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The last five years marked a surge in interest for and use of smart robots, which operate in dynamic and
unstructured environments and might interact with humans. We posit that well-validated computer
simulation can provide a virtual proving ground that in many cases is instrumental in understanding safely,
faster, at lower costs, and more thoroughly how the robots of the future should be designed and
controlled for safe operation and improved performance. Against this backdrop, we discuss how
simulation can help in robotics, barriers that currently prevent its broad adoption, and potential steps
that can eliminate some of these barriers. The points and recommendations made concern the following
simulation-in-robotics aspects: simulation of the dynamics of the robot; simulation of the virtual world;
simulation of the sensing of this virtual world; simulation of the interaction between the human and the
robot; and, in less depth, simulation of the communication between robots. This Perspectives contribution
summarizes the points of view that coalesced during a 2018 National Science Foundation/Department of
Defense/National Institute for Standards and Technology workshop dedicated to the topic at hand. The
meeting brought together participants from a range of organizations, disciplines, and application fields,
with expertise at the intersection of robotics, machine learning, and physics-based simulation.
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Robots are no longer stiff/rigid implements operating
in the structured environment of assembly lines and
performing scripted and limited sets of operations.
Emerging artificial intelligence techniques will endow
the next generation of robots with mobility and
decision-making skills. These robots will be flexible
and reconfigurable; interact with humans; and oper-
ate in environments that are unstructured, uncer-
tain, and rapidly changing in time. It is expected
of them to assume new roles such as operating on

highways as autonomous vehicles, in nursing homes
assisting social workers, in schools tutoring young
learners, underwater managing oil spills, and in the
adverse and cluttered environments of search-and-
rescue missions or remotely performing surger-
ies. While physically testing these robots before
deployment is mandatory, through simulation, the
engineering design process can be accelerated,
made more cost effective, and benefit from more
thorough testing.
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This Perspective is a reflection of ideas, observations, and
suggestions that emerged during a 1-d workshop on the topic of
using simulation in robotics (1). This participant input, in raw form
and organized in anonymized decks of slides, is available online
(2). The hope is that this Perspective, which provides a synthesis of
the input contributed by the workshop participants, becomes a
useful reference, resource, and call to arms for colleagues from
the simulation community interested in applying their expertise in
the rapidly evolving field of smart robotics. To that end, this con-
tribution seeks to identify opportunities, point out challenges, and
suggest possible next steps vis-à-vis the goal of increasing the
role that computer simulation plays in smart robotics.

This Perspective is organized in three parts. The first part
summarizes benefits that simulation could deliver upon its use in
designing robots over the next decade, i.e., near term. A subse-
quent section points out hurdles that hinder the wide use of
simulation in practice. Finally, we identify steps believed to
accelerate the near-term role that simulation plays in robotics. The
intent was to generate a snapshot that captures this group’s
perspective on the potential, hurdles, and path forward for the
simulation-in-robotics idea. This contribution is not a review of
the simulation-in-robotics literature; references were used sparingly
to point the reader to contributions that further elaborate on ideas
that were only briefly stated in this Perspective and, where neces-
sary, to provide a historical perspective on the topic at hand. The
purposely short reference list was dictated by publication length
constraints and the stated purpose of this Perspective—to provide
a “perspectives” opinion rather than a review of the state of the art.

How Simulation Is or Could Be Useful in Robotics
Ideas embedded in preworkshop contributions (2) and further
discussions during the joint meeting brought into focus several
simulation-in-robotics opportunities: 1) Generate, expeditiously
and at low cost, large amounts of training data for machine
learning; 2) accelerate the engineering design cycle, and reduce
its costs; 3) provide an accelerated, safe, and fully controlled vir-
tual testing and verification environment; 4) facilitate the devel-
opment of more intelligent robots; and 5) facilitate the
understanding of human–robot interactions (HRI).

Opportunity 1: Generate, Expeditiously and at Low Cost,

Large Amounts of Training Data for Machine Learning. The
recent surge of machine-learning use in defining control policies
(3), and the associated need for a wealth of training data, provided
a major impetus to the use of simulation in robotics. A validated
simulation platform becomes an ideal proving ground for devel-
oping systems that can both learn from their mistakes and be
verifiable. Simulation can be used to optimize new behaviors and
to carry out tasks never known to be possible. The advantage of
using simulation to generate training data becomes even more
compelling when the software used can draw on ubiquitous high-
throughput computing resources, i.e., using multiple nodes to
carry out batches of simulations in parallel and perhaps in the
cloud. Using simulation to generate training data for control
policies is not a silver bullet owing to the so-called simulation-to-
reality gap (4), which is touched upon later in this article. En-
hancing the transferability attribute of simulation-learned control
policies represents an area of active research (5–7).

Opportunity 2: Accelerate the Engineering Design Cycle, and

Reduce Its Costs. There are two time-consuming stages in the
design of a new robot: the mechanical design and the control

policy design. The former is concerned with producing a solution
that can execute a predefined set of tasks. The latter is concerned
with endowing the robot with smarts to actually carry out the tasks
that it has the potential to execute. For both mechanical and
control policy design, one typically produces prototypes that it-
eratively improve on previous versions until a certain prototype is
acceptable; this prototype becomes a candidate solution. The
iterative process to produce the candidate solution is time con-
suming. Additionally, it can be expensive, unsafe (for humans or
the robot hardware), and sometimes impractical (if designing a
rover for Mars, testing cannot be done in Martian conditions).
Moving from a model-free to a model-based design approach,
i.e., carrying out the iterative loop in simulation (8), can reduce
the time associated with the design process. Indeed, changing a
rover suspension design to assess trafficability in simulation can
be as fast as modifying a handful of parameters in a template file
that defines the geometry of the vehicle (9). By comparison,
physically modifying the suspension of a prototype is signifi-
cantly more time consuming. Additional time and cost savings
are incurred in the subsequent stage, the testing of the candi-
date design. Before it becomes the solution, the candidate
design is subjected to extensive additional testing in which a
limited collection of candidate design clones is assessed via
a predefined evaluation process. Physically building the col-
lection of candidate designs is time consuming and costly since
there is no assembly line ready yet and each clone is hand-
crafted. In simulation, testing the candidate might be as simple as
copying the model files to different folders and conducting the
predefined evaluation process using high-throughput, parallel
computing.

Opportunity 3: Provide an Accelerated, Safe, and Fully Con-

trolled Virtual Testing and Verification Environment. Ap-
proaches to verification of autonomous systems are in their
infancy (10). Approaches to verification and “debugging” of au-
tonomous robotic systems that learn online are essentially non-
existent. Repeatability, particularly with respect to stress/corner
cases; full control of the experiment insofar as the “environment”
is concerned; and the lack of risk to human and hardware damage
are three attributes that can make simulation instrumental in
establishing principled protocols for autonomous system verifi-
cation and, by extension, industry standards and guidelines.
Against this backdrop, as autonomous systems cannot foresee
unknowns that they may encounter, novel formal verification
schemes can be developed to verify specifications such as safety
in real time under assumed uncertainty in the system and its en-
vironment (11).

Simulation can play an important role in providing insights into
multirobot, collaborative scenarios (12, 13). Collaborative, multi-
robot systems can exclusively comprise robots interacting with
each other based on their own local decision-making algorithms
that factor in sensed and/or shared information or can include
human interaction as in, for instance, search and rescue scenarios.
As the number of robot–robot and/or human–robot interactions
increases, so does the complexity of designing and verifying these
systems. Physical testing and verification are daunting as the
collection of scenarios to probe increases quadratically with the
number of agents in the system. Moreover, it is difficult to sys-
tematically test in real conditions multirobot systems used, for
instance, in environmental monitoring, off-road mobility/surviv-
ability, surveillance, or infrastructure management, etc., due in
part to the stiff challenges posed by operating groups of agents in
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such environments. Simulation is very convenient in such scenar-
ios, given that it can also be used to probe for interagent con-
nectivity failure or hostile network penetration. Hostile/adversarial
attacks aim at more than multirobot network penetration—the
robot’s control stack and sensing system are two other targets
(14). One of the most compelling cases for use of simulation in
robotics can be made in conjunction with the need to thoroughly
check the consequence of such attacks. Do the checks designed
to guard against adversarial attacks work as expected? What is a
safe way to counteract an adversarial attack? The answer to these
and similar questions is critical for safety and regulatory purposes
yet direct hardware testing is costly and potentially unsafe (bulky
robots gone awry can become outright dangerous). Simulating
the response of the robotic system in cases of failure, while po-
tentially performing a task, permits the investigation of fail–safe
strategies for the system as well as the design of security, anti-
breach policies. Without simulation, one is limited in what and
how many scenarios can be tested.

Opportunity 4: Facilitate the Development of More Intelligent

Robots. In this argument, the intelligence metric is tied to the
breadth of scenarios in which the robot is expected to successfully
fulfill a set mission. By this metric, industrial robots are at one end
of the spectrum. They operate in very structured and static envi-
ronments (known ahead of time) and are trained to perform a
narrow and a priori established catalog of operations. The op-
portunity to develop more intelligent robots is a consequence of
several technological advances: Machine-learning techniques
opened the door to new control policies (3); the compute speeds
available on an affordable power budget have increased sub-
stantially; sensing is sharper and more affordable; actuation is
gradually becoming more sophisticated; and low latency com-
munication/networking and edge computing allow for real-time,
just-in-time off-loading of heavy-duty computation during oper-
ation. Against this backdrop, simulation can be a catalyst for the
next stage in the evolution of smart robots, one in which they
operate in unstructured environments and engage in decision-
making activities. Just as the concepts of morality (set rules),
prior experience, and ability to predict the consequence of one’s
actions shape the decision-making process in humans, a set of
rules (including ethical) and an ability to predict consequences/
outcomes through online simulation can shape the decision-
making process of robots through introspection (15). A rule that
states “plates shall not drop on the floor” combined with the
ability to run thousands of parallel simulation scenarios faster than
real time should determine the robot to place on a table the plate
at the top of the stack that it carries rather than one from some-
where in the middle of the stack. The ability to foresee online the
outcome of a possible action through the lens of simulation is
anchored by spectacular gains in computation speed. For in-
stance, recent graphics processing unit (GPU) cards can manage
the simultaneous execution of more than 150,000 computing
threads (16). With simple enough simulation kernels, this trans-
lates into peeking into the future via as many possible scenarios,
leading to introspective control policies that complement the
established model predictive control approach and more recent
techniques that rely on on/offline machine-learning solutions (17).

Opportunity 5: Facilitate the Understanding of HRIs. The
ability to simulate the interaction between the robot and the hu-
man opens the door to experimentation with tele-surgical ro-
botics in semiautonomous or autonomous operation, reducing

risks to individuals in dangerous work environments or working in
cooperation with collaborative and mobile robots in a shared
workplace, eliminating or reducing repetitive motion trauma and
musculoskeletal overload, and reducing fatalities and injuries from
motor vehicle incidents as autonomous vehicles are yet another
form in which robots interact with humans. The human–robot in-
terplay can project specialized medical expertise and care to any
point of need, at any time. This is of particular interest for teams
operating remotely, e.g., small teams of first responders, teams of
astronauts, etc. Finally, one important facet of the science of HRI
pertains to the aspect of establishing trust between human and
robot in shared decision making (18). Development of simulation
tools that better represent the psycho-social nature of HRI and
enable a common operating “picture” of possible solution sets for
decision making may foster trust and establish a baseline for more
effective collaboration (19).

Barriers to the Use of Simulation in Robotics
This section summarizes issues that, to various degrees, limit the
role played by simulation in robotics. A noncomprehensive list of
open problems vis-á-vis the topic at hand includes the following:
1) In a scarcity of solutions, producing a simulation platform for
robotics requires broad multidisciplinary expertise and sustained
software development commitment; 2) existing modeling lan-
guages are immature at a time when a robotics simulation on-
tology is only slowly emerging; 3) model composability needs
further improvements; 4) simulation is not fast enough; 5) uncer-
tainty is marginally handled; 6) model calibration can be tedious;
7) data-driven approaches (surrogate models; replacing simula-
tion with an oracle) are only slowly emerging; 8) difficulties in
gauging the needed level of model complexity; and 9) handling
the human–robot interaction.

Issue 1: In a Scarcity of Solutions, Producing a Simulation

Platform for Robotics Requires Broad Multidisciplinary Exper-

tise and Sustained Software Development Commitment. After
an evolution that spanned decades, computer-aided engineering
(CAE), i.e., the use of computer simulation in customary engi-
neering, has become a linchpin in the design process. For in-
stance, one can carry out a highly predictive finite-element
analysis of an engine crank shaft or of an airplane wing to accu-
rately identify vibration/flutter modes. Likewise, a vehicle ride
analysis can be performed via a dynamics simulation in which a
vehicle operating on a flat, rigid surface follows a sequence of
driving maneuvers to collect information for a subsequent noise/
vibration/harshness analysis.

Compared to customary CAE, simulation in robotics is less
structured and vastly more multidisciplinary. The “less structured”
attribute is tied to the observation that a relatively simple set of
boundary conditions and load functions is enough to define the
backdrop for a CAE-type analysis. In robotics, the backdrop is
more complex and uncertain. For instance, the robot can operate
in and interact with an unstructured and evolving world; or a hu-
man can be part of the equation. The “multidisciplinary” attribute
is a consequence of the fact that for simulation in robotics, in
addition to producing models for robot dynamics, which is in the
purview of CAE, one has to engage in non-CAE tasks; e.g., sim-
ulate perception; represent in high fidelity the unstructured en-
vironment surrounding the robot (this virtual world might have to
be itself simulated since its state can be influenced by the robot
dynamics, e.g., rover changing the world by creating deep ruts
that must be captured by the camera sensor of a following rover);
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simulate the human dimension in HRI; and simulate agent-to-
agent or agent-to-infrastructure communication. These simula-
tor subcomponents, which are tied to the dynamics, sensing,
virtual world, human participation, and communication facets,
render the simulation-in-robotics task highly multidisciplinary. As
an example, consider perception simulation—it alone calls for
knowledge in several disciplines as robotics applications rely on
multiple classes of sensors, e.g., Global Positioning System (GPS),
inertial measurement unit (IMU), Light Detection and Ranging
(LiDAR), camera, radar, thermal, etc., each drawing on vastly dif-
ferent physics for characterizing the sensing paradigms that come
into play. Finally, one has to integrate these subcomponents and
turn the sum of the parts into a useable simulation platform, a
process that adds a software engineering facet to the multidisci-
plinary nature of the task at hand.

Issue 2: Existing Modeling Languages Are Immature at a Time

When a Robotics Simulation Ontology Is Only Slowly Emerg-

ing. Specifying/defining/setting up a scenario model for simula-
tion in robotics can be daunting. Indeed, one has to specify a slew
of parameters that define the geometry of the robot, its kine-
matics, loads, actuators, sensor package information, the virtual
world it operates in (weather, time of day, satellite position, terrain
properties, etc.), communication types and protocols, control
policy type, etc. The scenario modeling abstractions that are
needed should be conducive to yielding models with hierarchical
structures that accommodate the user’s requirements vis-à-vis the
level of fidelity rendered in simulation—from less accurate but
expeditious to highly detailed/accurate but computationally more
demanding. Gazebo (20, 21) has made good strides in this di-
rection, continuing in the tradition of previous tools like USARSim
(22). However, the ontology associated with Gazebo’s modeling
approach and other similar efforts (23) is limited in scope. Dwell-
ing on the Gazebo example, the platform exposes one simulation
interface to several engines: ODE (24), Bullet (25), DART (26), and
Simbody (27). Presently, the Gazebo simulation-in-robotics on-
tology does not include concepts such as fluid viscosity, material
dissipation model, soil plasticity, Drucker–Prager yield, etc., since
none of the Gazebo-exposed physics engines supports fluid dy-
namics, plasticity in soils, finite-element analysis, etc. There are
simulation engines that have started to support multiphysics with
various degrees of success (28, 29) yet these engines presently
come short on exposing robotics-focused modeling abstractions.
In moving forward, lessons in scenario modeling can be learned
from software platforms used to create computer games (28, 30,
31). These platforms are used with good success by several ro-
botics simulation engines (22, 32, 33) to create complex virtual
worlds with visually appealing graphics. However, the gaming
platforms are not designed to accurately simulate the physics
governing the behavior of robots and their interactions with the
environment. Consequently, their predictive attributes are limited
owing to an emphasis on plausibility rather than accuracy.

Issue 3: Model Composability Needs Further Improvements. A
rich universe opens up when multiple agents participate in the
same scenario (34). Composability refers to the ability to combine,
LEGO style, basic constructs/submodels into complex simulation
scenarios. In this approach, complex scenarios are investigated via
composed models that draw on validated, discipline-oriented,
submodels. This calls for more than just the ability to build on a
hierarchical representation of a model. Indeed, there is an inter-
play at runtime between these subcomponents that takes place in

the presence of dynamic (evolving) environments and human
participation. For instance, the submodels communicate with
each other (agent to agent, agent to infrastructure, etc.) and in-
teract with each other through contact, friction, visual, or auditory
cues, etc. These aspects need to be supported in a physics-based
fashion by the simulation engine, and this is what makes this
composability problem more than a “model representation,” i.e.,
a preprocessing, problem. One additional layer of complexity
comes into play if a real-time constraint must be met for scenarios
that include numerous robots. Composability with scalability
typically calls for simulators that rely on parallel computing, which
further complicates the problem at hand due to time and space
coherence requirements—robots should propagate their dy-
namics in the same world time and be able to sense each other
although they might run on different hardware assets linked
through a fast interconnect fabric. There are several sources of
inspiration for handling composability, e.g., V-REP (23), which
embraces composability yet has other limitations in terms of
breadth of physics simulated. Similarly, there are computer-aided
design (CAD)-to-dynamics modeling pipelines (which leverage,
for instance, SolidWorks or MATLAB) and video gaming-based
solutions that can lighten the burden of reaching composability
with scalability. Indeed, the game community has established
sophisticated game authoring tools that implicitly handle model
composability. On the down side, they are massive chunks of
code; cumbersome to work with; and, as pointed out in issue 2,
only partially cover the robotics community’s needs owing to
emphasizing credibility in appearance rather than accuracy in
results.

Issue 4: Simulation Is Not Fast Enough. Robotics simulation is
customarily used for mechanical design or control purposes. In
controls, the simulations should run fast, in fact, faster than real
time for model predictive control or online policy inference (while
not ideal, slower than real-time performance is acceptable for
offline policy inference oftentimes employed in machine learn-
ing). Presently, by and large, robot models that use only rigid
bodies run in real time as long as the number of bodies is in
the neighborhood of 10 to 15 and the number of collisions with
friction and contact is low (25, 35, 36). However, the real-time
constraint is daunting for models that contain flexible/soft/
deformable components and/or numerous contacts with friction.
An additional and sizable simulation slowdown is associated with
scenarios that include unstructured and changing environments,
e.g., deformable terrain, cluttered environments, fluid–solid in-
teraction, etc. Bringing this type of physics into the model is im-
portant when robots venture outside controlled environments and
operate in complex real-world scenarios. Depending on the goal
pursued, i.e., mechanical design vs. controls, managing the sim-
ulation time calls for compromises, e.g., reduced number of it-
erations in a numerical algorithm, a coarser mesh for collision
detection, use of rigid instead of deformable terrain, reliance on
more rudimentary sensing, use of rigid instead of compliant ele-
ments, two-dimensional instead of three-dimensionbal dynamics,
model reduction, etc. Note that the nature of this compromise
also depends on the computing power available, which is mark-
edly different for offline and online simulation. Indeed, a complex
model can run real time in a mechanical design analysis, when one
relies on power-hungry hardware such as GPUs, only to run too
slowly in an online setup where weight and/or power constraints
limit the compute hardware options.
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Issue 5: Uncertainty Is Marginally Handled. Friction, impact,
contact, actuator noise, wear and tear, uncertain external loads,
complex and unstructured environments, etc., are a few of the
many sources of uncertainty that mar the operation of a robot.
These sources of uncertainty must also be present in simulation.
The uncertainties encountered are both aleatory (due, for instance,
to the complexity of the dynamic response in the presence of
friction and contact phenomena) (37) and epistemic (e.g., unknown
simulation parameters for a selected model for friction, e.g., Cou-
lomb friction) (38). Accounting for uncertainty must be done during
both model generation and simulation phases. In model setup, one
has to provide mechanisms to inject uncertainty in the model: e.g.,
allowing the friction coefficient to change in a deformable and
heterogeneous terrain, the geometry of various components to be
less than perfect, the actuation forces/torques to display delays,
etc. In running simulations, one has to robustly handle lack of
smoothness associated with the solution of the robot dynamics:
e.g., stick–slip conditions, impact, control policies that are non-
smooth, event-triggered changes that occur sporadically to sud-
denly change loads or boundary conditions, etc. A perspective that
might be useful is a statistical one, in which confidence bounds
gauge the extent to which one can rely on simulation results (39).
This uncertainty quantification mindset is pivotal, since robots will
oftentimes have limited knowledge about the environment they
operate in and stimuli they are subject to.

Issue 6: Model Calibration Can Be Tedious. Populating a model
with correct parameters is time consuming and most often an ad
hoc, one-off, process. Pragmatically speaking, the goal is to do
predictive analysis, not to find parameters for a model. This ob-
servation explains why this topic receives less attention than the
task of generating the model, which nonetheless is populated
with these very parameters that ultimately dictate its quality.
When experimental data for the robot are available, classic
identification methods are effective provided the parameter
space is not large (40). Unfortunately, at design phase, robots
exist only as CAD drafts yet to be instantiated in reality; as such,
experimental data are unavailable. Even when the robots exist,
experimental data for calibration might be hard to procure.
For instance, friction and contact simulation for rigid-wheel/
deformable-terrain interaction requires more than 10 parame-
ters, which are typically determined through a bevameter test
carried out in the field (41). Although the rover might exist, ex-
perimental data for Martian soil is very limited and a bevameter
test is out of the question. Recent efforts aimed at simplifying
calibration rely on machine learning and other statistical ap-
proaches to automate a labor- and time-intensive process (6, 42,
43). For large parameter sets, brute force approaches can lever-
age powerful processors to perform statistically guided extensive
searches for parameter values (44).

Issue 7: Data-Driven Approaches (Surrogate Models; Replac-

ing Simulation with an Oracle) Are Only Slowly Emerging. The
standardization of robotic platforms opens the possibility to col-
lect large amounts of data (sometimes provided by the manu-
facturer) in real-world scenarios that could be leveraged by
machine-learning techniques to build predictive models directly
from data (8). The hope is that using statistical-learning tech-
niques, one could bypass simulation-specific hurdles such as
model generation and calibration by constructing “oracles” that
are able to predict the next system state given its current one. The
outcome of a data-driven approach might not be a complete

elimination of the simulation. The approach could be used to
methodically reduce model (and therefore computational) com-
plexity through systematic dimensional reduction and/or model
compression (45, 46). However, the data-driven approaches in
robotics simulation are in their infancy and principled methodol-
ogies to design and validate data-driven models remain to be
identified. In addressing the issue at hand, one is faced with the
practical challenge of developing realistic use cases and gener-
ating enough data to represent “truth” or “reality.” This is not a
trivial task. For instance, what types of data, problems, and level of
authenticity are required to better capture and model the socio-
physical characteristics of human–robot interaction scenarios?
Note that in producing these surrogate models, one can substi-
tute experimental data with simulator-generated data. Indeed, if a
simulator and a model exist, the data produced by the simulator–
model combination, just like experimental data, can be used to
produce an “oracle” that within a controlled set of regimes can
yield results close to those produced in simulation. In other words,
the simulator provides the data that lead to its obsolescence.

Issue 8: Difficulties in Gauging the Needed Level of Model

Complexity. Complex models set up to produce highly accurate
results most often lead to long run times and require a wealth of
model parameters. It is not uncommon that lack of good param-
eters in these models leads to worse results that take longer to
produce than what can be obtained using simpler models. Like-
wise, debugging complex models is time consuming since it is
difficult to discern whether subpar results are due to poor model
parameters or to weaknesses in the modeling and numerical so-
lution techniques anchoring the simulator. Against this backdrop,
there is a lack of consensus regarding when complex models are
needed, i.e., at what point a model confines our ability to discover
through simulation. For instance, in machine learning, sophisti-
cated models are expected to better negotiate the simulation-to-
reality gap, i.e., to yield simulation-learned control policies that
work well on the real robot (4). Recent results show, though, that
this gap can be successfully negotiated learning with sim-
ple models. In a “domain randomization” approach, simple and
therefore expeditious models are repeatedly used to canvas
broad model parameter spaces via expeditious simulation to im-
prove control policy robustness (5). Unfortunately, this example
cannot be generalized and one should be cognizant of the fact
that validated simulation tools serve multiple end goals—human-
in-the-loop simulation, the designing of better control policies,
improving mechanical performance, auditing for safety purposes,
etc. This suggests that diversity in the level of model complexity is
inevitable and the practitioner has to rely on past experience,
understanding of the real-world problem, and knowledge of the
simulation tool to make the right call. Choosing a simple model for
a complex problemmight produce misleading results; conversely,
choosing too complex of a model for a simple problemmight take
an unreasonable amount of effort to set up and lead to prohibi-
tively long simulation times. These are two outcomes that each
can discredit the idea of using simulation in robotics; they can also
be used to make a case that simulation in robotics is part science
and part practice.

Issue 9: Handling the Human–Robot Interaction. One con-
spicuous challenge in HRI simulation is tied to the speed of exe-
cution: The robot simulation should be fast enough to support
real-time interaction between the human and the robot model
(human-in-the-loop simulation). This poses several challenges;
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see issue 4. Speed of execution ceases to be a matter of concern if
there is no actual human in the loop; i.e., the human component is
simulated as well. Indeed, in robot training, the human is replaced
with an avatar endowed with the same traits that the human would
display in interaction with the robot. Creating avatars is as difficult
as humans are diverse, each person a unique and complex web of
intertwined physical, social, emotional, cognitive, and psycho-
logical threads. Numerous empirical models have been created to
abstract human behavior in robotics and virtual reality (47). Ideally,
the wisdom and insights that these studies have yielded would be
aggregated in priors for mathematical models. This would mark a
departure from today’s empiricism in human modeling in robotics
and represent a step toward the adoption of statistical models of
the human in HRI tasks. While progress has been reported in
capturing mechanistic traits in HRI, e.g., models for the mechanics
of the human body insofar as simulating surgery procedures is
concerned (48, 49), numerous questions remain unanswered in
relation to abstracting in mathematical models the psychological
underpinnings that trigger in humans states of anxiety, fear,
comfort, stress, etc. In this context, the ability to control and dis-
play emotions in avatars represents a prerequisite for endowing
smart robots with a sense of empathy in their interaction with
humans (50).

Suggested Steps for Making Simulation More Useful in
Robotics
The next two subsections summarize, respectively, recommen-
dations and high-vantage-point observations that emerged at the
conclusion of the simulation-in-robotics workshop.

“Nuts-and-Bolts” Recommendations. The recommendations
below are made for a generic agency that considers making in-
vestments in the simulation-in-robotics area while the agency is at
the stage of assembling a call for proposals. The recommenda-
tions could also be informative to someone who contemplates
becoming involved in the research and development effort as-
sociated with the simulation-in-robotics topic. The list is not
comprehensive; it compiles only several initiatives deemed as of
higher priority: 1) Foster the development and validation of open-
source simulation platforms; 2) foster efforts that seek to establish
open and community-curated libraries of validated models; 3)
organize several simulation-in-robotics grand challenge compe-
titions; 4) encourage efforts that seek to characterize the human–
robot interaction; 5) encourage simulation solutions for soft ro-
botics; and 6) emphasize use of emerging hardware architectures.
Recommendation 1: Foster the development and validation of
open-source simulation platforms. A robust and feature-rich set
of four or five simulation tools available in the open-source do-
main is critical to advancing the state of the art in robotics. Vali-
dated open-source platforms democratize the simulation-in-
robotics effort and inspire/inform future, more refined open-
source or commercial efforts. Trusted open-source solutions are
quickly embraced; support the idea of reproducibility/verifiability
in science; and have the side effect of immediately raising the bar
for the commercial tools, which must necessarily up the ante.
Owing to the breadth of robotics applications, it is likely that no
single platform will emerge as the solution of choice for all tar-
geted simulation scenarios, which provides the rationale for the
“four or five simulation platforms” recommendation above.
Recommendation 2: Foster efforts that seek to establish open
and community-curated libraries of validated models. Cus-
tomarily, simulation in robotics calls for the interplay of three types

of submodels: robots, synthetic worlds, and sensors. In some
cases, the human component comes into play, and, for multirobot
scenarios, one might need to simulate the communication layer.
Any one of these submodels is complex, both to generate and to
endow with meaningful parameters; see issue 6. With an eye to-
ward scenario composability, it would be useful and impactful to
establish a set of freely available, ready-to-go scenario models
that build off existing robot/virtual world/sensor/human/commu-
nication submodels. Establishing model libraries is an arduous
and long process that has one prerequisite: The community must
coalesce around a modeling approach and ontology. The Unified
Robot Description Format (URDF) (51) represents an early step in
this direction, yet its modeling schema remains to be endowed
with additional modeling elements. The existence of a rich and
broadly adopted modeling language and model library will have
the side benefit of providing an incentive for the manufacturers to
augment these libraries with validated models associated with
their robotics solutions. Finally, it is also imperative to identify new
ways in which models can be validated. Fresh perspectives are
needed in this regard, particularly when the robots simulated have
not yet been realized (52).
Recommendation 3: Organize several simulation-in-robotics
grand challenge competitions. Over the next decade, the
community would benefit from a sequence of four or five grand
challenge competitions. Run as a sequence, perhaps 2 y apart and
akin to the 2013 Defense Advanced Research Projects Agency’s
(DARPA) Virtual Robotics Challenge (21), these competitions
could pay dividends in several ways. First, carefully chosen chal-
lenge themes would focus the community effort. Without direc-
tion and clear purpose, the community can choose to focus
limited resources along technical thrusts of secondary relevance.
Second, a set of well-chosen challenge themes would be a cata-
lyst for cross-discipline collaboration. The current robotics simu-
lation gaps are best addressed by multidisciplinary teams,
combining model developers and model users, particularly when
the latter have expertise in physical testing. Third, such an effort
will foster an ecosystem buildup effort to produce the methods,
tools, models, and validation metrics of the trade. Fourth, this
effort will likely produce a catalog of reliable simulation platforms
available, as well as a community-sanctioned set of recommen-
dations that indicates which tool works well in what scenarios.
Finally, it is highly likely that these competitions will attract a lot of
public interest, which bodes well for promoting the field and
getting the attention of tomorrow’s roboticists.
Recommendation 4: Encourage efforts that seek to character-
ize the human–robot interaction. The issue of establishing hu-
man models that capture mechanical attributes of the body and/
or psychological and cognitive traits of human behavior is cross-
cutting. Applications in which HRI will come into play include ro-
botic surgery, which is relevant in surgery training and remotely
treating patients in remote/disaster zones; assisting seniors with
tasks such as dressing, personal hygiene, cleaning, and cooking;
and assisting individuals with limited ambulatory ability with
transportation needs, etc. The body of work in the area of HRI
modeling is meager, which explains the limited knowledge vis-à-
vis the issue of human cognitive performance in HRI. In this con-
text, there is a very limited set of science-based requirements and
thresholds for safe human–robot interaction.
Recommendation 5: Encourage simulation solutions for soft
robotics. To date, robotics simulation has almost exclusively
drawn on rigid body dynamics. Indeed, the underlying modeling
is simpler, the software implementation effort is more reasonable,
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and the simulation runtimes are shorter. Looking ahead, support
for soft robotics is critical in several fields, e.g., HRI and biomi-
metic robots. It is anticipated that embracing compliance in the
robotics models will elicit new approaches to handling frictional
contact with the potential benefit of alleviating numerical artifacts/
paradoxes brought to the fore by the rigid body model (53).
Generating through simulation sensory-motor data that match the
multiresolution dynamics, noise, softness, etc., of sensors and
actuators during complex tasks that include both compliance
and frictional contacts is poised to open the door to a systematic
study of the sensory-motor space for robotic manipulation and
locomotion.
Recommendation 6: Emphasize use of emerging hardware
architectures. Recent advances in high-bandwidth memory and
large core/processor counts can partially alleviate increased
computational loads associated with terramechanics, soft robot-
ics, fluid–solid interaction, and real-time simulation. Looking be-
yond GPU and multicore computing, a federated approach (54) in
which various components of a model are handled separately by
different solvers in a cosimulation framework would facilitate a
plug-and-play vision that enables scalability, open the door to
contributions coming from multiple groups, and enable the
adoption of best-in-class solvers for subproblems.

“High-Vantage-Point” Aspects. Unlike the previous subsection,
which provided pointed recommendations, the focus below is on
capstone observations: 1) Building a simulation-in-robotics eco-
system requires a sustained and multidisciplinary effort that poses
numerous open questions in basic research; 2) simulation in ro-
botics has a foundational and sizable software development
component to it; and 3) simulation in robotics provides a grand
challenge that has manifest societal impact.
High level 1: Building a simulation-in-robotics ecosystem re-
quires a sustained and multidisciplinary effort that poses
numerous open questions in basic research. Several types of
simulation techniques have to be combined to produce a simulation-
in-robotics solution platform. A dynamics engine is needed to
capture the time evolution of the robots in environments that can
be unstructured and themselves be changing in time; sensor
simulation is required in controlling the agents; meaningful sensor
simulation is predicated on the ability to simulate the environment
and model its unstructured and time-dependent nature, simulat-
ing the human dimension in HRI; and finally, communication
simulation comes into play for agent-to-agent or agent-to-
infrastructure information exchange. Addressing these open
problems requires basic research in a variety of areas: physics-
based modeling (friction, contact, impact, soft/compliant bodies,
fluid–solid interaction, terramechanics), numerical methods (fast
real-time solvers, linear solvers, optimization techniques, com-
putational geometry, the numerical solution of differential alge-
braic and partial differential equations, nonlinear finite-element
analysis, computational fluid dynamics, etc.), software develop-
ment (hardware-aware software), and data analysis (uncertainty
quantification). Serendipitously, several funded initiatives are on-
going, e.g., soft robotics (NSF) and terramechanics (Department
of Defense), and bound to have an impact for the problem at
hand. Nonetheless, the majority of the simulation-in-robotics
multidisciplinary open issues, e.g., modeling the human compo-
nent in HRI, sensor modeling, model composability, etc., linger
and at best are tangentially addressed in a context that lacks
synergy and is nonprogrammatic. Against this backdrop, we are of
the opinion that the benefits of a broad multiagency initiative

could be twofold: Stimulate fundamental research in relevant
areas and foster its rapid translation into open-source simulation
platforms. A broad initiative of this caliber would bring together,
ideally in an international framework, research groups from aca-
demia and agile software development groups from academia,
research laboratories, and industry.
High level 2: Simulation in robotics has a foundational and
sizable software development component to it. While posing
significant challenges, software development is not a research
activity insofar as simulation in robotics is concerned. Yet the
process adopted for developing the necessary software infra-
structure along with the terms under which the software is re-
leased play a role in how soon simulation makes a difference in
robotics. An important aspect is whether or not the software that
underlies a simulation-in-robotics initiative should be released as
open source. Likewise, there are several licenses, some more
permissive than others, vis-à-vis how open source can be used/
modified/distributed. The salient point is that software that solves
the problem at hand is desirable in any form. Perhaps, at the onset
of a simulation-in-robotics initiative open source released under a
permissive license such as MIT is more attractive only for the
reason that a component of it, be it a graphical user interface, data
input/output facilities, a particular algorithm, a collision detection
implementation, etc., might be recycled by another effort that
itself might be open or closed source. In our experience, the ar-
gument that an open-source code grows faster owing to contri-
butions from volunteers has proved largely unsubstantial. Indeed,
the level of skill and expertise required to make meaningful
contributions to a project is prohibitive, particularly early on in the
trail-blazing phase of the project. In fact, the point in time in the
software life cycle when volunteers can help marks the moment
when the project would ideally go commercial or be sponsored by
such an entity. This brings up the question of who should develop
the software that enables the simulation-in-robotics vision. En-
couraging domain experts to engage in software development
pursuits that have a manifest translation attribute, i.e., demon-
strating new algorithms, modeling approaches, etc., would be
beneficial, particularly at the onset of the initiative and when done
with a mindset of generating open-source software. Ideally, these
domain-expert generated software components would be recy-
cled by more mature simulation platforms. In this ecosystem, as
the field matures, one can hope that bigger and perhaps com-
mercial entities would step in to carry the burden of adding the
features of convenience that accelerate solution adoption.
High level 3: Simulation in robotics provides a grand challenge
that has manifest societal impact. It is this group’s belief that
computer simulation can and should play an important role in
smart robotics. We take our cue from the enthusiastic adoption
and broad impact that computer simulation has had in other in-
dustries and endeavors—from building cars and airplanes to
planetary exploration. Yet compared to CAD, computer-aided
manufacturing (CAM), and CAE solutions that anchor both the
product life cycle in industry and a vigorous research enterprise in
academia, the simulation in the robotics field is in its infancy.
Moreover, beyond lack of maturity, simulation in robotics is faced
with the task of serving user groups pulling in different directions
by virtue of them being engaged in different activities such as
design (Will it break? Is it fast enough? Can we build it?), controls
(How can we make it reconfigure? How does it climb stairs? How
does it work with other robots? Will it work under limited sensing?),
machine learning (learn gradually without forgetting; How do I
close the sim-to-real gap?), and artificial intelligence (when and
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how to express empathy). Finally, by comparison with CAD/CAM/
CAE, simulation in robotics poses unique and truly multidisci-
plinary challenges, some of them summarized in this document.
While established commercial CAD/CAM/CAE solution providers,
e.g., MSC.ADAMS, Siemens, Dassault Systèms, etc., are antici-
pated to gradually address the needs of the robotics community,
our near-term hopes are pinned on nimbler and more focused
platforms, e.g., Bullet (25), Chrono (36), DART (26), Drake (55),
MuJoCo (35), ODE (24), and SOFA (56). These platforms are by
and large open source; are plugged deeper into the research
community; and have the flexibility to rapidly translate modeling,
numerical methods, sensor simulation, graphics, and emerging
hardware architecture breakthroughs into advances that amplify
the role that simulation plays in robotics.

Conclusions
Simulation is not a goal in itself but a means to an end. This
contribution outlines some of these ends and barriers that need to
be overcome for simulation to deliver on its potential in robotics.
We believe that undertaking a focused, coordinated, and sus-
tained research and software development effort in this area is
timely. In the process, the simulation community will have to ad-
dress research questions at the intersection of computer science,
mechanical engineering, electrical engineering, cognitive sci-
ence, and applied mathematics. Without a systematic, guided,
and all-encompassing effort, advancing the state of the art will be
marred by trial-and-error detours. The pressing question is how to

jump start a robotics-simulation cross-pollination process that
would speedily transition the effort from the “academic debate”
phase into a “simulation-enabled building and demonstration of
technology” phase. This transition can be catalyzed by a sustained
decade-long financial commitment, which would ensure funding
for cross-disciplinary efforts that promote collaboration, compe-
tition, and compilation of open repositories of validated models
and source code. As witnessed in the aerospace and automotive
industries, the paradigm shift to digital, while manifestly impact-
ful, took decades to coalesce. Learning from this experience, the
hope is that simulation will lead to breakthroughs in the design of
smart robots in a matter of years rather than decades.

Data Availability. All study data are included in this article and
SI Appendix.
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