and
end users. Administrative units are nested hierarchically (i.e., each state
is within a single region and each local government area is within a
single state).

Settled areas and settlement types were defined in previous research
using feature extraction from high-resolution satellite imagery (5, 11).
Imagery included WorldView 2 and Pléiades 1A and 1B imagery pan-
sharpened at 0.5 m spatial resolution. In areas of overlapping imagery, the
best imagery was selected based on date and cloud cover. For about 90%
of the project area, imagery dates were 2013 or 2014. Remaining areas
required imagery from 2010 to 2012 because of cloud cover. From these data
we derived five covariates: settled area (A) in each cluster, settlement type
(t), settled area within a 1-km radius (x4), residential area in a 1-km radius
(x5), and nonresidential settled area within a 1-km radius (x6). Covariates
x4, x5, and x6 were included to provide geographic context of settlements
in the area surrounding a survey cluster or prediction location. Covariate x4

was scaled based on its mean and SD nationally, whereas covariates x5 and
x6 were scaled based on their mean and SD within a 50-km radius. We scaled
x5 and x6 in this way because we suspected that neighborhood types may
not be directly comparable across regions (especially northern versus south-
ern Nigeria). This scaling also reduced correlation with x4. Covariates were
selected based on assessments of model fit compared to in-sample and out-
of-sample observations, but it is beyond the scope of this paper to present
formal model comparisons.

Gridded population estimates from WorldPop Global (19) were used to
incorporate high-resolution information from the last census in Nigeria.
The WorldPop Global project used the “top–down” approach (4) to disag-
gregate projected census results using random forest models and a large
suite of geospatial covariates (3). The resulting gridded population esti-
mates were mapped at 100 m resolution. We scaled the WorldPop Global
estimates (x1) based on their mean and SD nationally. We averaged these
values among pixels within each microcensus cluster. We treated this covari-
ate as an indicator of relative population densities based on geospatial
covariates that were in the random forest model. We did not treat the val-
ues as population counts, in which case a log transformation may have been
appropriate to match the scale of our population density model (Eq. 2).
In the current model, log transformation of this covariate did not have a
significant impact on overall model fit.

Schools in Nigeria were mapped by eHealth Africa from 2017 to 2018. We
calculated school densities (x2) within a 1-km radius of each 100-m grid cell.
Covariate x2 was scaled using its mean and SD within a 50-km radius. We
scaled this covariate within a 50-km moving window because what consti-
tutes a “high density” of schools varies by region and this distinction was
lost when the covariate was scaled nationally. This also helped to control for
possible differences in school mapping effort in different regions.

We mapped household sizes (x3) at 100 m resolution nationally by inter-
polating Demographic Health Survey results from 2013 (20) to fill gaps

between survey areas. We scaled these numbers based on their mean and
SD nationally. One key reason for including this covariate was to account for
a strong north–south gradient in household sizes, with significantly more
people per household in northern Nigeria than in southern Nigeria.

Hierarchical Bayesian Model. At their most basic, microcensus surveys pro-
duce counts of people Ni in each survey cluster i. This can be modeled with
the Poisson process model

Ni ∼ Poisson(DiAi), [1]

where Di is population density in the cluster and Ai is the total settled area
in the cluster. We modeled population density as

Di ∼ LogNormal(D̄i ,σt,r,s,l), [2]

where D̄i is the population density (log-scale) expected based on geospatial
covariates at location i, and σt,r,s,l quantifies random variations in popula-
tion densities that were not explained by the covariates. The indexing by t,
r, s, and l is explained below. The log-normal in Eq. 2 provides overdispersion
for the Poisson distribution in Eq. 1 to adequately capture residual variation
in observed counts. Our choice of log-normal is consistent with a posthoc
simulation approach previously used in Nigeria to quantify uncertainty (5).

Expected population densities were estimated using a log-linear regres-
sion with a random intercept and K geospatial covariates xk,

D̄i =αt,r,s,l +
K∑

k=1

βkxk,i , [3]

where αt,r,s,l is the mean population density for a local government area and
βk are the effects of geospatial covariates xk,i on population densities in spe-
cific locations i. This model assumes that covariates have a linear relationship
with log(D̄).

The random intercept αt,r,s,l was modeled hierarchically by settlement
type t, region r, state s, and local government area l:

αt,r,s,l ∼Normal(µt,r,s, θt,r,s) [4]

µt,r,s∼Normal(µt,r , θt,r )

θt,r,s∼Uniform(0, θt,r )
[5]

µt,r ∼Normal(µt , θt)

θt,r ∼Uniform(0, θt)
[6]

µt ∼Normal(µ, θ)

θt ∼Uniform(0, θ).
[7]

The average population density αt,r,s,l for settlement type t in local govern-
ment area l is drawn from the distribution of average population densities
for that settlement type throughout the state (Eq. 4). This distribution is
defined by the statewide mean µt,r,s and SD θt,r,s from Eq. 5. The state-level
SD θt,r,s cannot exceed the regional-level SD θt,r . The average density for
a settlement type statewide µt,r,s is drawn from the distribution of aver-
age densities for the settlement type in the region; regional densities (µt,r )
are drawn from distribution of densities for the settlement type nation-
ally; and average densities for each settlement type (µt) are drawn from
the distribution of densities among all microcensus clusters.

This hierarchical structure shares information among local government
areas and states. For example, if no microcensus data exist for a local
government area, the average densities for each settlement type will be
estimated based on other local government areas in the state where data
were collected. If no microcensus data exist for a state, the estimate will be
dominated by data from other states in the region. All regions had at least
one state with data.

The hierarchical random intercept also accounts for spatial autocorre-
lation inherent in data from nearby clusters (SI Appendix, Fig. S1). This is
particularly important for microcensus data that are often geographically
clustered as a result of incomplete state-by-state data collection. Geosta-
tistical models are often used for this purpose but they are much more
computationally demanding and often less flexible as a result.

Residual variation σt,r,s,l was estimated for every local government area
using a hierarchical structure similar to Eqs. 4–7, except it used half-normal
distributions (i.e., truncated to be greater than zero):

24178 | www.pnas.org/cgi/doi/10.1073/pnas.1913050117 Leasure et al.

D
ow

nl
oa

de
d 

by
 g

ue
st

 o
n 

O
ct

ob
er

 2
1,

 2
02

0 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1913050117/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1913050117


SO
CI

A
L

SC
IE

N
CE

S
ST

A
TI

ST
IC

S

σt,r,s,l ∼Half-Normal(ηt,r,s, εt,r,s) [8]

ηt,r,s∼Half-Normal(ηt,r , εt,r )

εt,r,s∼Uniform(0, εt,r )
[9]

ηt,r ∼Half-Normal(ηt , εt)

εt,r ∼Uniform(0, εt)
[10]

ηt ∼Normal(η, ε)

εt ∼Uniform(0, ε).
[11]

Minimally informative priors were defined as

βk ∼Normal(0, 5)

µ∼Normal(0, 31.6)

η∼Half-Normal(0, 31.6)

θ∼Uniform(0, 1,000)

ε∼Uniform(0, 1,000).

[12]

The model was estimated with MCMC methods in JAGS (Just Another Gibbs
Sampler) (21) using the R package runjags (22). The model code is avail-
able in Dataset S2. Convergence of MCMC chains was assessed using the
Gelman–Rubin statistic and values less than 1.1 were interpreted as indicat-
ing convergence (6). Trace plots of MCMC chains are provided in Figshare
(http://dx.doi.org/10.6084/m9.figshare.12902492). Spatial autocorrelation in
model residuals was assessed using semivariograms and Moran’s I statistics
(SI Appendix, Fig. S1). Model fit was assessed using 10-fold cross-validation
where the model was refitted 10 times, each time withholding a random
10% of survey clusters until all had been held out once. Model fit for pre-
dictions into unsampled states was assessed by holding out data from an
entire state (where at least two states from a region had samples), refit-
ting the model each time. For predicted population sizes and densities, we

evaluated bias (mean of residuals), imprecision (SD of residuals), inaccuracy
(mean of absolute residuals), and r-squared values (squared Pearson correla-
tion coefficient). Uncertainty in model predictions accounted for uncertainty
at all levels of the model: parameter uncertainty, Poisson process error for
population counts, and log-normal process error for population densities.
Uncertainties in model predictions did not account for error introduced by
processes that were not explicitly modeled such as observer error, settlement
mapping, and movements of people.

Data Availability. All data discussed in this paper are available to readers.
Input data and model code are provided in Datasets S1 and S2, and MCMC
trace plots are available in Figshare (http://dx.doi.org/10.6084/m9.figshare.
12902492). Full model results are available for download (12) and can
be explored on an interactive web application (18). Model outputs (.csv,
.tif, .sql, XYZ web map tiles) data have been deposited in the WorldPop
Open Population Repository (http://dx.doi.org/10.5258/SOTON/WP00655).
All study data are included in this paper and SI Appendix.
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