


Results
Compared with verified prices of 4,128 publicly funded land
acquisitions for conservation in 659 counties, the new estimates
explain between 67% and 72% of the variance in logged per-area
prices, in contrast to 8% to 32% achieved by proxies used in
previous US-wide studies (Fig. 2 and SI Appendix, Fig. S1). A
large share of this difference in predictive power is attributable
to within-county heterogeneities in land values, which exist
throughout the country and can reach extreme values in loca-
tions containing both expensive urban areas and land of very low
market value, such as deserts and wetlands (SI Appendix, Fig.
S2). County-level averages of PLACES FMV estimates only
explain 26% to 27% of the variance in acquisition cost (SI Ap-
pendix, Fig. S3). The ranking of the predictive performance of
county-level proxies is sensitive to the selection of the validation
sample, but high-resolution estimates consistently outperform
county-level proxies (Fig. 2 and SI Appendix, Fig. S1).
Validation points toward an underestimation of conservation

costs by several previous proxies: unadjusted, a proxy used in two
studies (9), underestimates observed acquisition cost by a factor
of 3.5 on average; another (13) by a factor of 2.2 (SI Appendix,
Table S1 and Fig. S4). County-level proxies tend to miss the
expensive tail of the land value distribution associated with urban
proximity, which contains important conservation priorities, and
attracts a significant share of public and private conservation
investments (Fig. 2 and SI Appendix, Fig. S5).
Property tax assessments offer an alternative source of parcel-

level property value estimates. Tax assessors estimate the FMV of
each property in their jurisdiction as a precursor for the deter-
mination of “assessed values,” which form the basis of property
taxation. Because tax assessors are in a privileged position to
consider local drivers of value, such as zoning, urban services, and
amenities, one would expect their FMV estimates to outperform

models based on nationwide datasets. Yet for verified land ac-
quisitions where FMV estimates from tax assessments were
available (n = 2,903), these estimates explain less of the variance
in costs than PLACES FMV (56% vs. 72%) (Fig. 2 and SI Ap-
pendix, Fig. S1). Assessed values, which can be subject to locally
specific adjustments, perform worse (44%). Both sources of tax
assessor data underestimate conservation cost by a factor of 2.1 or
greater on average (SI Appendix, Table S1 and Fig. S4). The utility
of tax assessor data as a proxy of conservation cost is further
limited by missing data. To the best of my knowledge, there is
currently no property-level tax value dataset available that seam-
lessly covers the contiguous United States.
High-resolution land value estimates can help predict the cost

of conservation strategies other than land acquisitions. In the
United States, conservation easements (CEs) are a widely used
conservation instrument, with 167,721 recorded transactions
(25). CEs extinguish a subset of property rights (e.g., develop-
ment rights) in perpetuity, allowing landowners to retain own-
ership. Because the subset of transacted rights varies, predicting
the costs of CEs is more complex than predicting the costs of
land acquisitions. Validation datasets of CE costs are scarce, as
neither easement presence nor easement costs are regularly
recorded by tax assessors or registries. Using a dataset of 335
public CE transactions from one state program (Great Outdoors
Colorado [GOCO]), with each transaction validated by a private
and a public appraiser, I find that PLACES FMV estimates ex-
plain 73% of the variance in appraised easement value (SI Ap-
pendix, Fig. S6).
The quality of cost estimates can have important implications

for insights from prospective modeling of conservation policies.
Consider two examples: flood damage prevention and species
conservation in the face of climate change. Flooding is the
deadliest and most costly natural disaster in the United States.

Fig. 1. Estimated FMV of private properties in the United States.
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In 2020, Johnson et al. (13) published the first US-wide benefit-
cost analysis of acquiring undeveloped floodplains to prevent
future development and avoid associated private damages. As a
proxy for acquisition cost, the analysis used county-level cost
predictions from a model trained on 1,405 land purchases by The
Nature Conservancy, a large conservation nonprofit (Fig. 2C).
The study found that the benefits (in terms of avoided private
damages) of acquiring all natural, undeveloped floodplains
within a 100-y flood return period outweigh acquisition costs by a
factor of 1.94.
PLACES FMV estimates for vacant land suggest that Johnson

et al. underestimate the costs of floodplain acquisitions by a
factor of 2.06 (Fig. 3). This difference is largest near cities, where
most development and associated flooding damages are likely to
occur. Within 25 min of a city center, estimates of floodplain costs
differ by a factor of 6.6 on average. Thus, costs of floodplain ac-
quisitions might outweigh the added private benefits to land-
owners in more locations than Johnson et al. suggest. However,
public benefits from public ownership, such as recreation, eco-
system services, species conservation, and avoided flood rescue
cost, could make up for the difference and should be included in
future cost-benefit analyses of floodplain acquisitions.
High-resolution cost estimates also lead to major shifts in the

estimated cost and spatial patterns of species conservation pol-
icies in the face of climate change. Lawler et al. (11) have ex-
plored the effects of incorporating future species distributions,
climate refugia, and ecological corridors into conservation
planning in the contiguous United States. As a proxy for pro-
tection cost, the study uses county-level estimates of land prices
based on estimated returns from different land uses (9, 22)
(Fig. 2B). The analysis finds that addressing climate change in
conservation plans has significant implications for the spatial con-
figuration of cost-effective protected area networks, and that the
cost of doing so relative to planning without addressing climate
change might be relatively modest. Although those conclusions
hold true in relative terms when better cost data are used, the total
cost of the proposed conservation strategies rises dramatically, by
factors ranging from 31.8 to 37.5 (Fig. 4). The difference is largely
driven by planning units in expensive locations near cities, such as
San Francisco, Los Angeles, Miami, Washington, and New York,
which are considered irreplaceable (SI Appendix, Fig. S8). Incor-
porating high-resolution land value estimates into the optimization
algorithm changes spatial priorities by 23% to 36% (Fig. 4 and SI
Appendix, Table S2 and Fig. S7).

Discussion
The quality and resolution of conservation cost estimates can
have important implications for arguments about the benefits,
costs, and spatial priorities of land policies. Advances in pre-
dictive algorithms, data quality, and data access are bringing
high-resolution cost estimates within the reach of conservation
planners. The analysis presented here finds that the use of coarse
and unvalidated cost proxies has led to an underestimation of
budgets required to attain proposed goals. To put the results in
perspective, on July 22, 2020, the US Congress passed a bipar-
tisan bill that will fully fund the Land and Water Conservation

Fig. 2. Predictive accuracy of proxies for the conservation cost of 4,128 publicly funded land acquisitions. Cost units are logged 2017 USD per hectare. Solid
gray line shows diagonal. Dotted red line shows fitted regression. (A) County-level agricultural land values (21), used in (10, 17). (B) County-level returns from
extractive uses (22), used in (9, 11). (C) County-level predictions of land acquisition costs, developed and used in (13). (D) Unitless proxy derived from global
human footprint (23), used in (12), adjusted to fit graph. (E) Tax assessor valuation (24). (F) Tax assessor FMV (24). (G) PLACES FMV trained on sales of vacant
land only. (H) PLACES FMV trained on sales of both vacant and developed properties.

Fig. 3. Differences in cost estimates for the acquisition of natural, unde-
veloped, privately owned lands within 100-y floodplains. Cost estimates
from Johnson et al. (13) and PLACES FMV for vacant land. Travel time to city
center from Nelson et al. (26).
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Fund, a major federal funding mechanism, for the first time since
its creation in 1964 (27). This decision creates a budget of ap-
proximately $4.5 billion to secure additional lands for conservation.
If this funding were entirely dedicated to species conservation, it
could fully cover several of Lawler et al.’s proposed land protection
scenarios (11). Revisiting the analysis with high-resolution estimates
suggests that even such an unprecedented budgetary decision
covers <5% of what would be needed to reach the proposed policy
targets. Earlier findings on the cost-effectiveness of floodplain
acquisitions also might need to be revisited in the light of new cost
estimates.
To facilitate the replication and reexamination of findings

from previous conservation planning studies and to encourage
new research in this area, I have published rasterized maps of the
property-level land value estimates alongside this article (Data
Availability). When using these estimates and interpreting results,
analysts need to be cognizant of several key limitations. First, the
quality of the value estimates will vary as a function of the density
and representativeness of training observations, as well as the
extent to which observed predictors capture the most important
drivers of value in a given locality. Attention to known spatial
heterogeneities in training data density (SI Appendix, Fig. S9)
and prediction error (SI Appendix, Fig. S10) will allow analysts to
exercise caution in the interpretation of future findings based on
these estimates. Second, while these estimates have been vali-
dated against a convenience sample of publicly funded land
conservation transactions, further systematic research is needed
to examine their relationship with other types of conservation
investments, such as private acquisitions, donated easements,
land use regulations, and time-bound conservation contracts,
among others. Third, the land value estimates are cross-sectional
and not predictive of the future. Land values and conservation
costs can and will change in response to a wide range of factors,
including natural disasters, economic crises, agricultural sub-
sidies, regulatory change, and path-dependent development
patterns, among others (28, 29). The development of models to
predict future property values remains an active area of research
in machine learning (30).
Limited access to high-resolution land cost data remains a

barrier for the advancement of global change science and policy
(31). The public disclosure of land transaction records and

spatialized property data, in combination with remote sensing
and machine learning techniques, offers new opportunities for
resolving this bottleneck. Future investments in public access to
property-level information, alongside further research into the
strengths and limitations of spatial-temporal land value modeling
and prediction, will help improve the empirical foundation for
proposing and targeting conservation interventions across large
and heterogeneous landscapes.

Materials and Methods
Training Data. The main unit of analysis in this study is the tax assessor parcel.
All datasets were synthesized to the parcel-level using PLACES, a parallelized
data pipeline deployed on Boston University’s shared computing cluster
at the Massachusetts Green High-Performance Computing Center (www.
placeslab.org/places). This study uses digital maps of tax assessor parcels for
3,055 out of 3,108 counties in the contiguous United States (SI Appendix, Fig.
S11). For 913 counties (29.4% of counties with parcel data), these maps were
obtained from open-access sources; the remainder (n = 2,195; 70.4%) were
licensed from three commercial providers (Loveland, Boundary Solutions,
and CoreLogic). Parcel boundaries reflect conditions observed recently,
mostly between 2016 and 2019. In areas where digital parcel boundaries are
unavailable, PLACES creates wall-to-wall hexagonal dummy parcels with an
area of 25 ha (average parcel size across counties). The following set of
variables is computed for all parcels:

• Building footprints of 125.2 million buildings were obtained from Micro-
soft’s open-source building footprint dataset (32) and used to compute
the number of buildings on each parcel, the percentage area of the parcel
covered by buildings, and the density of building footprints within the
vicinity of each parcel (as a proxy for nearby development).

• Distance to paved roads is computed based on TIGER/Line shapefiles from
the US Census Bureau (33).

• Travel time to major cities is extracted from a global map developed by
the Joint Research Center of the European Commission (26).

• Demographic indicators (here median household income at the census
block level) are imported from the National Historical Geographic Infor-
mation System (34).

• Data on the long-term protection of parcels comes from the Protected
Area Database of the United States (PAD-US 2.0) (35) for fee ownership
and from the National Conservation Easement Database (25) for conser-
vation easements. The exceptions are: New England, where superior cov-
erage is offered by the New England Protected Open Space database (36),
and Colorado, where superior coverage is provided by the Colorado Own-
ership, Management, and Protection (COMaP) database (37). To account

Fig. 4. Differences in cost estimates and spatial priorities for species conservation in the face of climate change. (A) Protected area network costs using
different cost estimates during optimization and cost estimation. Network definitions are as in Lawler et al. (11): 1) current species (CS), 2) CS + climate refugia
(CR), 3) CSD + corridors, 4) species refugia (SR), and 5) SR + CR + corridors. (B) Changes to the spatial configuration of cost-effective reserve networks induced
using PLACES FMV cost estimates in the CS network case. SI Appendix, Fig. S7 provides maps of changes to other networks.
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for neighborhood effects, I compute the presence of nearby protection
(% area) within different radii and years.

• Average slope and average elevation are computed from the US Geolog-
ical Service (USGS) National Elevation Dataset (1/3 arc-second) (38).

• Wetland coverage (% of parcel area) is based on the US Fish and Wildlife
Service National Wetlands Inventory (39).

• Water frontage to rivers and lakes is based on the USGS National Hy-
drography Dataset (40) and computed using polygon buffering and
intersections.

• Flood risk for pluvial and fluvial flooding, measured as average meters of
inundation depth within the 1% annual exceedance probability flood-
plain, comes from the US-wide flood hazard layers developed by Wing
et al. (8).

• Proximity to coast is computed as the percentage of coastal waters within
a short-distance radius (50 m, to flag properties with beach and boating
access) and a long-distance radius (2,500 m, capturing both distance to
coast as well as the added value of properties surrounded by coastal wa-
ters on several sides, such as islands, peninsulas, etc.), and based on Esri’s
North American water polygons (41).

• Land cover estimates are obtained from the 2011 National Land Cover
Database (42) and used to compute percent land cover for the following
classes: forest, crops, pasture, grassland, shrub, and barren.

Property sales data come from the Zillow Transaction and Assessment
Database (ZTRAX, version: 9 October 2019) (24). ZTRAX contains tax assessor
data (parcel numbers, owner names, geographic coordinates, assessed val-
ues, FMV estimates, and last sale information) and transaction data (parcel
numbers, sale dates and prices, interfamily transfer flags). ZTRAX does not
provide digital parcel maps. The provided geographic coordinates are often
incomplete and not precise enough to identify parcels correctly. Thus, PLACES
uses assessor parcel numbers to link ZTRAX data to parcel boundaries using
county and town-specific string pattern matching and geographic quality
controls. The algorithm identifies >1,000 unique combinations of syntaxes
and links digital parcel boundaries from 2,951 counties to ZTRAX data with
a median county-level success rate of 98.2% and a mean of 95.5% (mea-
sured as the percentage of the number of parcel boundaries matched to a
tax assessor record). In counties for which the algorithm fails to identify
the correct link (SI Appendix, Fig. S12), PLACES creates hexagonal dummy
parcels based on available geographic coordinates and parcel area and
computes all parcel-level variables for these dummies. Sales information is
extracted from both ZTRAX datasets (transaction data and last sale in-
formation in tax assessor data). Multiparcel sales are aggregated to single
observations.

Validation Data. Validation data for the cost of land acquisitions for
conservation purposes (“fee transactions”) comes from the Conservation
Almanac (CA) (43), a US-wide dataset of 67,187 publicly funded land
acquisitions. A large share of the CA data are not usable for this analysis.
Only 21,026 (31.3%) fee transactions 1) have spatial information (polygons);
2) contain information on spending; 3) are larger than 1 acre (0.4 ha), the
smallest size of parcels considered here; and 4) pass additional spatial quality
checks, namely the absence of overlaps between polygons and satisfactory
spatial matches between CA polygons and tax assessor parcels (66% mini-
mum in both directions). Furthermore, spending data in the CA are not al-
ways accurate and do not always capture the full cost of land acquisitions
(e.g., in the case of multiple contributions and partial donations). For an
increased confidence in the validation data, I compare spending amounts for
CA fee transactions with prices of parcel sales recorded in digital parcel maps
or ZTRAX for the corresponding parcels and year (±3 y), and flag prices of
fee acquisitions as “verified” if single-parcel prices are within ±20% of each
other. A total of 4,883 fee transactions (7.3%) pass this quality check. Be-
cause these transactions are clustered in space, I cap the density of validation
data per county at 0.05 per km2 and select a random sample of transactions
in counties that surpass this threshold. This leads to a final validation dataset
containing 4,128 fee transactions in 659 counties (SI Appendix, Fig. S12).

Validation data for the cost of conservation easements come fromGOCO, a
large state-level conservation program funded by Colorado’s state lottery.
The dataset contains estimated FMVs of easements supported with GOCO
funding. Each transaction was independently appraised by two certified
appraisers, one selected by the involved land trust and the other selected by
GOCO. Colorado’s COMaP database (see above) contains the ID of GOCO-
supported easements, which permits establishment of the link between
GOCO transactions and PLACES parcels. The dataset contains 335 easement
transactions occurring between 1996 and 2017.

Cost Proxies. Data on US-wide proxies for conservation cost were retrieved
from published sources and from the lead author of published articles:

• The National Agricultural Statistics Services (NASS) of the US Department
of Agriculture (USDA) publishes county-level estimates of the average
market value of agricultural land for all US counties, based on farmers’
responses to the Census of Agriculture (21). USDA-NASS land value esti-
mates have been used by several US-wide conservation planning analyses
as cost proxies (10, 17); however, a recent study casts doubt on the utility
of these estimates as proxies for conservation cost (44).

• Withey et al. (9) develop county-level estimates of land cost based on
estimates of annual returns for six different land uses developed by
Lubowski et al. (22, 45). They use these estimates as proxies for conser-
vation cost to identify cost-effective investment strategies for US-wide
species protection. Lawler et al. (11) subsequently use these estimates
to identify cost-effective protected area networks under climate change
in the United States.

• Johnson et al. (13) estimate the benefits and costs of floodplain land
acquisition for flood damage reduction. Their county-level, US-wide pre-
dictions for conservation costs are based on a statistical model that re-
gresses the cost of 1,405 land acquisitions by The Nature Conservancy on
parcel size, USDA-NASS estimates for agricultural land value, and the
price of land under single-family residences (46).

• Stralberg et al. (12) develop a proxy for land cost from the 2009 Global
Human Footprint (GHF) raster layer (23), using the following formula:
cost ¼ GHF2=100þ 1. The resulting values are unitless. To compare this
proxy against actual conservation cost in Fig. 2. I convert it into 2017 USD
by multiplying it with a constant derived from PLACES estimates (average
vacant PLACES FMV/average raw cost proxy).

Tax assessor estimates were obtained directly from ZTRAX. FMV estimates
are meant to reflect the value that a buyer would be willing to pay for a
property on the openmarket with no undue influence. Tax assessors estimate
FMV through a process that considers home sales, location, and inspections.
Tax assessed value (TAV) identifies the value of a property for tax purposes. It
is used as a basis for the calculation of property taxes, and computed by tax
assessors. TAV might not reflect FMV for a range of reasons, including locally
specific adjustments; for instance, many state or local governments have
preferential tax assessments for rural land (e.g., current use programs).

Model Fitting. I train tree-based ensemble learning methods in the prediction
of per-hectare sales prices to estimate parcel-level FMVs. The estimation
process is parallelized at the county level: sample selection, fitting, and
prediction occur for each county (“target county”) independently. Predictive
models for each target county are based on sales of properties of at least 1
acre (0.4 ha) that occurred between 2000 and 2019 in the target county and
its adjacent counties. Adjacent counties are defined as counties that inter-
sect with a 10-km buffer around the target county boundary. In counties
where sales data are scarce, sales from nearby counties are added (in order
of the distance between the centroids of target county and nearby counties)
until the pool of training data contains at least 1,000 sales of vacant prop-
erties larger than 1 ha. Sales duplicates across data sources (transaction data
vs. assessment data, linked parcels vs. dummies) are identified based on
parcel number and year and removed. In addition, I exclude:

• Sales that were likely non–arms-length sales, i.e., sales in which data in-
dicate that buyers and sellers might have been related, based on the
presence of an interfamily transfer indicator (provided by ZTRAX) or sim-
ilarity of seller, buyer, and owner names.

• Sales likely involving public buyers or sellers, as estimated from seller,
buyer, and owner names.

• Sales of properties encumbered by easements.
• Sales with prices below $1,000.
• Sales with prices that deviate from assessor’s FMV estimates by a factor

of 100.

Vacant sales are identified as sales without a building footprint, without a
land use code indicating the presence of a building (ZTRAX), and without a
positive assessment value or FMV for buildings in the tax assessor data
(ZTRAX). To prevent developed sales from overwhelming the model fitting
procedure in urbanized locations, the ratio of developed sales vs. vacant sales
is capped at 2:1. In locations where this ratio is found to be larger, the cap is
enforced by drawing a random sample from the pool of developed sales.

The full training sample contains 6.01 million nonduplicate land sales, dis-
tributed unevenly across the contiguous United States (SI Appendix, Fig. S9).
The training data for each target county is used to fit extremely randomized
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trees models, a tree-based ensemble method for supervised regression (20). As
the dependent variable, I use logged per-hectare sales price, inflated to 2017
USD using the monthly unadjusted Consumer Price Index for urban consumers
(47). The main model (“PLACES FMV: all”) uses all sales and 27 predictor var-
iables (features) (SI Appendix, Table S3). I also train a model on vacant land
sales only (“PLACES FMV: vacant”), omitting parcel-level building density
and building area as predictors. Both models use 500 base learners
(decision trees) and require three samples per leaf (SI Appendix provides
alternative specifications).

Model performance is evaluated based on the mean squared error (MSE)
of out-of-bag (OOB) predictions. OOB predictions are model predictions that
use only the subset of base learners (decision trees) that were not trained
on the observation whose value they predict. Across all 6.01 million sales
observations, the average OOB MSE is 0.98; 95% of counties have an
MSE <1.93. Variables associated with the presence and size of buildings are
the most important drivers of FMV in the main model, followed by variables
representing variation across time and space and those representing wet-
land presence (SI Appendix, Fig. S13). These predictors alone account for
60% of overall feature importance. Fitted county-level models are then used
to predict expected sales prices (FMV) for all parcels within a county. To
counter overfitting, OOB predictions are used for properties that were part
of the training sample.

Validation and Robustness Checks. Conservation proxies are compared against
observed conservation costs based on simple linear models that regress
observed conservation cost on an intercept and the corresponding cost proxy
(Fig. 2). Before fitting, all proxies and observed cost estimates are converted
to the same unit (log 2017 USD per hectare). Predictive power is reported as
the R2 value of the linear models. Bias in cost proxies is reported as the es-
timated slope of linear regressions (1 = no bias) and average differences
between actual and predicted costs (0 = no bias) (SI Appendix, Table S1).

I perform a suite of robustness checks to test for differences in the pre-
dictive accuracy and bias of alternative parameterizations of the model fit-
ting procedure. SI Appendix provides detailed descriptions of these checks,
and SI Appendix, Figs. S4 and S14 present results. Key observations include
the following:

• The omission of any set of predictors reduces predictive power for both
the training data (all property sales) and the validation data (conservation
acquisitions).

• The addition of parcel size as a predictor improves predictive power in the
training data but leads to an overestimate of conservation cost in the
validation data, especially for large parcels, without an improvement in
predictive power (R2). This is likely the result of a systematic difference in
training data (skewed toward smaller, more urban parcels) and conserva-
tion acquisitions (which include a larger share of large and undeveloped
parcels). It points to the need for further study of the circumstances
under which parcel size is a suitable predictor in conservation cost
modeling (13).

• Any tested changes to the parameterization of the extremely random
tree regressor either decrease predictive power or increase bias in the
validation sample.

Replication of Results from Previous Studies. To reproduce the floodplain
acquisition cost estimates from Johnson et al. (13), I follow their method-
ology and identify natural, private, undeveloped floodplains as the inter-
section of natural land uses in the National Land Cover Database (42), 100-y
flood return layers (8), and private ownership (PLACES). Cost estimates are
based on the model that only includes vacant sales (“PLACES FMV: vacant”).

I reproduce the cost estimates for climate-sensitive protection strategies
for species from Lawler et al. (11) using the datasets made available via
Dryad (48) and the MARXAN conservation planning software (49). PLACES
cost estimates are based on the model for vacant sales (“PLACES FMV: va-
cant”). In line with the published maps, I use targets of 100 planning units
for each species occurring in ≥100 planning units and all planning units for
species with <100 planning units. Runs with species refugia include 100% of
all refugia. For each scenario, I identify the lowest species penalty factors
that ensure that all conservation targets are reached. Each scenario is run
with 10 iterations. I quantify the magnitude of changes to spatial priorities
induced by PLACES FMV estimates using three indicators (SI Appendix, Table
S2): 1) mean absolute difference in selection frequency, including all plan-
ning units selected at least once in any scenario; 2) percentage loss of top
spatial priorities, defined as the percentage of planning units frequently
selected in scenarios of Lawler et al. (>50% selection frequency) that were
not identified as priorities in the scenarios with updated cost data
(i.e., whose selection frequency was reduced by an absolute value of at least
50%); and 3) percentage gain of top spatial priorities, defined as the per-
centage of planning units frequently selected in the scenarios using PLACES
FMV cost data (>50% selection frequency) that had not been identified as
priorities in the scenarios of Lawler et al. (i.e., that gained at least 50% in
selection frequency).

Data Availability. Rasterized cost estimates, validation datasets, and data used
in the published figures are available from Dryad at https://datadryad.org/
stash/dataset/doi:10.5061/dryad.np5hqbzq9 (50). Improvements, updates,
and extensions to the US land value estimates will be hosted at placeslab.
org/fmv_usa.
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