Evidence that coronavirus superspreading is fat-tailed

Felix Wonga,b,c and James J. Collinsa,b,c,d,1

aInstitute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139; bDepartment of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139; cInfectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142; and dWyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115

Edited by Simon A. Levin, Princeton University, Princeton, NJ, and approved September 28, 2020 (received for review September 1, 2020)

Superspreaders, infected individuals who result in an outsized number of secondary cases, are believed to underlie a significant fraction of total SARS-CoV-2 transmission. Here, we combine empirical observations of SARS-CoV and SARS-CoV-2 transmission and extreme value statistics to show that the distribution of secondary cases is consistent with being fat-tailed, implying that large superspreading events are extremal, yet probable, occurrences. We integrate these results with interaction-based network models of disease transmission and show that superspreading, when it is fat-tailed, leads to pronounced transmission by increasing dispersion. Our findings indicate that large superspreading events should be the targets of interventions that minimize tail exposure.

COVID-19 | SARS-CoV-2 | superspreading | extreme value theory | infectious disease

Superspreaders have been recognized as an important phenomenon arising from heterogeneity in individual disease transmission patterns (1). The role of superspreading as a significant source of disease transmission has been appreciated in outbreaks of measles, influenza, rubella, smallpox, Ebola, monkeypox, SARS, and SARS-CoV-2 (1, 2). A basic definition of an nth-percentile superspreading event (SSE) has been proposed to be any infected individual who infects more people than does the nth-percentile of other infected individuals (1). Hence, if the number of secondary cases is randomly distributed, then for large \(n \), SSEs can be viewed as right-tail events. A natural language for understanding the tail events of random distributions is extreme value theory, which has been applied to contexts as diverse as insurance (3) and contagious diseases (4). Here, we apply extreme value theory to empirical data on superspreading in order to gain insight into this critical phenomenon impacting the current COVID-19 pandemic.

Results and Discussion

We view the number of secondary cases resulting directly from an index case of a disease to be a random variable, \(Z \). We also view the individual reproductive number, \(v \), to be a random variable representing the expected number of secondary cases caused by an infected individual. Seminal work (1) has suggested that, for SARS-CoV, \(Z \) follows a negative binomial distribution, \(Z \sim \text{negative binomial}(R_0,k) \), where \(R_0 \) is the basic reproduction number, \(k \) is the dispersion parameter quantifying variation in transmission, and the mean and variance of \(Z \) are \(R_0 \) and \(R_0(1 + R_0/k) \), respectively. Assuming that stochastic effects in transmission are modeled by a Poisson process, \(v \) is gamma-distributed and \(1/k \) effectively measures the “flatness” of the distribution of \(v \). Different assumptions of the branching process can be modeled, and we focus on the foregoing assumptions for simplicity (1). For SARS-CoV, \(k \) has been estimated to be \(0.16 \) (1); for SARS-CoV-2, \(k \) has been estimated to be \(0.1 \) to \(0.6 \) (2, 5). Importantly, if \(Z \sim \text{negative binomial}(R_0,k) \), then for \(k < 1 \), \(Z \) has an exponential tail (6). This means that the occurrence of SSEs has a probability that decreases exponentially as \(Z \) increases.

Tails are exceptionally significant in extreme value theory, where they determine how rare extreme events are, how the central limit theorem is generalized, and what distribution the scaled maxima of samples follow. We were therefore interested to determine whether the empirically observed distribution of \(Z \) for SARS-CoV and SARS-CoV-2 exhibited an exponential tail. We searched the scientific literature for global accounts of SSEs, in which single cases resulted in numbers of secondary cases greater than \(R_0 \), estimated to be \(3 \) to \(6 \) for both coronaviruses (1, 7). To broadly sample the right tail, we focused on SSEs resulting in \(>6 \) secondary cases, and as data on SSEs are sparse, perhaps due in part to a lack of data sharing, we pooled data for SARS-CoV and SARS-CoV-2. Moreover, to avoid higher-order transmission obfuscating the cases generated directly by the index case, we ruled out SSEs where a single infected individual led to a cluster of subsequent infections, but the subsequent infections were not indicated to be secondary cases.

Curating a total of 60 SSEs in this way, we found 45 SSEs associated with SARS-CoV-2 and 15 SSEs associated with SARS-CoV (Fig. 1A and B). An additional 14 SSEs were documented in news sources and not scientific studies, and their inclusion does not significantly change the following results, which also hold when accounting for sources of bias (below). Details of the dataset are summarized in Dataset S1.

Several striking observations emerge from the data. While the SSEs surveyed indicated secondary case numbers ranging from \(\sim 6 \) in a family-spreading incident in Singapore to 187 in an apartment in Hong Kong, many SSEs exhibited significantly more secondary cases than \(R_0 \approx 3 \) to \(6 \), with the conditional sample mean being 19.7 cases (Fig. 1A and B).

We next examined the tail behavior of \(Z \) using inference tools from extreme value theory. We found that the tail of \(Z \), as sampled by our list of SSEs, \(\{Z_i\} \), was inconsistent with exponential decay. Instead, we found that the tail of \(Z \) is consistent with fat-tail behavior using three complementary methods: 1) a Zipf plot; 2) a meplot; and 3) statistical estimators of the tail index, which collectively suggest a power-law scaling of the form \(\Pr(Z > u) \sim u^{-\alpha} \) for large \(u \), with \(\alpha \) between 1 and 2 (Fig. 1C-E and SI Appendix, Methods). Equivalently, this observation indicates that the tails of \(Z \)—as quantified by the threshold exceedance values \(\{Z_i - u | Z_i \geq u\} \)—can be described by the generalized Pareto distribution, with corresponding tail index \(\xi = 1/\alpha \) between 0.5 and 1. That \(\xi \leq 1 \) is significant, since all moments higher than \(1/\xi \) diverge for a generalized Pareto distribution (3).

Our finding that the tail of \(Z \) is fat has implications not only for superspreading, but also for modeling the effects of individual variation on disease transmission. First, the fat tail of \(Z \) makes the distribution of \(Z \) inconsistent with a negative binomial distribution, and the consistency of the tail with a generalized Pareto distribution suggests that it arises from branching processes in which the time to infection, instead of \(v \), is gamma-distributed.

Author contributions: F.W. and J.J.C. designed research; F.W. performed research; F.W. contributed new reagents/analytic tools; F.W. and J.J.C. analyzed data; and F.W. and J.J.C. wrote the paper.

The authors declare no competing interest.

This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY).

1To whom correspondence may be addressed. Email: jimjc@mit.edu.

This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2018490117/-/DCSupplemental.

First published November 2, 2020.
of SSEs. (Smirnov and
sured by maximum-likelihood fitting and one-sample Kolmogorov
inconsistent with the Gumbel and Weibull distributions, as mea-
observed SSEs was consistent with the Fréchet distribution but
ensembles of spreading events, we found that the distribution of
are exponentially decaying, fat, or thin (faster-than-exponential)
or Weibull distributions if the tails of the underlying distribution
large numbers of samples converge to either the Gumbel, Fréchet,
Dataset S1 for details. (Fig. 1
inferred
Wong and Collins PNAS
SARS-CoV and SARS-CoV-2 SSEs correspond to fat tails. (Fig. 1
second moment of
Z
tributions (3). Indeed, SSEs often represent the maxima of values of
right-tail samples of
Z
Z
is by assuming that SSEs arise not only as right-tail samples of
superspreading should be mitigated by measures that reduce
tail events instead of focusing on the bulk of the distribution.

A complementary way in which we may interpret superspreading
is by assuming that SSEs arise not only as right-tail samples of Z,
but also as the maxima of many samples of the entire distribution of Z.
The consistency of this viewpoint with the definition of SSEs as
right-tail samples of Z is given by an important theorem in extreme
value theory relating threshold exceedances to extreme value dis-
(3). Indeed, SSEs often represent the maxima of values of Z observed in transmission clusters. In this case, the Fisher–Tippett–
Gedanken theorem asserts that distributions of the maximum of
large numbers of samples converge to either the Gumbel, Fréchet,
or Weibull distributions if the tails of the underlying distribution
are exponentially decaying, fat, or thin (faster-than-exponential)
and finite, respectively. Supporting the view of SSEs as maxima of
ensembles of spreading events, we found that the distribution of observed SSEs was consistent with the Fréchet distribution but
inconsistent with the Gumbel and Weibull distributions, as measured
by maximum-likelihood fitting and one-sample Kolmogorov–Smirnov and
χ² goodness-of-fit tests at the 5% significance level (Fig. 1F and G and SI Appendix, Methods).

We next verified that our results were robust to noisy and
incomplete data (4). To account for noise, we generated 10,000 copies of
the data, where each copy involved multiplying the original data by
uniform random variables in [0.5,1.5]—a range that we anticipate to
accommodate errors in testing and reporting—and recomputed
ζ according to the Hill estimator (SI Appendix, Methods). To
account for incomplete data, a random number of observations between 1 and 10 was randomly removed, according to uniform
distributions, for 10,000 copies of the data, and ζ was recomputed.
The variation in ζ is summarized in Fig. 1H. Notably, we observed that ζ was always greater than 0.5, so that the second
and higher moments of Z diverge.

In a complementary analysis, we tested for sources of bias
in the data, which could arise from variations in testing and
reporting. As null models, we tested whether the data could
be consistent with the maxima of samples from a negative
binomial distribution with (R_0,k) = (3,0.1), conditioned on Z > 6
(yellow). (D) Meplots corresponding to C. (E) Plots of ξ, the Hill estimator for ξ, for the samples in C. (F) Different extreme value distribution fits to the distribution of SSEs. (G) One-sample Kolmogorov–Smirnov and
χ² goodness-of-fit test results for the fits in F. (H) Robustness of results, accounting for noise (Left) and incomplete data (Right). (I) Inconsistency of the maxima of 10,000 samples of a negative binomial distribution (yellow) with the SSEs in A, accounting for variability in (R_0,k) and data merging and imputation, in contrast to the maxima of 30 samples from a fat-tailed (Fréchet) distribution (blue) with tail parameter α = 1.7 and mean R_0 = 3. The numbers of samples in each case were determined so that the sample mean of maxima is equal to the sample mean from A. (J–K) Generality of inferred ζ to 14 additional SSEs from news sources (J) and a dataset of 1,347 secondary cases arising from 5,165 primary cases in South Korea (K) (Dataset S2).

Fig. 1. SARS-CoV and SARS-CoV-2 SSEs correspond to fat tails. (A) Histogram of Z for 60 SSEs. (B) Subsample of 20 diverse SARS-CoV and SARS-CoV-2 SSEs. *See Dataset S1 for details. (C) Zipf plots of SSEs (blue) and 10,000 samples of a negative binomial distribution with parameters (R_0,k) = (3,0.1), conditioned on Z > 6 (yellow). (D) Meplots corresponding to C. (E) Plots of ξ, the Hill estimator for ξ, for the samples in C. (F) Different extreme value distribution fits to the distribution of SSEs. (G) One-sample Kolmogorov–Smirnov and
χ² goodness-of-fit test results for the fits in F. (H) Robustness of results, accounting for noise (Left) and incomplete data (Right). (I) Inconsistency of the maxima of 10,000 samples of a negative binomial distribution (yellow) with the SSEs in A, accounting for variability in (R_0,k) and data merging and imputation, in contrast to the maxima of 30 samples from a fat-tailed (Fréchet) distribution (blue) with tail parameter α = 1.7 and mean R_0 = 3. The numbers of samples in each case were determined so that the sample mean of maxima is equal to the sample mean from A. (J–K) Generality of inferred ζ to 14 additional SSEs from news sources (J) and a dataset of 1,347 secondary cases arising from 5,165 primary cases in South Korea (K) (Dataset S2).
models with identical mean connectivity ($m = 10$): Barabási–Albert (BA) and Watts–Strogatz (WS), which possess fat-tailed ($\alpha = 2$) and exponential-tailed degree distributions, respectively. As a simple intervention strategy, we considered node removals in which a fraction ϕ of all nodes is removed starting from those with largest degree. We found that, when the degree threshold for node removals was chosen to yield the same effective value of R_0 in both models, the BA model resulted in greater transmission (Fig. 2 B and C), indicating that a fat-tailed degree distribution contributes to transmission by increasing dispersion. In contrast, for the same degree threshold, we found that isolating all possible superspreaders—defined here as individuals with degree greater than 10, corresponding to the 80th percentile in the BA model and the 50th percentile in the WS model—suffices to decrease R_0 below 1 and control the pandemic for the BA, but not WS, model (Fig. 2 D and E). Intriguingly, in both models, stochastic extinction events lead to smaller infected fractions than those predicted by a well-mixed model (Fig. 2 B–E). These results indicate that transmission is especially pronounced when superspreading is fat-tailed and hint at more detailed models of interventions focused on tail events. We anticipate future models to consider not only heterogeneity in network interactions, but also in infectivity and susceptibility (11).

In summary, we have provided evidence that the distribution of secondary cases, Z, is fat-tailed with tail exponent $\alpha \in [1,2]$. The fat-tailed nature of Z indicates that SSEs have an outsized contribution to overall transmission and should be the targets of interventions that minimize tail exposure, for instance, by preventing large gatherings of susceptible individuals or immunizing select individuals (12). Extreme value theory offers a framework for modeling superspreaders, and we anticipate that using the tools of this theory can, as illustrated here, better allow us to understand the effects of superspreading on the ongoing pandemic.

Data Availability. All analysis code are available at GitHub, https://github.com/felixjwong/superspreaders. All study data are included in the article and SI Appendix.

ACKNOWLEDGMENTS. We thank the editor and the three anonymous reviewers for helpful suggestions, and Po-Yi Ho and Jie Lin for helpful comments. F.W. was supported by the James S. McDonnell Foundation.
